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Abstract

We consider the task of human collaborative category learn-
ing, where two people work together to classify test items into
appropriate categories based on what they learn from a train-
ing set. We propose a novel collaboration policy based on the
Co-Training algorithm in machine learning, in which the two
people play the role of the base learners. The policy restricts
each learner’s view of the data and limits their communica-
tion to only the exchange of their labelings on test items. In
a series of empirical studies, we show that the Co-Training
policy leads collaborators to jointly produce unique and po-
tentially valuable classification outcomes that are not gener-
ated under other collaboration policies. We further demon-
strate that these observations can be explained with appropri-
ate machine learning models.

Though human learning abilities are remarkable in many
respects, they are also constrained in ways that may seem
puzzling to machine learning. As one example, people can
have difficulty learning nonlinear decision boundaries with-
out extensive supervision (Love 2002). As another exam-
ple, psychologists often distinguish between feature dimen-
sions that are “separable” versus “integral”. For separable
features (e.g. color and shape), people can selectively attend
to one dimension without processing the other. For integral
dimensions (e.g. color saturation and brightness) they can-
not. In learning problems that are identical from a machine-
learning point of view, humans can show quite different pat-
terns of behavior depending on whether the dimensions are
integral or separable. For instance, people have difficulty
learning non-axis-parallel boundaries for separable but not
for integral feature dimensions (Nosofsky and Palmeri 1996;
Ashby and Maddox 1990).

This paper considers whether these characteristics of hu-
man learning can be altered by leveraging insights from
a machine learning algorithm, namely Co-Training. Co-
Training uses unlabeled data to improve learning by en-
couraging agreement among multiple “base” machine learn-
ers, each exposed to a different “view” of the data (see be-
low). The classic Co-Training algorithm (Blum and Mitchell
1998) and its extensions such as Co-EM (Nigam and Ghani
2000), Tri-Training (Zhou and Li 2005), and multiview
learning (Brefeld et al. 2006) have enjoyed considerable
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empirical success and theoretical justification (Johnson and
Zhang 2007; Balcan and Blum 2010) in machine learning.

One often under-appreciated fact about Co-Training is
that it has a different inductive bias, and so can produce quite
different classification results from supervised learning. Fig-
ure 1(a) shows a “diamond” dataset with four clusters, with
just one labeled item from each class (blue and red points).
The task is to classify the unlabeled items (black dots). Su-
pervised learning with the 1-nearest-neighbor (1NN) algo-
rithm1 learns a diagonal decision boundary in Figure 1(b).
In contrast, with the same 1NN as base learners the Co-
Training algorithm learns a very different solution (Fig-
ure 1(c)), grouping the top and bottom clusters together in
the red class, and the left and right clusters in the blue class.
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Figure 1: On this “diamond” dataset, supervised learning
and Co-Training, both with 1NN classifiers, produce dras-
tically different outcomes.

The linearly non-separable classification achieved by Co-
Training is just the kind of solution that human beings
have difficulty learning without extensive supervision (Love
2002). In the current work we consider whether the Co-
Training algorithm can be used to design a collaboration
policy for human participants that will promote learning
of such “difficult” classifications over the linearly separa-
ble outcomes that individuals are prone to acquire on their
own. Under this policy, each individual in the collaboration
is treated as a “base” learner; each is exposed to a differ-
ent “view” of the data; and the learning set-up is designed to
promote agreement among the collaborators. We empirically
assessed behavior in such teams for learning problems with

11NN classifiers are closely related to the generalized context
model (Nosofsky 1986) in cognitive psychology, which assumes
that people store training items in memory and categorize new
items by computing similarities to these stored training items.
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both psychologically-separable and integral stimulus dimen-
sions, and compared performance to individual learners and
to teams collaborating under an alternative policy. In simple
learning problems like that shown in Figure 1 we will see
that our Co-Training collaboration policy leads participants
to learn classifications typically thought to be very difficult
for humans, and also to show more homogeneous behavior
for stimuli defined along separable versus integral dimen-
sions. Though we do not extend the approach to a real-world
learning problem here, we will consider how the approach
might be used to design collaboration policies for such prob-
lems in cases where individuals have difficulty learning the
appropriate classifications.

