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Abstract

In this paper we propose differential eligibility vectors
(DEV) for temporal-difference (TD) learning, a new
class of eligibility vectors designed to bring out the con-
tribution of each action in the TD-error at each state.
Specifically, we use DEV in TD-Q()) to more accu-
rately learn the relative value of the actions, rather than
their absolute value. We identify conditions that ensure
convergence w.p.1 of TD-Q(A) with DEV and show
that this algorithm can also be used to directly approx-
imate the advantage function associated with a given
policy, without the need to compute an auxiliary func-
tion — something that, to the extent of our knowledge,
was not known possible. Finally, we discuss the inte-
gration of DEV in LSTDQ and actor-critic algorithms.

1 Introduction

In the reinforcement learning literature it is possible to iden-
tify two major classes of methods to address stochastic opti-
mal control problems. The first class comprises value-based
algorithms, in which the optimal policy is derived from a
value-function, the latter being the focus of the learning al-
gorithm (Antos, Szepesvari, and Munos 2008; Boyan 2002;
Perkins and Precup 2003; Melo, Meyn, and Ribeiro 2008).
The second class comprises policy-based methods, in which
the optimal policy is computed by direct optimization in
policy space (Baxter and Bartlett 2001; Sutton et al. 2000;
Marbach and Tsitsiklis 2001).! Unfortunately, value-based
methods typically approximate the target value-function in
average (Tsitsiklis and Van Roy 1996; Szepesvari and Smart
2004), with no specific concern on how suitable the obtained
approximation is in the action selection process (Kakade
and Langford 2002).> Policy-based methods, on the other
hand, typically exhibit large variance and can exhibit pro-
hibitively long learning times (Konda and Tsitsiklis 2003;
Kakade and Langford 2002).
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nterestingly, the celebrated policy-gradient theorem (Marbach
and Tsitsiklis 2001; Sutton et al. 2000) provides an important
bridge between the two classes of methods, establishing that pol-
icy gradients depend critically on the value functions estimated by
value-based methods.

2We refer to Example 1 for a small illustration of this drawback.
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In this paper we address the aforementioned drawback
of value-based methods. We adapt an existing algorithm—
namely TD-Q—making it more suited for control scenar-
ios. In particular, we introduce differential eligibility vectors
(DEV) as a way to modify TD-Q(\) to more finely discrimi-
nate differences in value between the different actions, mak-
ing it more adequate for action selection in control settings.
We further show that this modified version of TD-() can be
used to directly compute an approximation of the advantage
Sfunction (Baird 1993) without the need to explicitly compute
a separate value function, which, to the extent of our knowl-
edge, was not known possible until now. Finally, we discuss
the application of DEV in a batch RL algorithm (LSTDQ)
and the application of our results in a policy gradient set-
ting, further bridging value and policy-based methods.

2 Background

A Markov decision problem (MDP) is a tuple M
(X, A,P,r,v), where X C RP is the compact set of pos-
sible states, A is the finite set of possible actions, P, (x, U)
represents the probability of moving from state x € X to
the (measurable) set U C X by choosing action a € A
and 7(z, a) denotes the immediate reward received for tak-
ing action a in state 2.> The constant + is a discount factor
such that 0 < v < 1.

A stationary Markov policy is any mapping 7 defining for
each z € X a probability distribution 7(z, ) over A. Any
fixed policy 7 thus induces a (non-controlled) Markov chain
(X, P,) where

Pﬂ-(.’ﬂ,U) é]P’[XH_l € U ‘ Xt :.T]
= Z m(x,a)Pq(x,U), forallt.
V7 () denotes the expected sum of discounted rewards ob-
tained by starting at state « and following policy 7 thereafter,
V7 (x)
£ E A, on(X0), Xes1~Pr(X2) Z’Vt?”(Xt,At) | Xo=2z|,
t=0

*In the remainder of the paper, we assume 7(z, a) is bounded
in absolute value by some constant £ > 0.



where A; ~ w(X;) means that A; is drawn according to the
distribution 7(Xy, ) for all ¢t and X;y; ~ P,(X;) means
that X;,; is drawn according to the transition probabilities
associated with the Markov chain defined by policy 7. We
define the function Q™ : X x A — R as

