
Reasoning About General Games Described in GDL-II

Stephan Schiffel
Reykjavı́k University, Iceland

stephans@ru.is

Michael Thielscher
The University of New South Wales, Sydney, Australia

mit@cse.unsw.edu.au

Abstract

Recently the general Game Description Language (GDL)
has been extended so as to cover arbitrary games with in-
complete/imperfect information. Learning—without human
intervention—to play such games poses a reasoning chal-
lenge for general game-playing systems that is much more
intricate than in case of complete information games. Action
formalisms like the Situation Calculus have been developed
for precisely this purpose. In this paper we present a full em-
bedding of the Game Description Language into the Situation
Calculus (with Scherl and Levesque’s knowledge fluent). We
formally prove that this provides a sound and complete rea-
soning method for players’ knowledge about game states as
well as about the knowledge of the other players.

Introduction

The goal of general game playing is to create intelligent
systems that understand the rules of arbitrary new games
and, without human intervention, learn to play these games
well (Genesereth, Love, and Pell 2005). The Game De-
scription Language (GDL) has been defined as a formal,
machine-processable language for describing the rules of ar-
bitrary games (Love et al. 2006). Originally restricted to
complete information games, it has recently been extended
so as to cover any n-player game with incomplete/imperfect
information (Thielscher 2010; 2011a).

Although based on logic, game descriptions in both GDL
and its successor GDL-II (for: GDL with incomplete infor-
mation) are minimalistic in the sense that they only provide
the bare rules. How to use these rules, e.g. to infer legal
moves and to update a game position, is left to the play-
ers. In basic GDL, where players are always informed about
each other’s moves, this is rather straightforward: a simple,
Prolog-like inference engine suffices to compute one’s own
and every one else’s legal moves and to maintain a complete
state description throughout the match (Genesereth, Love,
and Pell 2005). Learning—without human intervention—
to play arbitrary GDL-II games, however, poses a reason-
ing challenge for general game-playing systems that is much
more intricate than in case of complete information games.
Imperfect information and information asymmetry requires
a player to draw conclusions about her own percepts and

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

what they entail about the current position, about her and
everybody else’s possible moves, as well as about what the
other players may know.

Action formalisms like the classical Situation Calcu-
lus (McCarthy 1963) have been developed for precisely this
purpose. Axiomatisation schemes and inference methods
are readily available, but their deployment in general game
playing presupposes a proper translation from GDL-II into
an existing, suitably expressive action language. In this pa-
per we present such a mapping by which the Game Descrip-
tion Language is fully embedded into the Situation Calculus.
More precisely, our target language is based on the Situation
Calculus with Scherl and Levesque’s (2003) knowledge flu-
ent. We suitably extend this variant by multi-agent knowl-
edge and simultaneous moves, and we enrich it by the new
concept of derived action predicates. We formally prove
that our embedding provides for a sound and complete rea-
soning mechanism that enables players to draw conclusions
about their own and the other players’ knowledge in past,
present, and future game states.

The rest of the paper is organised as follows. In the next
section we briefly recapitulate the basic syntax and seman-
tics of GDL-II. Thereafter we present a formal embedding
of this language into the Situation Calculus, and in the sec-
tion that follows we prove the correctness of this translation.
We conclude with a brief discussion of related work.

The Game Description Language GDL-II
The general game description language GDL-II is based on
the standard syntax and semantics of logic programming.
We follow the Prolog convention of denoting variables by
uppercase letters while predicate and function symbols start
with a lowercase letter. GDL-II is characterised by the fol-
lowing special keywords.

role(R) R is a player
random the random player
init(F) F holds in the initial position
true(F) F holds in the current position

legal(R,M) R can do move M in the current position
does(R,M) player R does move M
next(F) F holds in the next position

sees(R,P) R perceives P in the next position
terminal the current position is terminal
goal(R,N) R gets N points in the current position

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

846

The auxiliary pre-defined predicate distinct(X,Y)
means syntactic inequality of the two arguments. In the fol-
lowing, unbound variables in clauses and other formulas are
implicitly assumed to be universally quantified.

