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Abstract 
The demand for computer-assisted language learning 
systems that can provide corrective feedback on language 
learners’ speaking has increased. However, it is not a trivial 
task to detect grammatical errors in oral conversations 
because of the unavoidable errors of automatic speech 
recognition systems. To provide corrective feedback, a 
novel method to detect grammatical errors in speaking 
performance is proposed. The proposed method consists of 
two sub-models: the grammaticality-checking model and the 
error-type classification model. We automatically generate 
grammatical errors that learners are likely to commit and 
construct error patterns based on the articulated errors. 
When a particular speech pattern is recognized, the 
grammaticality-checking model performs a binary 
classification based on the similarity between the error 
patterns and the recognition result using the confidence 
score. The error-type classification model chooses the error 
type based on the most similar error pattern and the error 
frequency extracted from a learner corpus. The 
grammaticality-checking method largely outperformed the 
two comparative models by 56.36% and 42.61% in F-score 
while keeping the false positive rate very low. The error-
type classification model exhibited very high performance 
with a 99.6% accuracy rate. Because high precision and a
low false positive rate are important criteria for the 
language-tutoring setting, the proposed method will be 
helpful for intelligent computer-assisted language learning 
systems.  

Introduction
Computer-based methods for learning language skills and 
components are increasingly being used (Stockwell, 2007). 
These tools assist in the linguistic development of students 
by providing more language-learning opportunities than 
human teaching methods. One of the ultimate goals of 
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computer-assisted language learning (CALL) is to provide 
learners with an environment that facilitates the acquisition 
of communicative competence, especially oral skills.  

As a result, the demand for CALL systems that help 
language learners develop oral skills has increased, and 
numerous CALL systems for pronunciation training have 
been developed to meet this demand (Dalby, 2005; Neri, 
Cucchiarini, and Strik, 2001). However, pronunciation is 
only one of the skills required for proficiency in speaking a 
second language; a learner must also acquire other 
important aspects of the spoken language, such as 
morphology and syntax.  To account for this fact, CALL 
systems have been developed to detect grammatical errors 
in speaking performance, provide learners with corrective 
feedback, and allow learners to try repeatedly until they 
manage to produce the correct form.  

However, it is not a trivial task to detect grammatical 
errors in oral conversations because of the unavoidable 
errors of automatic speech recognition (ASR) systems. The 
ASR errors make it mostly impossible to employ parser-
based methods which have usually been developed to 
detect grammatical errors in learners’ writings (Heift and 
Schulze, 2007). As grammatical error detection in speaking 
performance is in a relatively early stage, only a few 
reports have been published. In addition, most previous 
studies have lacked proper evaluations to judge the 
usefulness for language tutoring. In this paper, we propose 
a novel method capable of handling ASR errors and we 
provide several evaluation results that are helpful in
considering the practicality of the method.

The remainder of this paper is structured as follows. 
Section 2 briefly describes related studies. Section 3 
presents a detailed description of the methods. Section 4 
outlines the experimental setup. Section 5 shows the results 
and discusses their meaning. Finally, Section 6 offers our 
conclusion. 
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Related Work
Many research projects have tested the idea of providing 
pronunciation training using a speech recognizer, but few 
systems exist that detect grammatical errors in speaking 
performance and provide learners with corrective feedback. 

The Let’s Go system (Raux and Eskenazy, 2004) is a 
spoken dialog system that provides bus schedules. The 
researchers adapted non-native speakers’ speech data and 
modified the semantic-parsing grammar that originally was 
developed for the native speaker. Modifications include the 
addition of new words, new constructs and the relaxation 
of some syntactic constraints to accept ungrammatical 
sentences. Based on the recognition result for the user 
utterance, the system computes its distance to each target 
sentence using dynamic programming and selects the 
closest target. If the two match exactly, no correction is 
produced and the dialogue continues normally. If words 
were deleted, inserted or substituted by the non-native 
speaker, they generate both confirmation and correction.
The idea is that whenever a non-native speaker utters an 
ungrammatical utterance, the speaker’s goal was actually 
to utter one of the target sentences, but the speaker made a 
mistake by inserting, deleting or substituting a word. The 
evaluation results, however, showed numerous false 
positives (i.e., the user utterance was judged as 
ungrammatical although it was grammatical), and most of 
them were caused by ASR errors. This result clearly shows 
that we need to take into consideration ASR errors when 
we judge grammaticality to reduce false positives. 