Qﬂ(x, a) = EYNPa(x) [T’(LE, a) + fVVﬂ(Yﬂ ) (H

and the advantage function associated with 7 as A™ (z,a) =
Q™ (z,a)—V7T(z) (Baird 1993). A policy 7* is optimal if, for
every z € X, V™ (x) > V™(z) for any policy 7. We denote
by V* the value-function associated with an optimal policy
and by Q* the corresponding Q-function. The functions V™
and Q™ are known to verify

VT (2) = Eanr(@),y~Pa(o) [r(@, A) + VT (V)]
Q" (2, a) = Eynp, (@) arnm(y) [r(z; @) +7Q7(Y, A)],

where the expectation with respect to (w.r.t.) A, A’ is re-
placed by a maximization over actions in the case of the
optimal functions.

Temporal Difference Learning

Let V be a parameterized linear family of real-valued func-
tions. A function in V is any mapping V : X x RM — R
such that V(z,0) = Zf\il ¢i(x)0; = ¢ ()6, where the
functions ¢; : X — R, 7 =1,..., M, form a basis for the
linear space V, 6; denotes the ith component of the parame-
ter vector @ and | denotes the transpose operator.

For an MDP (X, A, P,r,~), let {z:} be an infinite sam-
pled trajectory of the chain (X, P,), where 7 is a policy
whose value function, V™, is to be evaluated. Let {a;} de-

note the corresponding action sequence and \7(0t) the esti-
mate of V™ at time t. The temporal difference at time t is

5 & r(xe, ar) + 7\7(It+1, 0:) — \7($t, 6:)

and can be interpreted as a sample of a one-time step predic-
tion error, i.e., the error between the current estimate of the
value-function at state x;, V(x¢, 6;), and a one step-ahead
“corrected” estimate, (2, at) + YV (2¢41,60¢). In its most
general formulation, TD()) is defined by the update rule

0t+1 < Gt —+ at5tzt Ziy ’Y}\Zt —+ ¢("Et+1),

where ) is a constant such that 0 < \ < 1 and zg = 0. The
vectors z; are known as eligibility vectors and essentially
keep track of how the information from the current sample
“corrects” previous updates of the parameter vector.

Policy Gradient

Let m,, be a stationary policy parameterized by some fi-
nite-dimensional vector w € RY. Assume, in particu-
lar, that m,, is continuously differentiable w.r.t. w. Given
some probability measure p over X, we define p(m,) =
(1 = y)Ex~, [V™(X)]. We abusively write p(w) instead
of p(m,) to simplify the notation. Let K2, denote the -
resolvent associated with the Markov chain induced by m,
(Meyn and Tweedie 1993) and pZ, denote the measure de-
fined as p,(U) = Ex~, [KL(X,U)], where U is some
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measurable set U C X. Let {¢);,4 = 1,..., M} be a set of
linearly independent functions, with ¢; : X x A — R,i =
1,..., M, and let G denote its linear span. Let Il denote
the orthogonal projection onto G w.r.t. the inner product

<fa g>w = EXN;L;’, Z 7T(X7 a)f(X’ a)g(X, a)
acA

We wish to compute the parameter vector w™ such that the
corresponding policy 7, maximizes p. If p is differentiable
w.r.t. w, this can be achieved by updating w according to

Wil — wi + B Vup(wy),

where {3, } is a step-size sequence and V,, denotes the gra-
dient w.r.t. w. If

Y(z,a) =V, log(mw (7, a)) (2

then it has been shown that Vp(w) = (3, IIgQ") (Sut-
ton et al. 2000; Marbach and Tsitsiklis 2001). We recall that
basis functions verifying (2) are usually referred as com-
patible basis functions. It is also worth noting that in the
gradient expression above we can add an arbitrary baseline
Sunction b(z) to TIgQ™ without affecting the gradient, since
> aeca VoTw(z,a)b(x) = 0.If b is chosen so as to min-
imize the variance of the estimate of V,p(w), the optimal
choice of baseline function is b(x) = V™ (z) (Bhatnagar et
al. 2007). Recalling that the advantage function associated
with a policy 7 is defined as A™(x,a) = Q™ (x,a) — V™ (x),
we get that V,,p(w) = (¥, lIgA™ ). Finally, by using a nat-
ural gradient instead of a vanilla gradient (Kakade 2001),
an appropriate choice of metric in policy space leads to
a further simplification of the above expression, yielding
Vop(w) 0", where V,, is the natural gradient of p
w.r.t. w and 6" is such that

¢ (2,0)0" = TIgA™ (z,a).