As an example consider Fig. 1, which shows a GDL-II
description of standard Tic-Tac-Toe but with the interesting
twist that the players cannot see the opponent’s moves (as
in the chess variant Kriegspiel (Pritchard 1994), hence the
name). The names of the players and the initial position are
given in lines 1–6. The moves are specified by the rules with
head legal (lines 8–12): The player whose turn it is can
attempt to mark any cell that he hasn’t tried before. The
other player can only do noop, a move without effect.1

The position update is specified by the rules with head
next (lines 16–27): If the submitted move, mark(m,n),
is invalid (cf. line 14)2 then every feature of the current po-
sition continues to hold, and the only change in the overall
state is that tried(m,n) becomes true. If, on the other hand,
the move is valid, then cell (m,n) receives the player’s
mark while all other cells retain their contents. Moreover,
control goes to the other player. The reader should also note
that all instances of tried(m,n) cease to hold as there is no
clause with head next(tried(m,n)) if validmove is true.
The clauses with head sees (29–34), finally, say that the
player whose turn it is will be informed about this.

Formal Syntax and Semantics In order to admit an un-
ambiguous interpretation, GDL-II game descriptions must
obey certain general syntactic restrictions. Specifically, a
valid game description must be stratified (Apt, Blair, and
Walker 1987) and allowed (Lloyd and Topor 1986). Strati-
fied logic programs are known to admit a specific standard
model; see (Apt, Blair, and Walker 1987) for details. A
further syntactic restriction ensures that only finitely many
positive instances are true in this model; for details we must
refer to (Love et al. 2006) for space reasons. Finally, the spe-
cial keywords are to be used as follows (Thielscher 2010):

• role only appears in the head of facts;

• init only appears as head of clauses and does not de-
pend on any of true, legal, does, next, sees,
terminal, goal;

• true only appears in the body of clauses;

• does only appears in the body of clauses and does not
depend on any of legal, terminal, goal;

• next and sees only appear as head of clauses.

Under these restrictions, any valid GDL-II game de-
scription determines a state transition system as follows.
To begin with, any set of rules determines an implicit
domain-dependent set of ground terms Σ, like cell(1, 1, b),
mark(1, 3), yourmove, etc. Game positions (i.e., states) are

1This is the usual way of modelling turn-taking games in GDL,
where in general all players move simultaneously.

2It is important to note the difference between legal and valid
moves in Krieg-Tictactoe: each attempt to mark a cell is considered
legal, but only those moves are accepted as valid that are actually
possible in the current position. Feature tried(m,n) is used to
prevent a player from resubmitting a previously rejected move.

represented by subsets of Σ since they are composed of in-
dividual features. Although Σ itself is usually infinite, the
syntactic restrictions in GDL-II ensure that the set of roles,
the reachable states, and the set of legal moves are always
finite subsets of Σ (Love et al. 2006). Specifically, the
derivable instances of role(R) define the players, and the
initial state consists in the derivable instances of init(F).

In order to determine the legal moves of a player in any
given state, this state has to be encoded first, using the key-
word true: Let S = {f1, . . . , fn} be a state (i.e., a finite
set of ground terms), then G is extended by the n facts

Strue def
= {true(f1). . . . true(fn).}

Those instances of legal(R,M) that are derivable from
G ∪ Strue define all legal moves M for player R in posi-
tion S . In the same way, the clauses for terminal and
goal(R,N) define termination and goal values relative to
the encoding of a given position.