The Spoken Electronic Language Learning (SPELL) 
system (Morton and Jack, 2005) provides opportunities for 
learning languages in functional situations such as going to 
a restaurant or expressing (dis-)likes. Recast feedback is 
provided if the learner's response is semantically correct 
but has some grammatical errors. To reduce the confusion 
between ASR errors and grammatical errors, the system 
embeds error checking into the speech recognition process. 
Within the constrained environment defined for SPELL, it 
is readily possible to predict to a reasonable degree what 
learners might say at any given stage; similarly, it is then 
possible to predict certain grammatical errors that they 
might make. The aim is to develop finite-state network 
(FSN)-based recognition grammars specifically for non-
native speakers that take into account both grammatical 
and ungrammatical predicted responses (Figure 1).
However, this study did not conduct experiments on the 
performance of the error detection component. Therefore, 
we implemented the method as the baseline system and 
performed comparative experiments with our method.  

The Development and Integration of Speech technology 
into COurseware for language learning (DISCO) system 
(Cucchiarini, Doremalen, and Strik, 2008) is under 
development and supposed to extend the previous 

pronunciation training project to morphology and syntax 
training in well-designed exercises.  The aim of the DISCO 
project is to optimize Dutch learning through interaction in 
realistic communication situations and provide intelligent 
feedback on important aspects of speaking. For detecting 
morphological and syntactic errors, grammatical error 
simulation software can be used. This software takes 
appropriate responses as input and expands them to form 
pools of correct and incorrect responses. Similar to SPELL, 
the speech recognition module determines which utterance 
was spoken and the system determines whether errors have 
been made depending on which of the possible utterances 
has been recognized. The evaluation on the DISCO system 
has not yet been performed because the system is currently 
under development. 

Grammatical Error Detection 
The simplest way to detect grammatical errors in speaking 
performance while reducing the hindrance of ASR errors is 
the method employed in SPELL and DISCO. The system 
takes appropriate responses as input and expands them 
using a grammatical error simulator to form FSN-based 
recognition grammars that include both correct and 
incorrect responses. The system determines whether errors 
have been made depending on which of the possible 
utterances has been recognized. However, this approach 
has severe drawbacks. As the grammar size exponentially 
increases because of the numerous ungrammatical 
responses, the recognition performance sharply decreases. 
Often the recognized hypothesis could be a totally different 
utterance because the FSN-based Viterbi-decoding 
searches for the hypothesis at a nearly utterance level. 
Moreover, even if the recognized hypothesis is similar to 
the learner’s speech, it could be useless for error detection. 
Because of the grammatical error simulation, we have 
many similar ungrammatical variants of a correct response. 
When the learner’s utterance is one of the variants, it is 
highly likely that these similar variants are placed on the 
N-best hypotheses. However if the right hypothesis is not 

Figure 1: An example of FSN-based recognition grammar to 
detect possible preposition errors for the correct response “I am 
here on business”
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the top hypothesis, the system would produce wrong
feedback because the system takes only the top hypothesis. 
Therefore, we investigate a method that uses ASR systems 
with an N-gram language model to not get a totally 
different hypothesis and that considers multiple hypotheses 
based on confidence scores at a word level by exploiting a
confusion network (CN) (Mangu, Brill, and Stolcke, 2000).
According to Mangu, Brill, and Stolcke (2000), the 
posterior probability of a word hypothesis can serve as a 
confidence score for the word to occur at the position. 
Unlike previous methods that just rely on the Viterbi-
decoding process of ASR systems, this approach allows us 
to use machine learning techniques that we can try various 
useful features and have more opportunity to optimize a 
sophisticated objective function such as a low false 
positive rate and a high F-score. 

Besides ASR errors, there are several factors that make 
it hard to detect grammatical errors. Because there are far 
more grammatical words than ungrammatical words in the 
data, the grammatical error detection model, which is 
implemented as a classifier, must be constructed to 
effectively learn from the imbalanced data distribution. 
When accuracy is the performance measure, using the 
classifier trained on the highly imbalanced data simply 
produces the majority class for all test data to achieve the 
best performance. In addition, the number of error types to 
classify is relatively large. This can make the model 
learning and selection procedure vastly complicated. 
Therefore, to cope with these difficulties, we divide the 
grammatical error detection model into two sub-models:
the grammaticality-checking model and the error-type 
classification model (Figure 2). 