3)
3 TD-Learning for Control

In this section we discuss some limitations of TD-learning if
used to estimate Q™ in a control setting. We then introduce
differential eligibility vectors to tackle this limitation.

Differential Eligibility Vectors (DEV)

Given a fixed policy m, the TD(\) algorithm described
in Section 2 can be trivially modified to compute an ap-
proximation of Q™ instead of V™, which can then be used
to perform greedy policy updates, in a process known as
approximate policy iteration (Perkins and Precup 2003;
Melo, Meyn, and Ribeiro 2008). This “modified” TD()),
henceforth referred as TD-(Q), can easily be described by
considering a parameterized linear family Q of real-valued
functions Q(0) : X x A — R. The TD-Q update is

011 < 0y + 46424
Zip1 — YAz + D(Lp1, Grpr),

4)
&)

where now

00 2 r(wr, ar) +1Q(wer1, arg1,00) — Qar, ar, 0y).



One drawback of TD-Q(\) is that it seeks to minimize
the overall error in estimating Q”, to some extent ignoring
the distinction between actions in the MDP. We propose the
use of differential eligibility vectors that seek to bring out
the distinctions between different actions in terms of corre-
sponding Q-values. The approximation computed by TD-Q
with DEV is potentially more adequate in control settings.

Let us start by considering the TD-@ update for the sim-
pler case in which A = 0:

011 < 01 + a0y, a) (6)

We can interpret the eligibility vector — in this case ¢(x¢, a;)
—as “distributing” the “error” §; among the different compo-
nents of 8, proportionally to their contribution for this error.
However, for the purpose of policy optimization, it would
be convenient to differentiate the contribution of the differ-
ent actions to this error. To see why this is so, consider the
following extended version of the example above.

Example 1. Let M = (X, A,P,r,v) be a single-state

MDP, with action-space A = {a,b}, r = [5,1] and v =

0.95. We want to compute Q™ for the policy = = [0.5,0.5]

and use two basis functions ¢1 = [1, 2] and ¢ = [1, 1]. The

parameter vector is initialized as @ = [0,0] " and, for simplic-

ity, we consider oy = 1 in the learning algorithm. Notice that,

for the given policy, Q™ = [62, 58], which can be represented

exactly by our basis functions by taking 8* = [—4,66] .

Suppose that Ag = a. We have

01(1) — 00(1) =+ Oét¢’1 (a)ét =5
01(2) < 600(2) + atdy(a)dr =5,

leading to the updated parameter vector ;1 = [5,5]". The

resulting Q-function is Q(01) = [10, 15]. Notice that, as ex-

pected, ||Q™ — Q(81)]| < Q" — Q(80)||. However, if this

estimate is used in a greedy policy update, it will cause the

policy to increase the probability of action b and decrease that

of action a, unlike what is intended. o

In the example above, since the target function can be
represented exactly in Q, one would expect the algorithm
to eventually settle in the correct values for 6, leading to a
correct greedy policy update. However, in the general case
where only an approximation is computed, the same need
not happen. This is due to the fact that eligibility vectors can-
not generally distinguish between the contribution of differ-
ent actions to the error (given the current policy). To over-
come this difficulty, we introduce the concept of differen-
tial eligibility vector.* A differential eligibility vector up-
dates the parameter vector proportionally to the differential
$(2,0) = ¢(z,a) — Epur(s) [6(z, A)]. By removing the
“common component” E () [@(z, A)], the differential
1 (x, a) is able to distinguish more accurately the contribu-
tion of different actions in each component of 8. Using the
differential eligibility vectors, the TD-Q(0) update rule is

6t+1 < Ht + at5t¢(xt7 (lt>. (7)
We now return to our previous example.