Review of the Co-Training Algorithm

We first review the classic Co-Training algorithm of (Blum
and Mitchell 1998) as it is closely related to our policy. As-
sume that each item is parametrized by a feature vector x
and has a corresponding class label y. The input consists
of l labeled items (x1, y1) . . . (xl, yl) and u unlabeled items
xl+1 . . .xl+u. The goal is to learn a classifier f : x �→ y
using both the labeled and unlabeled data.

Further assume that the feature vector can be split into
two parts (called “views”): x =

(
x(1)

x(2)

)
. The Co-Training

algorithm trains two base learners f (1) : x(1) �→ y and
f (2) : x(2) �→ y, each working exclusively on one view.
In the beginning, these two base learners are trained on
the labeled data. More specifically, f (1) is trained with the
first view of the labeled data (x

(1)
1 , y1) . . . (x

(1)
l , yl). Subse-

quently, whenever f (1) encounters an item x during training
or prediction, it always works with the first view x(1) of the
item only and disregards the second view x(2). f (2) operates
similarly, working only with the second view. The ingenuity
is in how the unlabeled data is utilized in an iterative fash-
ion: At each iteration, f (1) classifies a few unlabeled items
that it is most confident about and passes these and their pre-
dicted labels as additional training data to f (2). Simultane-
ously, f (2) reciprocates. Co-Training then updates both base
learners with this additional “pseudo-labeled” data. This re-
peats until the unlabeled data is exhausted. A slightly simpli-
fied version of Blum and Mitchell’s Co-Training algorithm
is given in Algorithm 1. To classify a new test item x̃, one
can compare the predictions f (1)(x̃(1)) and f (2)(x̃(2)) and
pick the one with higher confidence.

Co-Training is a “wrapper” method in that the two base
learners f (1) and f (2) can be any learning systems. The only
requirement is that each base learner has a notion of confi-
dence, which is used to select which unlabeled items to turn
into pseudo labeled data for the other view. Importantly for
this work, being a wrapper method enables Co-Training to
treat two human collaborators as the base learners.

It is important to understand the conditions under which
Co-Training will succeed. We present the sufficient con-
ditions in the original analysis (Blum and Mitchell 1998),
but with new interpretations geared toward our collaboration
policy for human learning.

Input: labeled and unlabeled data where each item has
two views; learning speed s.

Initialize L1 = L2 =labeled data
repeat

Train f (1) from L1, f (2) from L2.
Classify unlabeled items with f (1), f (2) separately.
Add f (1)’s top s most confident predictions

(x, f (1)(x)) to L2, and vice versa.
Remove these items from the unlabeled data.

until unlabeled data is exhausted;
Algorithm 1: The Co-Training algorithm

The conditions are:

1. The unlabeled data distribution and the target concept
f are compatible under the two views. In particular, let
p(x) be the marginal distribution of items. We require
that with probability one, x ∼ p(x) satisfies f (1)(x(1)) =
f (2)(x(2)). That is, no item shall have conflicting labels
between the two views.

2. Each base learner is able to learn the target concept under
its view, given enough labeled data. This refers to standard
supervised learning, where the amount of labeled data re-
quired may be much larger than in Co-Training.

3. The two views are conditionally independent given the
class label: p(x(2) | x(1), y) = p(x(2) | y). If one knows
the class y, then knowing the features in one view x(1)

does not help one guess the other view x(2). This condi-
tion ensures that the most confident items from f (1)’s per-
spective do not “pile up on top of each other” from f (2)’s
perspective. Rather, they spread out and provide represen-
tative (pseudo) training data for the second view.