Determining a position update and the percepts of the
players requires the encoding of both the current position
and a joint move. Specifically, if M is such that play-
ers r1, . . . , rk take moves m1, . . . ,mk , then let

Mdoes def
= {does(r1,m1). . . . does(rk,mk). }

The instances of next(F) that are derivable from G ∪
Mdoes∪Strue compose the updated position; likewise, the
derivable instances of sees(R,P) describe what a player
perceives when the given joint move is done in the given po-
sition. All this is summarised as follows (Thielscher 2010).
Definition 1. The semantics of a valid GDL-II game de-
scription G is the state transition system given by
• R = {r : G |= role(r)} (player names);
• s1 = {f : G |= init(f)} (initial state);
• t = {S : G ∪ Strue |= terminal} (terminal states);
• l = {(r,m, S) : G ∪ Strue |= legal(r,m)} (legal moves);

• u(M,S) = {f : G ∪ Mdoes ∪ Strue |= next(f)}, for all
joint moves M and finite states S (position update);

• I = {(r,M, S, p) : G ∪Mdoes ∪ Strue |= sees(r, p)}, for
all roles r ∈ R \ {random} (players’ percepts);

• g = {(r, n, S) : G ∪ Strue |= goal(r, n)} (goal values).

We have omitted the definition of the probability distribution
over updated positions when the random player is present,
as this is irrelevant for the present paper.

From GDL-II to the Situation Calculus

Recall the game description in Fig. 1. The clauses in line 29–
34 specify the players’ percepts, indicating that the player
who has control next will be informed about this fact. This
minimalistic definition suffices since both players should al-
ways know whether or not it is their turn. For when a player
does not perceive yourmove, he should be able to conclude
that it must be his opponent’s turn. Another example of a
(strategically very useful!) inference would be to conclude
that a cell must carry your opponent’s marker if you just tried
to mark it yourself and you perceive yourmove just again,
implying that your attempt must have been unsuccessful.

847

1 role(xplayer).
2 role(oplayer).
3 init(control(xplayer)).
4 init(cell(1,1,b)).
5 ...

6 init(cell(3,3,b)).
7

8 legal(R,mark(M,N)) :- true(control(R)),
9 true(cell(M,N,Z)),

10 not true(tried(M,N)).
11 legal(xplayer,noop) :- true(control(oplayer)).
12 legal(oplayer,noop) :- true(control(xplayer)).
13

14 validmove :- does(R,mark(M,N)), true(cell(M,N,b)).
15

16 next(F) :- not validmove, true(F).
17 next(tried(M,N)) :- not validmove, does(P,mark(M,N)).

18 next(cell(M,N,x)):- validmove, does(xplayer,mark(M,N)).
19 next(cell(M,N,o)):- validmove, does(oplayer,mark(M,N)).
20 next(cell(M,N,Z)):- validmove, true(cell(M,N,Z)),
21 does(P,mark(I,J)), distinct(M,I).
22 next(cell(M,N,Z)):- validmove, true(cell(M,N,Z)),
23 does(P,mark(I,J)), distinct(N,J).
24 next(control(oplayer)):- validmove,

25 true(control(xplayer)).
26 next(control(xplayer)):- validmove,

27 true(control(oplayer)).
28

29 sees(R,yourmove) :- not validmove,

30 true(control(R)).
31 sees(xplayer,yourmove) :- validmove,

32 true(control(oplayer)).
33 sees(oplayer,yourmove) :- validmove,

34 true(control(xplayer)).

Figure 1: A GDL-II description of “Krieg-Tictactoe.” The game positions are encoded using the three features control(R),
where R ∈ {xplayer, oplayer}; cell(M,N,Z), where M,N ∈ {1, 2, 3} and Z ∈ {x, o, b}, with b meaning “blank;” and
tried(M,N). For the sake of simplicity, we have omitted the (straightforward) specification of termination and goal values.

Drawing conclusions of this sort is the domain of ac-
tion theories, and the Situation Calculus is the oldest tech-
nique for formalising and automating reasoning about ac-
tions (McCarthy 1963). To be able to exploit this line of
research in the context of General Game Playing requires
to fully embed the game description language GDL-II into
the Situation Calculus. The mapping that we will develop in
this section is based on an extended Situation Calculus with
a special fluent to represent the knowledge of agents (Scherl
and Levesque 2003). We will have to slightly modify and
further extend this approach for our purposes. In general,
the Situation Calculus is a predicate logic with a few pre-
defined language elements:
• constant s0 , denoting the initial situation, and construc-

tor DO(α, σ), denoting the situation resulting from doing
action α in situation σ;

• predicate HOLDS(ϕ, σ), denoting that fluent ϕ (i.e., an
atomic state feature) is true in situation σ;

• predicate POSS(α, σ), denoting that action α is possible
in situation σ.