*The designation “differential” arises from the similar concept
in differential drives, where the motion of a vehicle can be decom-
posed into a translation component, due to the common velocity of
both powered wheels, and a rotation component, due to the differ-
ential velocity between the two powered wheels.
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Example 1 (cont.) Let us now apply TD-Q to the 1-state, 2-
action example above, only now using the DEV introduced
above. In this case we get 8; = [—2.5,0]", corresponding
to the function Q(6;) = [—2.5, —5]. Interestingly, we now
have [|Q" —Q(61)[| > |Q™ — Q(Bo)||. but Q(8:) can safely
be used in a greedy policy update. o

The above example may be somewhat misleading in its
simplicity, but still illustrates the idea behind the proposed
modified eligibility vectors. Generalizing the above updates
for A > 0, we get the final update rule for our algorithm:

®)
)
where p(2) = Eponr(q) [@(z, A)]. It is worth mentioning
that the use of differential eligibility vectors implies that ¢

must be computed, which in turn requires the computation
of an expectation. However, noting that A is assumed finite,

QO(CE) = EANTF(ZE) [d)(ZL‘7 A)] £ Z 7T(.%‘, a)¢>(x, a),

acA

0t+1 <— Bt + Oét(StZt
Zip1 — YAZ + O(Tiq1, ar1) — @(Te41),

which is a simple dot product between 7(x, ) and ¢(x, -).

Convergence of TD-Q(\) with DEV

We now analyze the convergence of the update (8) when a
fixed policy 7 is used. Let M = (X, A, P, r,~) be an MDP
with compact state-space X C R” and 7 a given stationary
policy. We assume that the Markov chain (X, P, ) is geo-
metrically ergodic with invariant measure 1 and denote by
[t the probability measure induced on X x A by y and 7.
We assume that the basis functions ¢;,¢ = 1,..., M, are
bounded and let Q denote its linear span. Much like TD()),
standard TD-() can be interpreted as a sample-based im-
plementation of the recursion Q(6j41) = IIoH™MQ(6)),
where H® is the TD-Q operator,

(HYg)(w,a)

=Eam(xy) Z()\W)t [7(Xe, At) +79(Xig1, Aryr)

t=0

_g(Xt,At)] ‘ Xo = 'T7A0 =a +g(m,a),

and I denotes the orthogonal projection onto O w.r.t. the
inner product

<fa g>7r = IE(X,A)~;L,r [f(X7 A)g(X, A)] .

Convergence of TD-(Q follows from the fact that the com-
posite operator Il H™) is a contraction in the norm induced
by the inner-product in (10) (contraction of H® is estab-
lished in Appendix A).

To establish convergence of TD-Q(\) with DEV, we
adopt a similar argument and closely replicate the proof in
(Tsitsiklis and Van Roy 1996). As before, we let

VYi(z,a) = ¢i(v,0) = Egon(e) [0i(z,A)],i=1,...

(10)

7M7
(1)



and denote by I'; and 3. the matrices
I‘ﬂ— = ]E(XvA)NMW |:¢(X7 A)¢T (X5 A):|
S = Egxapn. [ #0487 (X,4)].

Let ¥ = (1 — A)v/(1 — \v). We have the following result.

Theorem 1. Let M, 7 and Q be as defined above and sup-
pose that Ty > %X, If the step-size sequence, {o},
verifies the standard stochastic approximation conditions
>, ar =o00and Y., a} < oo, then the TD-Q() algorithm
with differential eligibility vectors defined in (8) converges
with probability 1 (w.p.1) to the parameter vector 0™ verify-
ing the recursive relation

0" =T (1p, HNQ(")) .. (12)

Proof. In order to minimize the disruption of the text, we
provide only a brief outline of the proof and refer to ap-
pendix A for details. The proof rests on an ordinary differ-
ential equation (o.d.e.) argument, in which the trajectories of
the algorithm are shown to closely follow the o.d.e.