In subsequent sections, we will see how consideration of
these conditions shape our collaboration policy.

The reader might wonder why Co-Training keeps the two
views separate. Why not stack the two views back into
x =

(
x(1)

x(2)

)
, and train a supervised learner on x? One reason

is their inductive biases leading to different classifiers for the
same data, as shown in Figure 1. To see why this happens,
consider how the base learners respond to the bottom and
right clusters. For the bottom cluster, the x-axis view will be
highly confident that the items belong to the red class be-
cause from this view they are nearly identical to the labeled
red item. In contrast, the class of the right cluster will be un-
certain from this view, since these items are not particularly
similar to either labeled item. So, the x-view learner may
choose to label some bottom cluster items and pass these to
the y-view learner. For the y-view learner, the reverse pattern
occurs: the right cluster items very likely belong to the blue
class, whereas the class of the bottom cluster items is uncer-
tain. Each view is confident about the items for which the
opposing view is uncertain. Thus the two views, working to-
gether, converge on the solution shown in Figure 1(c). Such
difference between supervised learning and Co-Training is
general and can be observed with other datasets and choices
of base learners. Another example is given in the last section.
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Human Collaboration Policies

We now consider how these ideas from Co-Training can be
used to shape a policy for human collaboration. The task we
consider is category learning: Two human collaborators are
given a number of labeled training items (x1, y1) . . . (xl, yl)
and together must label the unlabeled items xl+1 . . .xl+u.
One may view the labeled training items as teaching expe-
riences given to the collaborators, e.g., by a teacher or a se-
nior worker. It is reasonable to assume that in many cases
the availability of teaching is limited. Therefore, the goal is
for the dyad to grasp the target concept using as little teach-
ing experience as possible. We assume that the collaborators
can see all of the unlabeled items upfront, which is known
as transduction in machine learning2.

Our main interest is in exploring different collabora-
tion policies between the two learners and how these
policies affect the learning outcomes. One obvious pol-
icy is to allow the two collaborators full access to the
data (x1, y1) . . . (xl, yl),xl+1 . . .xl+u, and to allow them to
fully interact with each other (in terms of discussions, ges-
turing, etc.). We call this the “full-collaboration” policy. An-
other policy might be to isolate the learners so that they each
have full independent access to the data but cannot commu-
nicate or interact. We call this the “no-collaboration” policy.

We introduce a third policy, described in Algorithm 2 and
explained below, that is inspired by and closely follows the
Co-Training machine learning algorithm. This policy splits
each item’s feature vector into two views: x =

(
x(1)

x(2)

)
. The

intention is to allow each collaborator only one of the views.
In contrast to machine learning, however, it is sometimes
impossible to create artificial stimuli with a single view. For
instance, the often used Gabor patches (Vandist, Schryver,
and Rosseel 2009) vary in frequency and orientation, and it
is impossible to depict an orientation without any informa-
tion about frequency or vice versa. In this case, our policy
constructs artificial stimuli that vary along the “viewed” di-
mension while holding a constant value on the “hidden” di-
mension (specifically the mean μ of the values on the miss-
ing view). So if Alice and Bob are the two collaborators,
Alice might see the stimuli as x(1) or

(
x(1)

μ(2)

)
, while Bob

sees them as x(2) or
(
μ(1)

x(2)

)
. Both Alice and Bob also see

the labels for the labeled data.
Alice and Bob cannot directly communicate. Instead, at

each iteration the policy requires both Alice and Bob to la-
bel the s unlabeled items that each is most confident about.
After they have both finished, the policy shows Bob’s cho-
sen items and labelings (xB1, yB1) . . . (xBs, yBs) to Alice.
Note that, although Bob labeled these item from his view,
Alice sees them from her own view. Alice understands that
the labels come from Bob, but – in contrast to machine learn-
ing – it is up to her whether to believe Bob’s labelings (i.e.,
whether to use them as pseudo labeled data). At the same
time, Alice’s labelings are shown to Bob. The policy then
removes any unlabeled item that has been labeled by either

2However, the dyad is also capable of making inductive infer-
ences when faced with new test items later on.

