
Finding Answers and Generating Explanations
for Complex Biomedical Queries

Esra Erdema and Yelda Erdemb and Halit Erdogana and Umut Oztoka

aFaculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey
bResearch and Development Department, Sanovel Pharmaceutical Inc., İstanbul, Turkey

Abstract

We present new methods to efficiently answer complex
queries over biomedical ontologies and databases consider-
ing the relevant parts of these knowledge resources, and to
generate shortest explanations to justify these answers. Both
algorithms rely on the high-level representation and efficient
solvers of Answer Set Programming. We apply these algo-
rithms to find answers and explanations to some complex
queries related to drug discovery, over PHARMGKB, DRUG-
BANK, BIOGRID, CTD and SIDER.

1 Introduction
Recent advances in health and life sciences have led to gen-
eration of a large amount of biomedical data. To facilitate ac-
cess to its desired parts, such a big mass of data has been rep-
resented in structured forms, like biomedical ontologies and
databases. On the other hand, representing these biomedi-
cal ontologies and databases in different forms, construct-
ing them independently from each other, and storing them at
different locations have brought about many challenges for
answering queries about the knowledge represented in these
ontologies and databases.

In this paper, we study the following challenging prob-
lems: 1) to represent complex biomedical queries that re-
quire appropriate integration of relevant knowledge from
different knowledge resources and/or that require auxiliary
definitions, such as, chains of drug-drug interactions, cliques
of genes based on gene-gene relations, or similarity/diversity
of genes/drugs; 2) to automatically find answers and infor-
mative explanations to these queries.

Consider, for instance, the following queries:
Q1 What are the genes that are targeted by the drug

Epinephrine and that interact with the gene DLG4?
Q2 What are the genes that are targeted by all the drugs that

belong to the category Hmg-coa reductase inhibitors?
Q3 What are the cliques of 5 genes, that contain the gene

DLG4?
Q4 What are the genes related to the gene ADRB1 via a gene-

gene relation chain of length at most 3?
Q5 What are the most similar 3 genes that are targeted by the

drug Epinephrine?
These queries are important from the point of view of

drug discovery. For instance, consider the query Q2. New

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

molecule synthesis by changing substitutes of parent com-
pound may lead to different biochemical and physiological
effects; and each trial may lead to different indications. Such
studies are important for fast inventions of new molecules.
For example, while developing Lovastatin (a member of the
drug class of statins, used for lowering cholesterol) from
Aspergillus terreus (a sort of fungus) in 1979, scientists
at Merck derived a new molecule named Simvastatin (a
hypolipidemic drug used to control elevated cholesterol).
Therefore, identifying genes targeted by a group of drugs
automatically by means of queries like Q2 may be useful for
experts.

Some of these complex queries, such as Q1 or Q2,
can be represented in a formal query language (e.g.,
SQL/SPARQL) and then answered using Semantic Web
technologies. However, queries, like Q4, that require aux-
iliary recursive definitions (such as transitive closure) can-
not be directly represented in these languages; and thus such
queries cannot be answered directly using Semantic Web
technologies. The experts usually compute auxiliary rela-
tions externally, for instance, by enumerating all drug-drug
interaction chains or gene cliques, and then use these auxil-
iary relations to represent and answer a query like Q3 or Q4.
Similarity/diversity queries, like Q5, cannot be represented
directly in these languages either, and require a sophisticated
reasoning algorithm.

We address the challenges described above using Answer
Set Programming (ASP) (Lifschitz 2008) as follows:

• The high-level representation language of ASP allows us
to formalize auxiliary recursive definitions, aggregates,
and defaults; and thus we represent queries in ASP.

• Well-studied foundations and existing computational
methods of ASP allow us to develop efficient computa-
tional methods for answering complex queries. In partic-
ular, we define the relevant part of an ASP program with
respect to a query and a set of auxiliary definitions in ASP.
Based on the relevancy definition, we develop a method to
efficiently compute an answer to a given complex query
considering relevant parts of knowledge resources and rel-
evant definitions. The efficiency of our methods is verified
experimentally.