0, = (¥, HVQ(8,) — Q(8,)) .

A standard Lyapunov argument ensures that the above o.d.e.
has a globally asymptotically stable equilibrium point, thus
leading to the final result. U

We conclude with two observations. First of all, I', >
~2% . can always be ensured by proper choice of \. In par-
ticular, this always holds for A = 1. Secondly, (12) states
that @* is such that ' (x,a)0" approximates A" (z, a) in
the linear space spanned by the functions v;(z,a),i =
1,..., M defined in (11). In other words, DEV lead to

an approximation Q(z,a,0") of Q™(x,a) in Q such that
Q(z,a,0%) — 3, w(z,b)Q(x,b,0%) is a good approxima-
tion of A™ in the linear span of the set {¢;,i = 1,..., M}.
This is convenient for optimization purposes.

Proposition 2. Let G denote the linear span of {1;,i =
1..., M}, whereeach;,i = 1,..., M is as defined above,
and let 11g denote the orthogonal projection onto G w.r.t.
inner product in (10). Then, if 0 is defined as in (12) with
A=1,

P (z,a)0" = HgA™(z,a).

Proof. See Appendix A.

13)
O

It has been argued that policy update steps can be im-
plemented more reliably by using the advantage function
instead of the Q-function (Kakade and Langford 2002). A
similar result was established in the context of policy gra-
dient methods (Bhatnagar et al. 2007), where the minimum
variance in the gradient estimate is obtained by using the
advantage function instead of the Q-function.

4 Applications of TD with DEV
We now describe how DEV can be integrated in LSTD(\)
(Bradtke and Barto 1996; Boyan 2002). We also discuss the
advantages of using DEV in the critic of a natural actor-critic
architecture (Peters, Vijayakumar, and Schaal 2005).
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Least-Squares TD(\) with DEV

The least-squares TD(A) algorithm (Bradtke and Barto
1996; Boyan 2002) is a “batch” version of TD(X). The liter-
ature on LSTD is extensive and we refer to (Bertsekas 2010)
and references therein for a more detailed account on this
methods and variations thereof. For our purposes, we con-
sider the trivial modification of LSTD(\) that computes the
Q-values associated with a given policy, known as LSTDQ
(Lagoudakis and Parr 2003). This algorithm can easily be
derived from TD-Q(\), again resorting to the o.d.e. method
of analysis. We present a simple derivation for the case
where A = 0. Noting that the TD-Q(0) algorithm closely
follows the o.d.e.

6, = <¢7H(O)Qet — Q9t>7r
= (},7)r + (P, VPxp| — @' )0.

Letting b = (¢, 7); and M = (¢p,¢p" — YPp" ), it fol-
lows that TD-Q(0), upon convergence, provides the solution
to the linear system M@ = b. LSTDQ computes a similar
solution by building explicit estimates M and b for M and
b and solving the aforementioned linear system, either di-
rectly as 8* = M~'b or iteratively as

011 — 0 — B(MOy — b),

with a suitable stepsize 3 (Bertsekas 2010). The above al-
gorithm can easily be modified to accomodate DEV by not-
ing that the structure of TD-Q(A) with DEV is similar to
that of TD-Q(\). In fact, by setting bpry = (¥, 7), and
Mpgry = (¥, o — vPﬂqu)W, we again have that TD-
Q () with DEV computes the solution to the linear system
Mpgv8 = bpgv.

For general A, given an infinite sampled trajectory {z;}
of the chain (X, P,;) and the corresponding action sequence,
{a+}, the estimates M and b for Mpgy and bpgy can be
built iteratively as

Mei1 4 My + 2z¢(p(ae) — v(ze41))
f)t+1 < E)t + Zﬂ’(l‘t,at)
Ziy1 < YAZ + P(xr, ar).

The target vector 8™ can then again be computed by solving
the linear system Mpgy60 = bpgy.