Compound actions

In games with two or more players, a position update results
from all players moving simultaneously. An adequate for-
malisation in the Situation Calculus requires to identify the
concept of an action α with a vector 〈m1, . . . ,mk〉 con-
taining one move for each player. In a given GDL-II descrip-
tion, the domain of moves is implicitly determined by the
arguments of keyword legal and the second arguments
of does; e.g. mark(M,N) and noop in Krieg-Tictactoe.
Assuming an arbitrary but fixed order of the players, as in
(xplayer, oplayer), we define a simple axiom that identifies
the individual move of a player r in an action vector:

ACT(r, 〈m1, . . . ,mr, . . . ,mk〉) = mr (1)

E.g., ACT(xplayer, 〈mark(1, 3), noop〉) = mark(1, 3).

Derived action predicates

Given a GDL-II game description, we identify as primitive
fluents those terms that occur in the scope of either of the
keywords init(F), true(F), or next(F); in Fig. 1
these are control(R), cell(M,N,Z), and tried(M,N). As
derived fluents we take all domain-specific predicates that
depend on true but not on does. Following (Davis
1990), derived fluents do not require their own successor
state axioms because their truth-values are fully determined
by the game rules once the values of all primitive fluents are
fixed in a (successor) situation. The keywords terminal
and goal(R,N) are treated as derived fluents, too.

In addition to derived fluents, a mapping of GDL-II into
the Situation Calculus requires the introduction of the new
concept of a derived action predicate. These are the domain-
specific predicates that depend on both true and does.
Similar to derived fluents, the truth-value of a derived action
predicate is fully determined by the game rules once we have
fixed both the values of all primitive fluents in a situation and
the action that is being taken in that situation. An example of
a derived action predicate in Krieg-Tictactoe is validmove.

The mapping

We now show how any GDL-II description G can be
mapped in a modular way into a Situation Calculus theory.
First, some atoms that occur in G are rewritten as follows.

1. All derived fluents f(�X) are replaced by f(�X, S) and
all derived action predicates p(�X) by p(�X,A, S), indi-
cating the dependence on a situation S and an action A,
respectively.

2. Each init(ϕ) is replaced by HOLDS(ϕ, s0).

3. Each true(ϕ) is replaced by HOLDS(ϕ, S).

4. Each next(ϕ) is replaced by HOLDS(ϕ,Do(A,S)).

5. Each does(�, μ) is replaced by ACT(�,A) = μ.

848

As an example, the clause in line 14 of Fig. 1 becomes

validmove(A,S) ⊂ ACT(R,A) = mark(M,N)∧
HOLDS(cell(M,N, b), S)

GDL-II game descriptions are based on the negation-as-
failure principle, that is, every proposition that cannot be
derived from the game rules is supposed to be false. To re-
flect this in the Situation Calculus theory, we use the comple-
tion according to (Clark 1977) of all clauses in the following
way: For every predicate p(�X), replace the clauses with this
predicate in the head by

p(�X)≡
∨

p(�t):-body ∈G

�X = �t ∧ body (2)

Initial Situation The transformation defined above yields
the following axiomatisation of the initial situation

HOLDS(F, s0)≡
∨

init(ϕ):-body ∈G

F = ϕ ∧ body (3)

Preconditions Based on the completion of legal, we
define the precondition axiom for compound actions thus:

POSS(A,S)≡∀R. LEGAL(R, ACT(R,A), S) (4)

Effects As a result of the transformation above, we obtain
a general successor state axiom (Reiter 1991) as follows:

HOLDS(F, DO(A,S))≡
∨

next(ϕ):-body ∈G

F = ϕ ∧ body (5)