• We introduce a method to generate shortest explanations
for answers. In particular, we define an explanation as a
sequence of rules from the ASP program, that are used
to justify an answer; and an explanation tree whose ev-
ery branch from the root to a leaf denotes an explanation.

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

785

Based on these definitions, we generate a weighted expla-
nation tree for an answer to a query and find the shortest
explanation by finding a least-weighted explanation.

We show the applicability of our methods to answer
queries over large biomedical knowledge resources about
genes, drugs and diseases, such as PHARMGKB,1 DRUG-
BANK,2 BIOGRID,3 CTD,4 and SIDER,5 using efficient
solvers of ASP. For queries that are not concerned about
similarity/diversity of genes/drugs, we use the ASP solver
CLASP (Gebser et al. 2007). For similarity/diversity queries,
we utilize the online methods of (Eiter et al. 2009) for find-
ing similar/diverse solutions, and thus use the ASP solver
CLASP-NK, a variant of CLASP.

2 Answer Set Programming
We study representing complex biomedical queries, query
answering, and explanation generation in the context of An-
swer Set Programming (ASP) (Lifschitz 2008)—a declar-
ative programming paradigm with a high-level representa-
tion language and efficient solvers. The idea of ASP is to
represent knowledge as a “program” and to reason about
the knowledge by computing models (called “answer sets”
(Gelfond and Lifschitz 1991)) of the program using “ASP
solvers” like CLASP.

An (ASP) program is a finite set of rules of the form

F ← G

where F is a propositional atom or ⊥, and G is a formula;
F is called the head and G is called the body of the rule.
We denote the head of a rule r by H(r) and the body by
B(r). A rule of the form F ← � will be identified with the
formula F . A rule of the form ⊥ ← F (called a constraint)
will be abbreviated as ← F .

If every rule of a program is of the form

A0 ← A1, . . . , Ak, notAk+1, . . . , notAm (1)

where m ≥ k ≥ 0 and each Ai is an atom, then the program
is a normal program. For a rule r of the form (1), the set
{A1, ..., Ak} of atoms (called the positive part of the body)
is denoted by B+(r), and the set {Ak+1, ..., Am} of atoms
(called the negative part of the body) is denoted by B−(r).

A program is positive if it does not contain any negation.
A normal program is stratified if there exists a level mapping
λ such that, for every rule (1) in that program, λ(A0) ≥
λ(Ai) for every 1 ≤ i ≤ k, and λ(A0) > λ(Ai) for every
k < i ≤ m.

When we represent a problem in ASP, we use special con-
structs of the form l{A1, . . . , Ak}u (called cardinality ex-
pressions) where each Ai is an atom and l and u are non-
negative integers denoting the “lower bound” and the “up-
per bound” (Simons, Niemelä, and Soininen 2002). Pro-
grams using these constructs can be viewed as abbreviations
for normal programs (Ferraris and Lifschitz 2005). Such an

1http://www.pharmgkb.org/
2http://www.drugbank.ca/
3http://thebiogrid.org/
4http://ctd.mdibl.org/
5http://sideeffects.embl.de/

expression describes the subsets of the set {A1, . . . , Ak}
whose cardinalities are at least l and at most u. Such expres-
sions when used in heads of rules generate many answer sets
whose cardinality is at least l and at most u, and when used
in constraints eliminate some answer sets.

A group of rules that follow a pattern can be often de-
scribed in a compact way using “schematic variables”. For
instance, we can write the program

pi ← not pi+1 (1 ≤ i ≤ 7)

as follows
index(1). index(2). ... index(7).
p(i) ← not p(i+ 1), index(i).

The auxiliary predicate index(i) is introduced to describe
the ranges of variables. ASP solvers compute an answer set
for a given program that contains variables, after “ground-
ing” the program, e.g., by the “grounder” GRINGO (Gebser,
Schaub, and Thiele 2007). The “definitions” of such auxil-
iary predicates tell GRINGO how to substitute specific val-
ues for variables in schematic expressions. Variables can be
also used “locally” to describe the list of formulas. For in-
stance, the rule 1{p1, . . . , p7}1 can be represented as fol-
lows: 1{p(i) : index(i)}1.