Input: labeled and unlabeled data, learning speed s.

Present the first-view data to Alice, second-view to Bob.
repeat

Let Alice label her s most confident unlabeled
items; same for Bob.

Show Bob’s labelings (xB1, yB1) . . . (xBs, yBs) to
Alice, and vice versa.

Remove {xA1 . . .xAs} ∪ {xB1 . . .xBs} from the
unlabeled data.

until unlabeled data is exhausted;
Algorithm 2: The Co-Training collaboration policy

Alice or Bob, and proceeds to the next iteration. This re-
peats until the unlabeled data is exhausted. In the end, each
unlabeled item has received a label from Alice or Bob. In
the rare cases when both Alice and Bob label the same item
differently, the policy breaks the tie arbitrarily.

The only communication that is allowed in the Co-
Training policy is label exchange3. In this sense, Co-
Training falls between the no-collaboration and full-
collaboration policies. Our main question is whether the Co-
Training policy leads learners toward different classification
outcomes than the no-collaboration and full-collaboration
policies. We hypothesize that human behavior in the Co-
Training policy will be well-predicted by the behavior of the
Co-Training algorithm in machine learning, whereas partic-
ipants will primarily learn linear category boundaries in the
other two collaboration conditions. This is not a trivial hy-
pothesis given the differences between human and machine
learning discussed above, and the general difficulty human
beings have in learning nonlinear decision boundaries with-
out extensive supervision.

Experiments

We designed and conducted a series of experiments to com-
pare human category learning behaviors under the three col-
laboration policies introduced in the previous section.

Participants and Materials

Across three separate experiments a total of 324 under-
graduate students participated for course credit under IRB
approval. We programmed networked software to run on
a pair of computers so that two participants in separate
rooms could collaborate according to the Co-Training pol-
icy, preventing any communication between them except
that explicitly allowed by the software. The software also
runs on a single computer for the full-collaboration and no-
collaboration policies. The software was implemented in
the ActionScript programming language and runs in Flash
Player.

The category learning task was implemented as a card
sorting game, see Figure 2. Each item x is represented as
a card. The user interface contains a central bin holding the
unlabeled cards as well as a bin to the left and to the right

3In theory, Alice and Bob could agree on a coding scheme a
priori and encode further information with their choices of items
and labelings. We do not consider that possibility here.
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Figure 2: The interface
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Figure 3: Sample stimuli

into which labeled cards are placed. In the beginning, only
the initially-labeled cards are shown in the left or right bins.
The participants’ task is to sort all cards in the central bin
into the left or right bins. Before starting the experiments,
participants were told whether or not they would be work-
ing with a partner, and were instructed to begin with the card
they were most confident about.

We assessed learning behavior in all collaboration con-
ditions with two stimulus sets. Both included items defined
over two continuous perceptual features, but differed in the
psychological separability of the dimensions. The “sepa-
rable” set contained Gabor patches varying in spatial fre-
quency and orientation of the grating (Vandist, Schryver, and
Rosseel 2009; Ashby and Maddox 1990). These dimensions
are considered separable because it is possible for people to
attend to one dimension to the exclusion of the other (Shep-
ard 1964). The “integral” set contained colored squares of
a fixed hue but varying in saturation and brightness. These
dimensions are considered to be integral because it is dif-
ficult for people to attend to one dimension without also
processing the other (Lockhead 1966). Extensive research
has shown that people respond differently to stimuli de-
fined on separable versus integral dimensions in supervised
and unsupervised learning tasks (Ashby and Maddox 1990;
Love 2002; Nosofsky and Palmeri 1996).