Knowledge Scherl and Levesque (2003) introduced the
special fluent K(S′, S)—to be read as: situation S′ is ac-
cessible from situation S—to axiomatise knowledge states
(of an agent) in the Situation Calculus. We use a straight-
forward generalisation for the multi-agent case, where
K(R,S′, S) is used to express that player R considers S′
a possible situation in S . This allows to formalise subjective
knowledge similar to (Scherl and Levesque 2003) thus:

KNOWS(�,Φ, σ)
def
= ∀S′.K(�, S′, σ)⊃Φ[S′]

Here, Φ is a reified formula where the situation argument
in all fluents is suppressed; and Φ[S′] means that all
situation arguments are reinstated to S′ . For example,
KNOWS(xplayer, ∀X,Y. cell(X,Y, b), s0) stands for
∀S′.K(xplayer, S′, s0)⊃∀X,Y. HOLDS(cell(X,Y, b), S′).
The macro definition can be easily extended to form nested
expressions, as in KNOWS(xplayer, KNOWS(oplayer,
control(oplayer)), DO(〈mark(1, 1), noop〉, s0)).

In GDL-II all players have complete knowledge of the ini-
tial situation. In terms of the Situation Calculus,

K(R,S, s0) ≡ S = s0 (6)

The effects of actions and percepts on the knowledge states
of the players are defined by the successor state axiom for
the special fluent K, for which we adapt the definition
from (Scherl and Levesque 2003) as follows:

K(R,S′′, DO(A,S)) ≡
∃A′, S′. S′′ = DO(A′, S′) ∧ K(R,S′, S)∧

POSS(A′, S′)∧ACT(R,A) = ACT(R,A′)∧
∀P. SEES(R,P,A, S)≡ SEES(R,P,A′, S′)

(7)

Put in words, a player considers S′′ a possible situation af-
ter compound action A in S if, and only if, S′′ is obtained
by doing some A′ in a situation S′ that was conceivable
in S ; A′ was executable in S′ ; the player did the same
move in A′ as in A; and the player’s sensing result for
A′, S′ is identical to her sensing result for the actual A,S
(so that she cannot distinguish the two).

Completion semantics and stable models

The axiomatisations above applies Clark’s completion to
a given set of GDL-II game rules. In general, however,
the first-order semantics of the completion of a (strati-
fied) logic program is too weak to fully characterise the
standard model in the presence of redundant rules like
validmove :- validmove. The standard model re-
mains the same when such “superfluous” clauses are added,
but Clark’s completion is weakened by them. This issue is
solved by a second-order axiom described in (Ferraris, Lee,
and Lifschitz 2011). Denoted by SM[F], the axiom pro-
vides a stable model operator for arbitrary first-order formu-
las F . If F is the completion of a stratified logic program,
the Herbrand model of SM[F] corresponds to the standard
model of the logic program.

As the last step of our translation we therefore add the
axiom SM[F] with F being the conjunction of all rules in
the transformed game description; we refer to (Ferraris, Lee,
and Lifschitz 2011) for details.

Soundness and Completeness

The theory obtained by the above transformation is indeed a
Situation Calculus theory, as we will show now.
Theorem 1. Let G be a valid GDL-II game description
and D be the axiomatisation obtained from it by the trans-
formation defined above. Then D is a syntactically correct
Situation Calculus theory.

Proof. As a Situation Calculus theory, D must include a
precondition axiom for each action a(�X) of the form

POSS(a(�X), S)≡π(�X, S)

The formula π(�X, S) must not refer to any situation other
than S . In our general precondition axiom (4), the variable
A can be instantiated with every compound action to obtain
an axiom of the form above. The right-hand side of (4) has
the only free variables A and S and contains no reference
to any other situation besides S .