Grammaticality Checking Model 
The grammaticality-checking task takes the recognized 
hypothesis in the form of a CN and determines the 
grammaticality at each word position in sequence. Even 
without error type information, the grammaticality-
checking function may be very useful for some 
applications, e.g., categorizing learners’ proficiency level 
and generating implicit corrective feedback such as 
repetition, elicitation, and recast feedback. 
Feature Extraction 
To judge the grammaticality, we first extract error patterns 
from the simulated ungrammatical responses. The error 

pattern is a 5-tuple consisting of the erroneous word and its
two left and two right neighbor words. For example, the 
error pattern for the proposition error at ‘at’ for the 
utterance ‘I am here at business’ will be a tuple <‘am’,
‘here’, ‘at’, ‘business’, ‘-’ 1 >. The error pattern is also 
tagged with the error type and structural deviation (e.g., 
deletion or substitution) for the error-type classification 
task. 

When a speech is recognized, at each position in the CN,
we extract a feature vector by comparing the error patterns 
with the segment of the CN, consisting of the target 
position and the two left and right neighboring positions. 
We extracted seven features (Table 1) for each error 
pattern. For example, if the first word in the error pattern 
exists among the competing word hypotheses at the first 
position in the CN, then we take the confidence score of 
the matched word hypothesis as the S1 feature. If there is 
no matched word hypothesis, we simply set the feature to
zero. 

 The higher the matching scores an error pattern has, the 
more likely the recognized result has the relevant error in it. 
Because the number of error patterns is very large and 
likely uninformative, only the features extracted from top 
10 error patterns ranked by the TS feature are used. In 
addition, we perform a similar feature extraction process at 
the parts-of-speech (POS) level. We apply POS tagging to 
both the recognition result and the error patterns to get 
additional features from the top 10 POS-level error patterns. 
The POS-level features contribute to raising the recall rate 
by alleviating the data sparseness problem of lexical-level 
features. Figure 3 depicts the aforementioned feature 
extraction process. 
Model Selection and Parameter Learning 
We use the LIBSVM (Chang and Lin, 2001) Support 
Vector Machine (SVM) classifier to produce a model that 
predicts grammaticality. We use a radial basis function 
(RBF) as the kernel because unlike linear kernels, an RBF 
kernel allows us to handle nonlinear interactions between 
attributes (e.g., dependency between the feature SD and the 

                                                
1 ‘-’ is a blank symbol. 

Figure 2: The grammatical error detection model consists of 
two sub-models

Feature Description

S1 Confidence score of the word hypothesis matching the 
first word in the error pattern

S2 Confidence score for the second word in the error pattern
S3 Confidence score for the third word in the error pattern
S4 Confidence score for the fourth word in the error pattern
S5 Confidence score for the fifth word in the error pattern
TS Total score of L2, L1, TW, R1 and R.

SD Indicator of structural error type:
1 for Deletion and 0 for Substitution

Table 1: Description of features extracted from each error pattern 
to train the grammaticality checking model
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other features in Table 1) and relationship between class 
labels and attributes. We conduct simple scaling on the 
data to avoid attributes in greater numeric ranges 
dominating those in smaller numeric ranges. We linearly 
scale each attribute to the range [0, 1]. As mentioned 
before, the grammaticality-checking task is non-trivial 
because of the highly imbalanced data distribution. To 
address this problem, we can oversample the minority class 
or undersample the majority class to make the data 
balanced. Also we can implement cost-sensitive learning to 
assign a larger penalty value to false negatives versus false 
positives. Without loss of generality, we will assume that 
the positive class is the minority class (i.e., ungrammatical),
and the negative class is the majority class. However, these 
approaches do not explicitly optimize the objective 
function that is important for a tutoring setting. For 
example, false positives (i.e., the user utterance was judged 
as ungrammatical although it was grammatical) are more 
detrimental than false negatives. Furthermore, precision is 
more important than recall. Therefore, in this study, we 
solve the problem by using a custom objective function 
instead of using accuracy as a performance measure. The 
objective function to optimize for this study is: 

There are two parameters for an RBF kernel:  and . To 
find the best parameters  and  that optimize the objective 
function, we perform a grid-search using 5-fold cross-
validation.  