Natural Actor-Critic with DEV

In this section we describe the application of DEV in a nat-
ural actor-critic setting. We start by noting the similarity
between (3) and (13), it follows that TD-Q()\) with DEV
(or its batch version described in Section 4) is naturally
suited to compute the projection of A™ onto a suitable lin-
ear space G. In order for this result to be used in a natural
actor-critic setting, it remains to show whether the functions
i1 =1,..., M are compatible in the sense of (2).

To see this, consider the parameterized family of policies

e® ' (z,a)w

Tw ($7 a’) = Zb equ(x,b)w N



This is nothing more than the softmax policy associated with
the function Q(w) € Q. Given the above softmax policy
representation, it is straightforward to note that

Vu 10g7rw(£>a) = d)(l‘,a)—wa(l‘,b)d)(fmb) = 1/;(37,a).
b

This means that we can use the estimate from TD-Q(\) with
DEV in a gradient update as

W1 < Wi + ﬁkez,

where {3} is some positive step-size sequence and 67, is
the limit in (12) obtained with the policy 7, . In case of
convergence, this update will find a softmax policy whose
associated Q-function is constant (no further improvement
is possible).

Before concluding this section, we mention that the
natural-actor critic algorithm thus obtained is a variation of
those described in (Bhatnagar et al. 2007; Peters, Vijayaku-
mar, and Schaal 2005). The main difference lies in the critic
used as it provides a different estimate for A™. In particular,
by using TD-@Q with DEV, we do not require computing a
separate value function and, by setting A = 1, we are able
to recover unbiased natural gradient estimates, unlike the
aforementioned approaches (Bhatnagar et al. 2007).

5 Discussion

In this paper, we proposed a modification of TD-Q())
specifically tailored to control settings. We introduced dif-
ferential eligibility vectors (DEV), designed to allow TD-
Q(X) to more accurately learn the relative value of the ac-
tions in an MDP, rather than their absolute value. We stud-
ied the convergence properties of the algorithm thus ob-
tained and also discussed how DEV can be integrated within
LSTDQ and natural actor-critic. Our results show that TD-
Q () with DEV is able to directly approximate the advan-
tage function without requiring estimating an auxiliary value
function, allowing for immediate integration in a natural ac-
tor critic architecture. In particular, by setting A = 1, we are
able to recover unbiased estimates of the natural gradient.

From a broader point-of-view, the analysis in this paper
provides an interesting perspective on reinforcement learn-
ing with function approximation. Our results can be seen as
a complement to the policy gradient theorem (Sutton et al.
2000): while the latter bridges policy-gradient methods and
value-based methods by establishing the dependence of the
gradient on the value-function, our results establish a bridge
in the complementary direction, by showing that a sensible
policy update when using TD-Q(A) with DEV in a control
setting is nothing more than a policy-gradient update.

Our approach is also complementary to other works that
studied eligibility vectors in control settings, mainly in off-
policy RL (Precup, Sutton, and Singh 2000; Maei and Sutton
2010). Writing the eligibility update in the general form

Zip1 = pZt + ft,

where f; is some vector that depends on the state and ac-
tion at time ¢, the aforementioned works manipulate p to
compensate for the off-policy learning. In this paper, we
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manipulate f;, removing the common component if the fea-
tures across actions. Each of the two previous modification
is aimed at a different goal, and should inclusively be possi-
ble to combine both to yield yet another eligibility update.
There are several open issues still worth exploring. First
of all, although we have not discussed this issue in this pa-
per, we expect that a fully incremental version of natural
actor-critic using TD-Q () with DEV as a critic should be
possible, by considering a two-time-scale implementation in
the spirit of (Bhatnagar et al. 2007). Also, empirical valida-
tion of the theoretical results in this paper is still necessary.

A Proofs

Contraction Properties of H()
Lemma 3. Let 7 be a stationary policy and (X, Pr) the induced
chain, with invariant probability measure .. Then, the operator

HY™) is a contraction in the norm induced by the inner product in
(10).