Furthermore, D must contain successor state axioms for
each primitive fluent f(�X) of the following form:

HOLDS(f(�X), DO(A,S))≡ γ(�X,A, S)

Again, the formula γ(�X,A, S) must not refer to any situa-
tion other than S . In our general successor state axiom (5)
the variable F can be instantiated with every fluent f(X)
to obtain an axiom of the form above. The right-hand side
of (5) refers to the bodies of rules with head next(ϕ). Ac-
cording to the syntactic restrictions of GDL-II these bodies
may not depend on init or next and therefore do in-
deed never refer to any situation besides S .

849

We will now show that the transformation from the previ-
ous section is sound and complete, that is, a GDL-II game
description and the resulting Situation Calculus theory are
equivalent in terms of the knowledge that can be inferred
from them. For this, we first recall from (Thielscher 2010)
the notion of a development as a legal sequence of compound
actions starting in the initial state s1 :

s1
M1→ s2

M2→ . . . sn−1
Mn−1→ sn (8)

where n ≥ 1 and for all i ∈ {1, . . . , n − 1} we have that
l(r,Mi(r), si) for all r ∈ R (players make legal moves)
and si+1 = u(Mi, si) (state updates).

Intuitively, a game development (8) corresponds to
the situation DO(An−1, . . . , DO(A2, DO(A1, s0)) . . .) in
the Situation Calculus where each joint move Mi =
{(r1,m1), . . . (rk,mk)} corresponds to a compound action
Ai = 〈m1, . . . ,mk〉.

Following (Thielscher 2010), two developments are indis-
tinguishable for some role r if r does the same moves in
both developments and the sequences of perceptions of r
are identical. Formally, two developments

s1
M1→ . . .

Mn−1→ sn and s1
M ′

1→ . . .
M ′

n−1→ s′n

are indistinguishable for role r if, and only if,

• {p : (r,Mi, si, p) ∈ I} = {p′ : (r,M ′
i , s

′
i, p

′) ∈ I}, and

• Mi(r) = M ′
i(r) for all i ∈ {1, . . . , n− 1}.

Our second theorem states that for a given state and joint
move, the GDL-II game rules and the Situation Calculus the-
ory allow to infer the same propositions.

Theorem 2. Let G be a valid GDL-II game description
and D be the Situation Calculus theory obtained from G
with the translation defined in the previous section. Fur-

thermore, let δ = s1
M1→ . . .

Mn−1→ sn be a devel-
opment of the game with corresponding situation S =
DO(An−1, . . . , DO(A1, s0) . . .), M be a joint move legal
in sn , and A be the compound action corresponding to M .

For every predicate p(�X) in the GDL-II description,
let its translation to the Situation Calculus be denoted by
pt(�X,A, S); e.g.

• truet(F,A, S) = HOLDS(F, S),

• pt(�X,A, S) = p(�X, S) for derived fluents,

• pt(�X,A, S) = p(�X,A, S) for derived action predicates.

Then for every predicate p(�X) of the GDL-II description,
G ∪ s′truen ∪Mdoes |= p(�X) iff D |= pt(�X,A, S).

Proof. The theorem follows from the construction of the Sit-
uation Calculus theory and the result from (Ferraris, Lee,
and Lifschitz 2011) according to which the standard model
of a stratified logic program is equivalent to the Herbrand
model of SM[F] if F is the conjunction of the completion
of the program.

Our main theorem states that developments indistinguish-
able for some player correspond to situations which the

player considers mutually possible, and vice versa. This im-
plies that players can use the Situation Calculus theory to
reason about their knowledge about past, present, and future
positions as well as about the knowledge of other players.
Theorem 3. Let G be a valid GDL-II game description
with semantics (R, s1, t, l, u, I, g) and D be the Situation
Calculus theory obtained from G with the translation de-
fined in the previous section. Let there be two developments

δ = s1
M1→ . . .

Mn−1→ sn, and

δ′ = s1
M ′

1→ . . .
M ′

n−1→ s′n

of the game with the corresponding situations σ, σ′ . A role
r ∈ R cannot distinguish δ and δ′ iff D |= K(r, σ′, σ).