In both cases a stimulus is parametrized by x =
(
x1
x2

) ∈
[0, 1]2. The range of values on each was determined in ex-
tensive pilot testing to ensure that participants could dis-
criminate important distances along all dimensions. For Ga-
bor patches, the frequencies were calculated using λ =
(x1 ∗ 5/34)+2/17, and the orientations were calculated us-
ing θ = x2 ∗ 100, varying from 0 to 100 degrees clockwise
from horizontal. For colored squares, the brightness was cal-
culated using b = x1 ∗ 0.5 + 0.25 and the saturation was
calculated using c = x2 ∗ 0.9 + 0.5. Figure 3 shows four
stimuli corresponding to the cluster centers in Figure 1(a),
in both the separable and integral stimulus spaces.

The Diamond Dataset and Co-Training Conditions

Most of our experiments employ the diamond dataset shown
in Figure 1(a). It consists of n = 80 items evenly divided
into 4 clusters. All clusters have radius 0.1. Items within a
cluster lie on a regular grid. The two views are the x-axis
and y-axis coordinates paired with the mean value of 0.5 on
the hidden dimension as previously discussed.

We constructed this dataset with the aim of satisfying
the three technical conditions for the Co-Training algorithm.
Condition 1 is easy to verify: there exists at least one target
concept f , shown in Figure 1(c), that is consistent with the
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Figure 4: In Experiment 1 each participant worked with
only one view of the dataset. There were four labeled items.
Points dithered to show overlap.

marginal p(x). In other words, no item receives contradic-
tory labels across the two views (note this is not true for the
concept in Figure 1(b)). From the Figure we can also verify
that Condition 3 is approximately true:4 For both classes,
knowing an item’s x-axis position tells us little about its y-
axis position and vice versa.

Condition 2 cannot be verified by consideration of the
stimulus set alone. It stipulates that each base learner in Co-
Training must, with full supervision and sufficient labeled
data, be capable of learning the target concept from only
one view. Because the base learners in our study are human
beings, we need to determine empirically whether this con-
dition holds. Our first experiment addresses this question.

[Experiment 1] 13 participants were divided into two
groups: 7 in the first-view group and 6 in the second-view
group. Each worked alone as a base learner, and viewed
stimuli from the “integral” stimulus set. Participants in the
first-view condition saw items varying in the x dimension
but fixed at 0.5 on the y dimension, whereas those in the
second-view condition saw items varying along the y dimen-
sion and fixed at 0.5 in the x dimension, effectively collaps-
ing the dataset into one dimension as shown in Figure 4. Par-
ticipants viewed four labeled items corresponding to the four
cluster centers in Figure 1(a), and were asked to classify the
remaining 76 items. Note that this labeled data is twice what
is provided in Co-Training. The purpose of the study is to
verify that, when provided with this supervised experience,
human learners are capable of learning the target concept as
it is projected in one view.

Result: The average classification accuracy on the unla-
beled items was quite high: 98.9% in the first-view group
and 94.7% in the second-view group. These results suggest
that people were able to learn the target concept f using only
one view in a supervised learning setting given four labeled
training items, thus verifying the final technical condition of
Co-Training. Another pilot study also showed that in Exper-
iment 1, humans cannot learn the concept in Figure 1(c) if
they saw only the two labeled items in Figure 1(a) instead
of the four. However, as we show next, they will be able to
learn it from two labeled items if they perform Co-Training
label exchange.

Results under Different Policies

[Experiment 2] Our second experiment compares human
learning on the diamond dataset under the Co-Training, full-
collaboration, and no-collaboration policies, now using just

4It would be exactly true if the clusters were squares, not circles.
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Table 1: The fraction of patterns in cluster-level majority
classification. “Other” includes the remaining 16− 4 = 12
possible patterns. Boldface indicates the largest fraction
within a condition.

pattern
cross horz vert diag other

condition
CS 0.80 0.10 0.00 0.10 0.00
CI 0.68 0.04 0.04 0.20 0.04
FS 0.05 0.25 0.35 0.30 0.05
FI 0.00 0.08 0.00 0.92 0.00
NS 0.07 0.42 0.18 0.31 0.02
NI 0.00 0.00 0.00 1.00 0.00

two labeled items as in Figure 1(a). These three policies
were implemented as follows:

Co-Training (C): Two partners sit in separate rooms work-
ing on a shared categorization task. Each partner sees one of
the views and no communication is permitted except through
the labeling of cards. Each partner labels one card (s = 1)
and is then asked to wait for the other partner. The card la-
beled by the other partner is highlighted and automatically
moves from the unlabeled bin to the appropriate labeled bin.
If the partners have by chance labeled the same card, that
card is automatically moved from the labeled bin, across the
unlabeled bin, into the other labeled bin. This process of la-
beling followed by viewing is repeated until all cards are
labeled.

Full-collaboration (F): Two partners sit side-by-side be-
fore a single computer working on the same categorization
task. They are able to view both features on each card simul-
taneously. No restriction is made on their communication.

No-collaboration (N): A single participant categorizes all
cards while viewing both features simultaneously.

Each collaboration policy was paired with the separable
(S) or integral (I) stimuli, resulting in 6 conditions. Partic-
ipants were assigned randomly to conditions as follows: 21
dyads for CS, 25 dyads for CI; 20 dyads for FS, 26 dyads
for FI; 45 singles for NS, and 34 singles for NI.

To summarize the results of a given dyad or individual,
we classified each cluster in the diamond dataset as either
“red” or “blue” based on a simple majority vote (i.e. the
cluster was designated red if more than 50% of the items
in it were classified as red, and blue otherwise). Thus there
were 24 = 16 different possible patterns for the four clus-
ters. Table 1 shows the proportion of participants whose be-
havior matched each of these patterns across the different
conditions. For example, in the CS condition, 17/21 ≈ 0.8
fraction of dyads produced the “cross” pattern.

Several observations can be made from Table 1. First, the
Co-Training policy robustly produces the nonlinear “cross”
pattern in about three quarters of the dyads. This pattern
was rarely observed in the full-collaboration and the no-
collaboration policies (χ2 test, p 	 0.01), which both
mainly produce linear decision boundaries. This is the main
finding of our work: the Co-Training human collaboration
policy leads to outcomes dramatically different from no-
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Figure 5: Differences between humans and machines (aggre-
gated over CS and CI). (a) The first unlabeled items (black
dots) chosen by the first-view partners. (b) Same, but for the
second-view. (c) Per-item average labels.

collaboration and full-collaboration policies, and consistent
with that predicted by the machine learning algorithm.

Second, in the full-collaboration and no-collaboration
policies, participants showed quite different behaviors for
stimuli defined over separable versus integral dimensions,
producing axis-parallel boundaries with separable dimen-
sions and “integrated” oblique boundaries with integral di-
mensions. This pattern has been previously documented in
a variety of work in cognition. In Co-Training, however, the
separability of the stimulus dimensions does not affect be-
havior (CS vs. CI, χ2 test, p = 0.5). This is not surprising
given that each person sees only one view, but it suggests
an interesting application of the policy: Co-Training can en-
force consistent classification regardless of the separability
of the stimulus dimensions.

Additionally, there was no significant difference between
full- and no-collaboration (χ2 test, p = 0.7). Thus the differ-
ences observed under the Co-Training policy were not sim-
ply the result of having two individuals working together.

Although the Co-Training human collaboration outcome
fits machine learning model predictions at the cluster level,
we observed some subtle differences suggesting that ma-
chine learning algorithms like 1NN may not be the ideal
models for human base learners. One difference concerns
the unlabeled items that humans label first. Machine base
learners would label the items they are most confident about,
which will likely be an item that overlaps with a labeled item
under that view. Participants in our experiments did not al-
ways pick such overlapping items, but seemed to settle for
items loosely similar to labeled ones, see Figure 5(a) and (b).
Another difference is in how sure the humans are. For each
unlabeled item, we may average its classification across all
dyads in the Co-Training conditions where, if the average is
close to -1 (blue) or 1 (red), all dyads label it consistently; 0
if they are quite unsure. Figure 5(c) shows this per-item av-
erage using a color coding. Items in the top and left clusters
(with labeled items) are very certain, while those in the bot-
tom and right clusters are relatively uncertain (though they
do have the correct per-item majority vote label). Typical
machine Co-Training learners will have higher certainty on
these clusters.