Proof. The proof follows that of Lemma 4 in (Tsitsiklis and Van
Roy 1996). To simplify the notation, we define the operator P as

)

(Pﬂ'f)(xv a) = EYNPG(I) |:Z 7T(Y, b)f(Yv b)

b

where f is some measurable function. For A = 1 the result follows
trivially from the definition of H*). For A < 1, we write H® in
the equivalent form

oo T
HYg)(z,a) = (1 =X) Y A Eapnixy) [thT(Xt, Ae)+
T=0 0

t—
Y g(Xrs1, Aria) | Xo = 2, Ao = a}-

It follows that
(HY g1)(z,0) — (HY g5)(x, a)

o]

=(1=0) Ay TP g —

t=0

P g2) (2, a).

Noticing that ||Px f||= < ||f|lx. where |||~ denotes the norm in-
duced by the inner-product (-, -) », we have

IHM g1 — HY go |

==X > Ay PI g = P o] ||
t=0

<=2 MY g1 — goll«
t=0

=N,

v llgr — g2l

and the conclusion follows by noting that (1 —X\)y <1—X\y. O

Convergence of TD-Q()\) with DEV (Theorem 1)

The proof essentially follows that of Theorem 2.1 in (Tsitsiklis and
Van Roy 1996). In particular, the assumption of geometric ergod-
icity of the induced chain and the fact that the basis functions are
linearly independent and square integrable w.r.t. the invariant mea-
sure for the chain ensure that the analysis of the algorithm can be



established by means of an o.d.e. argument (Tsitsiklis and Van Roy
1996; Benveniste, Métivier, and Priouret 1990). The associated
o.d.e. can be obtained by constructing a stationary Markov chain
{(X¢, A¢, Z¢, Xi41)}, in which (X, Ay, X¢41) are distributed ac-
cording to the induced invariant measure and Z; is defined as
t
Zi= > ()X, A).
T=—00
The o.d.e. then becomes
t
b =E| > 0 TH(Xr, A7) (r(Xs, A¢)

T=—00

+ v Z 7T(X1+1’ b)Q(Xi+17 b: et) - Q(Xt7 At7 0t>):| )
be A
) (14)

where we omitted that (X, A;) is distributed according to i to
avoid excessive cluttering the notation. By adjusting the index in
the summation, the above can be rewritten as

oo

SO (X, A0) [r(X:, A1)

t=0

h(6,) =E

+ Z 7(Xeg1,b)Q(Xet1,b,0:) — Q(Xe, As, 9t)]}
beA

= (, HYQ(8:) — Q(61)) .

We now establish global asymptotic stability of the o.d.e. (14).
Let 8, and 62 be two trajectories of the o.d.e. (we omit the time-

dependency to avoid excessively cluttering the notation). Let 0=
V] 1 — 02. Then,

%Hé\li =20 (h(6:) — h(62))
=270, HVQ(6:) — HVQ(62))r — 2(v70,676).

Applying Holder’s inequality we get

X=Xy [T = =T 2
7)\7\/(6 r.0)(6 x.0)

d, = 2 ~T ~ 2

—1|0]|3 < —260 T'.0

<1813 < + 5
where we have used the facts that H®) is a contraction and
E(x,ay~pn [$(X, A)pT (X, A)] = I'x. Since, by assumption,
T, > 5°%,, it holds that %Hé”% < 0 and global asymptotic
stability of the o.d.e. (14) follows from a standard Lyapunov argu-
ment. Convergence of w.p.1 TD-Q(X) with DEV follows. Finally,
explicitly computing the equilibrium point of (14) leads to

(¥,0"6")x = (v, HV ¢ 0"),

which, solving for 8*, yields 8* = 'y ' (¢p, HM ¢ 6*) .. ]

Limit Point of TD-Q(1) with DEV (Proposition 2)

The result follows from observing that, given any two functions
fg: X xA—=R,

(f=mfig—7g)x ={f,9—7G)n = (f —7f,9)x, (15)
where wrote 7f to denote the function (7f)(z) =
Ear(e) [f(x,A)]. Using the result from Theorem I, we
have, for A = 1

0" =T, (p, HV g 0"), =
Using (15), we have
0" =T (1, Q" = 7(Q")x =T (,Q" = V')
and the result follows from the observation that I';
IE(X,A)N,u,ﬂ- [¢(X7 A)wT(Xv A)] .

LY, Q)x.

o
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