Error Type Classification Model 
To provide meta-linguistic feedback (i.e., detailed 
explanations about the grammatical error), we need to 
identify the error type. Identifying the error type is also 
beneficial to construct the learner model. Thus, we perform 
error-type classification for the words that are determined 
as ungrammatical by the grammaticality-checking model. 
The simplest way to classify the error type is to choose the 
error type associated with the top ranked error pattern. But 
this approach has two flaws: it does not have a principled 
way to break tied error patterns, and it does not consider 
the error frequency. Therefore, to solve both problems at 
the same time, we reorder error patterns by weighting more 
heavily errors that occur more frequently:  

,

where  returns the TS feature of the error pattern  and 
 returns the error frequency of the relevant error, 

normalized summing to one. We set the constant as 0.1 
for this study. 

Experimental Setup 
To evaluate the proposed method, we apply the method to 
detect grammatical errors of Korean learners of English. 

Grammatical Error Simulation 
One of the key elements to the development of ASR-based 
CALL systems for morphology and syntax training is to 
expand the recognition grammar to include not only 
grammatical responses but also ungrammatical responses.
In SPELL, as each new scenario is developed, it is 

Figure 3: An illustration of feature extraction process. PRP_LXC and AT denote proposition lexical error and article error. SUB and 
DEL mean substitution and deletion
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essential to create ungrammatical responses by hand. 
However, using human experts to anticipate various types 
of grammatical errors and list all possible realizations of 
the errors is too laborious and costly. Thus, as in DISCO, 
automatic generation of realistic grammatical errors to 
create recognition grammars is crucial to the development 
of such systems. Inspired by Lee et al. (2009), we 
developed a grammatical error simulator that generates 
errors that Korean learners of English usually make. To 
generate realistic errors, expert knowledge of language 
learners’ error characteristics was imported into a 
statistical modeling system that uses Markov logic 
(Richardson and Domingos, 2006). A Markov logic 
network (MLN) can be seen as a first-order knowledge 
base with weights attached to each of the formulas. A total 
of 119 MLN formulas were written. For example, English 
learners often commit pluralization errors with irregular 
nouns. These errors result because they over-generalize the 
pluralization rule, e.g., attaching ‘s/es’ to the end of a 
singular noun, so that they apply the rule even to irregular 
nouns such as ‘mice’ and ‘feet’. This characteristic is 
captured by the simple formula: 

� ,

where  is true if and only if
the -th word of the sentence  is an irregular plural,
stands for plural noun, and  is the abbreviation for 
noun number error.  

We learned the weights of first-order formulas from the 
NICT JLE corpus (Izumi, Uchimoto, & Isahara, 2005). 
This is a speech corpus of Japanese speakers learning 
English2. The corpus data were obtained from 1,281 audio-
recorded speech samples, 167 of which are error-annotated, 
from an English oral proficiency interview test. The 
current version of the error tagset targets morphological, 
grammatical, and lexical errors and can describe diverse 
grammatical errors. The error tagset currently includes 46 
tags. Because of the space limitation, please refer to Izumi, 
Uchimoto, and Isahara (2005) for the full list of error types. 
Lexis errors related to open-word class (i.e., n_lxc, v_lxc, 
aj_lxc, and av_lxc), were excluded in this experiment 
because realizing such errors without encountering the data 
sparseness problem requires a huge amount of learner data. 
Some other errors (i.e., o_je, o_lxc, o_odr, o_uk, and o_uit) 
were also excluded because these error categories have not 
yet been clearly analyzed for practical applications. Error 
categories that occurred less than five times were also 
excluded to improve reliability. This results in a total of 23 

                                                
2  Unfortunately, there is no Korean learners’ corpus. But Korean and 
Japanese speakers learning English have very similar error characteristics 
because the two languages have very similar grammatical structures. 

error types. In addition, we did not explicitly generate 
insertion errors because many insertion errors appear 
implicitly as replacement errors in the NICT JLE corpus. 
The insertion errors, which are not covered in this model, 
usually relate to vocabularies in open-word classes or are 
highly unpredictable even when linguistic context is taken 
into account.  