A Counter-Example

Finally, we investigated human behavior under the Co-
Training policy in a learning problem that violates Co-
Training’s technical conditions. The new dataset was iden-
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Figure 6: The counter-example

tical to the diamond dataset except that the unlabeled items
were distributed on a grid, see Figure 6(a). The dataset there-
fore violates Condition 1: items near the four corners receive
conflicting labels between the two views.

[Experiment 3] 24 dyads worked on this counter-
example under the Co-Training policy with the separable
stimuli. Apart from the distribution of the unlabeled items,
all aspects of the study were identical to Experiment 2. Fig-
ure 6(b) shows the per-item average labels in Experiment 3.
Classification decisions in this study were clearly less cer-
tain than those observed in Experiment 2 (see correspond-
ing items in Figure 5(c)). To compare with the CS row in
Table 1, we also computed the majority vote pattern for
every dyad on each of the four rectangular “clusters” in
Figure 6(a). The proportion of dyads showing each pattern
were: cross 0.00, horz 0.21, vert 0.17, diag 0.33, other 0.29.
No dyad produced the cross pattern on this dataset. Thus hu-
man Co-Training outcomes depends critically upon the dis-
tribution of the unlabeled items.

Discussions and Future Work

We showed that, when collaborating according to a novel
policy inspired by Co-Training, two human learners behave
differently than individual learners or learning pairs collabo-
rating in an unconstrained manner. Specifically, they jointly
acquire a nonlinear labeling on the diamond dataset that is
highly consistent with the behavior of the machine learning
algorithm, yet unusual for human category learning gener-
ally. We have also shown that the behaviors elicited by the
policy depend upon the distribution of the unlabeled data.

The current work employs very simple stimuli con-
structed to highlight the differences between Co-Training
and other learning models. The question thus arises, what
relevance do these results have for real-world learning tasks?
We believe there are several potentially important implica-
tions. First, under the Co-Training policy each participant
need view only a subset of an item’s features. For problems
where the number of relevant features are overwhelming, the
policy may provide an efficient way of dividing the problem
up so as to make best use of costly human effort. Second,
in Co-Training each learner is satisfied with the final result
(meaning there is little conflict between the labels given by
one partner and the other), even though jointly the team ar-
rives at a solution that would seem unlikely had they both
viewed the full features. Co-Training thus provides a means
of promoting agreement among team members for classi-
fication solutions that otherwise might cause disagreement.
Third, the only communication required is label-exchange,
which might be useful in situations where communication

is costly. Fourth, each learner is “blind” to some of the fea-
ture dimensions. The policy might therefore prove useful in
sensitive classification tasks where data security is an issue.

Of course, all of these applications depend upon there be-
ing real-world tasks of interest that meet the technical con-
ditions that allow Co-Training to work. In this vein, it is
worth noting that Co-Training does apply to other datasets
beyond the “diamond” set used here. For example, here is
a 2D dataset with 8 clusters, two of them initially labeled:( • +• •• •
o •

)
. The outcome

( + +
o o
+ +

o o

)
is predicted by the Co-

Training machine algorithm, and we have observed this be-
havior in preliminary human studies. To determine whether
Co-Training has application for a real dataset, the task or-
ganizer must be able to assess whether the problem meets
Co-Training’s technical conditions, and must also be able to
find views of the data that exploit Co-Training’s properties.
These constitute interesting problems for machine learning
in their own right, and are a focus for future research.
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