Proof. By induction on the length n of the development δ.
For the base case n = 0 there is only one development–

the initial state s1 with the corresponding initial situation
s0 . Accordingly, by (6), D |= K(r, S, s0) iff S = s0 .

For the induction step, consider the two developments

δ+ = δ
Mn→ sn+1 and δ′+ = δ′

M ′
n→ s′n+1

with the corresponding situations DO(An, σ) and
DO(A′

n, σ
′), respectively.

We have to show that δ+, δ
′
+ are indistinguishable for r

if, and only if, D |= K(r, DO(A′
n, σ

′), DO(An, σ)). Ac-
cording to (7), K(r, DO(A′

n, σ
′), DO(An, σ)) holds if, and

only if, all of the following hold.

(a). K(r, σ′, σ),
(b). POSS(A′

n, σ
′),

(c). ACT(r, An) = ACT(r, A′
n), and

(d). ∀P.SEES(r, P,An, σ)≡∀P.SEES(r, P,A′
n, σ

′).

By the induction hypotheses, (a) holds. From the defini-
tion of a development it follows that each player’s move in
M ′

n is legal in the state s′n , that is, for all players p,

G ∪ s′truen |= legal(p,M ′
n(p))

By Theorem 2 we conclude that this holds exactly if D |=
LEGAL(p,M ′

n(p), σ
′) for all players p. From (4) and the

fact that M ′
n(p) = ACT(p,A′

n) we can conclude (b).
Provided that δ and δ′ are indistinguishable for role r,

δ+ and δ′+ are indistinguishable for r if, and only if,

{p : (r,Mn, sn, p) ∈ I} = {p′ : (r,M ′
n, s

′
n, p

′) ∈ I} (9)
and Mn(r) = M ′

n(r) (10)

According to (1), equation (10) holds if and only if (c). From
Definition 1 and Theorem 2 it follows that (9) holds just in
case (d) holds. Hence, K(r, DO(A′

n, σ
′), DO(An, σ)) holds

if, and only if, r cannot distinguish δ+, δ
′
+ , which con-

cludes the induction step and the proof.

Practical considerations Our completeness result requires
the second-order axiom SM[F] in the translated game de-
scription. In practice, this can be avoided if we can confine
ourselves to finitely many situations. The syntactic restric-
tions in GDL-II imply that every ground atom only depends

850

on finitely many other ground atoms; this is a consequence
of a restricted recursion as defined in (Love et al. 2006). Our
mapping extends the GDL rules by situation arguments, but
also for these only finitely many ground instances are con-
sidered in Theorem 2 because the developments are fixed
and hence the situations are depth-restricted. Bonatti (2004)
showed that in this case it suffices to consider a finite sub-
set R(P, F) of the grounding of a program P to decide
whether a ground atom F is entailed by P . Thus, we can
consider a finite ground program and replace the second-
order axiom by propositional loop formulas (Lin and Zhao
2004) to reconcile the semantics of GDL-II with the Situa-
tion Calculus theory. This solution applies whenever we can
confine ourselves to finitely many ground situations for the
reasoning problem at hand.3

Conclusion

We have presented an embedding of the extended Game De-
scription Language (GDL-II) into a suitable variant of the
Situation Calculus that features multi-agent knowledge, si-
multaneous actions, and action-independent sensing. While
a GDL-II description provides general game-playing sys-
tems only with the bare rules of a game, the Situation Cal-
culus axiomatisation tells players how to reason about their
own percepts and what they entail about the current position,
about the possible moves, and about what the other players
may know. This is the first full embedding of GDL-II into
an action calculus; our recent translation (Thielscher 2011b)
into the Action Description Language C+ (Giunchiglia et
al. 2004) is restricted to basic GDL and hence covers neither
imperfect information games nor knowledge and sensing.