Data Preparation and Setup of Grammatical 
Error Detection Models 
We took 100 utterances from the NICT JLE corpus and 
expanded it to form the pool of 5000 utterances using the 
grammatical error simulator. For the training data, we 
randomly chose 250 utterances from the utterance pool and 
ten male Korean speakers to each read 50 utterances,
resulting in 500 recordings. For the test data, we randomly 
chose 50 utterances from the utterance pool and ten male 
Korean speakers to each read the utterances, resulting in 
500 recordings. 

We developed our own English ASR system to 
recognize Korean learners’ English more reliably. The 
acoustic model is based on 3-state left-to-right, context-
dependent, 8-mixture, and cross-word tri-phone models, 
trained on the Korean-Spoken English Corpus (Rhee et al., 
2004) using the HTK version 3.4.1 toolkit (Young et al., 
2009). A backed-off bigram trained on the 5000 utterances 
is used as a language model to cover both grammatical and 
ungrammatical utterances. The lattice output of the speech 
recognizer is converted to the CN using the lattice-tool 
(Stolcke, 2002). After constructing the English ASR 
system, the recognition performance of the ASR system 
was evaluated on both the traininig and test speech data. 
The word error rate was 15.20% at the vocabulary size of 
530. 

For a comparative evaluation on the grammaticality-
checking task, we developed the proposed method and also 
implemented the FSN-based ASR system (FSN in Table 2) 
which was employed in SPELL and DISCO as the baseline 
system. In addition, to verify the effect of confidence 
score-based soft match, we developed an exact pattern 
match-based method (EPM in Table 2) that judges the 
recognition result as ungrammatical only when there is an 
error pattern that exactly matches the sequence formed by 
picking the word with highest confidence score at each 
position in the CN. For a comparative evaluation on the 
error-type classification task, we developed the proposed 
method with the error frequency estimated from the NICT 
JLE corpus and implemented the method that takes the 
error type of the top ranked error pattern as the baseline 
system.  
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Results and Discussion
The results showed that the proposed model largely 
outperformed the baseline FSN model for all metrics 
(Table 2). It is because the FSN-based Viterbi-decoding 
exhibited a very low sentence-level recognition 
performance due to the relatively large size of the 
recognition grammar consisting of many similar variants 
for various grammatical errors. This affects not only the 
precision and recall but also the false-positive rate, where it 
can be detrimental for language tutoring by frustrating 
learners. The proposed method also surpasses the EPM 
model in F-score. It is attributed to the large gain in the 
recall rate. The proposed method achieves a far higher 
recall rate than that of the EPM model by exploiting a soft 
pattern match based on the confidence score. Furthermore, 
the proposed method lost little precision by virtue of the 
SVM model optimization to satisfying the constraints on 
the precision and false positive rate. Both the EPM model 
and proposed model showed a very low false positive rate. 
This implies that the proposed method is very suitable for 
educational applications. For the error-type classification 
task, the baseline method that does not consider the error 
frequency showed an accuracy of 95.55%. The proposed 
method improved the baseline performance by 4.05%. The 
result of the baseline model is quite good already, but the 
incorporation of error frequency into the model gives us an 
additional performance gain. 

Conclusion
This study proposed a novel method to detect grammatical 
errors in speaking performance to provide corrective 
feedback on grammatical errors. The results showed that 
for the grammaticality-checking task, the proposed method 
largely outperformed the two comparative models 
respectively by 56.36% and 42.61% in F-score while 
keeping the false positive rate very low. For the error-type 
classification task, the proposed method exhibited very 
high performance with a 99.6% accuracy rate. Because 
high precision and a low false positive rate are important 
criteria for the language tutoring setting, the proposed 
method will be helpful for intelligent CALL systems. 
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Model Precision
(%)

Recall
(%)

F-score
(%)

False 
Positive 
Rate (%)

FSN 19.30 18.60 18.94 6.25

EPM 97.44 19.64 32.69 0.04

Proposed 91.82 63.82 75.30 0.46

Table 2: Experimental results on the grammaticality-checking task
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