The Situation Calculus has previously been shown to be
a viable formalism for representing and reasoning about
games. Most notably, Schulte and Delgrande (2004) also
use the Situation Calculus variant of (Scherl and Levesque
2003) to axiomatise extensive-form games. The main lim-
itation of their axiomatisation is to restrict the knowledge
fluent K(S′, S) to a single agent (namely, the player whose
move it is in situation S , assuming that players do not move
simultaneously). This does not allow for reasoning about
the knowledge of any other player in these situations, nor
about what one player can conclude about what another
player would know. This is remedied in the recent defini-
tion of a multi-agent epistemic variant of the Situation Cal-
culus (Belle and Lakemeyer 2010) for axiomatising games.
Despite notable differences to GDL-II and our variant of the
Situation Calculus, e.g. the restriction to non-simultaneous
moves and the necessity to define two domain theories (for
objective and subjective knowledge, respectively), we be-
lieve that a translation similar to the one presented in this
paper can be constructed by which full GDL-II is embed-
ded into a suitably adapted version of (Belle and Lakemeyer
2010).

3We also remark that this issue is actually of little relevance to
the practice of general game playing; e.g. none of the numerous
games played at the past AAAI Competitions featured logically
redundant clauses that players had to recognise.

Acknowledgements. We thank Joohyung Lee and the
anonymous reviewers for helpful comments on the paper.
The second author is the recipient of an Australian Research
Council Future Fellowship (project FT 0991348).

References
Apt, K.; Blair, H. A.; and Walker, A. 1987. Towards a theory
of declarative knowledge. In Minker, J., ed., Foundations of
Deductive Databases and Logic Programming, 89–148.
Belle, V., and Lakemeyer, G. 2010. Reasoning about imper-
fect information games in the epistemic situation calculus.
In Proceedings of AAAI, 255–260.
Bonatti, P. A. 2004. Reasoning with infinite stable models.
Artif. Intell. 156(1):75–111.
Clark, K. L. 1977. Negation as failure. In Logic and Data
Bases, 293–322.
Davis, E. 1990. Representations of Commonsense Knowl-
edge. Morgan Kaufmann.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2011. Nonmonotonic
causal theories. Artif. Intell. 175(1):236–263.
Genesereth, M.; Love, N.; and Pell, B. 2005. General game
playing: Overview of the AAAI competition. AI Magazine
26(2):62–72.
Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and
Turner, H. 2004. Nonmonotonic causal theories. Artif. In-
tell. 153(1–2):49–104.
Lin, F., and Zhao, Y. 2004. Assat: computing answer sets of
a logic program by sat solvers. Artif. Intell. 157:115–137.
Lloyd, J., and Topor, R. 1986. A basis for deductive database
systems II. Journal of Logic Programming 3(1):55–67.
Love, N.; Hinrichs, T.; Haley, D.; Schkufza, E.; and Gene-
sereth, M. 2006. General Game Playing: Game Description
Language Specification. Tech. Rep. LG–2006–01, Stanford.
Available at: games.stanford.edu.
McCarthy, J. 1963. Situations and Actions and Causal Laws.
Stanford Artif. Intell. Project, Memo 2.
Pritchard, D. 1994. The Encycolpedia of Chess Variants.
Reiter, R. 1991. The frame problem in the situation calculus:
A simple solution (sometimes) and a completeness result for
goal regression. In Lifschitz, V., ed., Artificial Intelligence
and Mathematical Theory of Computation, 359–380.
Scherl, R., and Levesque, H. 2003. Knowledge, action, and
the frame problem. Artif. Intell. 144(1):1–39.
Schulte, O., and Delgrande, J. 2004. Representing von
Neumann-Morgenstern games in the situation calculus. An-
nals of Mathematics and Artif. Intell. 42(1–3):73–101.
Thielscher, M. 2010. A general game description language
for incomplete information games. In Proceedings of AAAI,
994–999.
Thielscher, M. 2011a. The general game playing description
language is universal. In Proceedings of IJCAI.
Thielscher, M. 2011b. Translating general game descrip-
tions into an action language. In Logic Programming,
Knowledge Representation, and Nonmonotonic Reasoning,
volume 6565 of LNAI, 300–314. Springer.

851