With schematic variables and “constants”, an atom can
be of the form p(�t) where p is a predicate symbol and �t =
t1, ..., tk (k ≥ 0) with each ti being either a constant or
a schematic variable. Then, for a rule r (1), let HP (r) =
{p0}, BP+(r) = {p1, ..., pk}, BP−(r) = {pk+1, ..., pm},
and BP (r) = BP+(r) ∪ BP−(r). The set of predicate
names of a rule r (resp. a normal ASP program Π) is denoted
by pred(r) = HP (r)∪BP (r) (resp. pred(Π)). For an ASP
program Π, we denote by BΠ the set of all ground instances
of the atoms in Π; and by Ground(Π) the set of all ground
instances of the rules in Π.

3 Efficient Query Answering
Consider a normal ASP program Π consisting of facts
that describe relations extracted from the knowledge re-
sources, and rules that integrate various concepts from dif-
ferent knowledge resources or that describe some back-
ground knowledge.

Suppose that we represent a given biomedical query as
an ASP program Q. Therefore, this program may contain
auxiliary definitions required to represent the query itself.

The goal is to find the relevant part R of Π with respect to
Q, and then efficiently compute an answer to the query (i.e.,
find an answer set X for R, and extract the answer from X).

Defining relevancy: For a set X of atoms and a set P of
predicate symbols, let us denote by XP the atoms in X with
predicate symbols in P .

Let Π1 and Π2 be two ASP programs and let P be a set of
predicate names. We say that Π1 is equivalent to Π2 modulo
P (denoted Π1 ≡P Π2) if

• for each answer set S1 ∈ AS(Π1), there exists an answer
set S2 ∈ AS(Π2) such that SP

1 = SP
2 , and

• for each answer set S2 ∈ AS(Π2), there exists an answer
set S1 ∈ AS(Π1) such that SP

2 = SP
1 .

786

Let Π and Q be two ASP programs. Intuitively, Π repre-
sents the rule layer over various knowledge resources, and
Q describes the query. We say that a subset R of Π is the
relevant part of Π with respect to Q if the following hold:

• If R∪Q has no answer set then Π∪Q has no answer set.
• If R ∪Q has an answer set then R ∪Q ≡pred(Q) Π ∪Q.

Note that, R ⊆ Π is a relevant part of Π with respect to
Q if and only if Ground(R) is a relevant part of Ground(Π)
with respect to Ground(Q).

Finding the relevant part of a program: Most of the
time, the ASP program that integrates various concepts from
different knowledge resources or that describes some back-
ground knowledge is a stratified ASP program. Therefore,
we introduce a method for computing the relevant part of a
stratified ASP program with respect to a given biomedical
query, which is a general ASP program that may contain
auxiliary definitions, constraints, aggregates and so forth.
For that, we need the following definitions.

The predicate dependency graph DGΠ of a normal ASP
program Π (as defined in (Baral 2003)) is a directed graph,
whose vertices denote the predicate names of atoms in Π,
and edges 〈pi, pj〉 denote the existence of a rule r (1) in Π
where pi (resp. pj) is the predicate symbol of the atom in
H(r) (resp. B(r)); edges are labeled by + (resp. −) if pj
appears in B+(r) (resp. B−(r)).

Let Π be a normal ASP program and Q be an ASP pro-
gram. The set SΠ,Q of relevant predicate symbols of Π with
respect to Q is the set of all predicate names reachable (in
DG(Π)) from some vertex in pred(Q). Here we consider
reachability as the reflexive transitive closure of edges in
DG(Π). The set RelΠ,Q of relevant rules of Π with respect
to Q is the set of rules r in Π such that HP (r) ⊆ SΠ,Q

whenever BP (r) ⊆ SΠ,Q.
The following proposition allows us to compute the rele-

vant part of a stratified program with respect to a query, as
in Algorithm 1.

Proposition 1. For a stratified normal ASP program Π and
an ASP program Q, RelΠ,Q is the relevant part of Π with
respect to Q.

Algorithm 1 Answering Queries
Input: A stratified normal ASP program Π and a query Q
Output: An answer set for Π∪Q projected on the predicate

names in R ∪Q
DGΠ := DependencyGraph(Π);
pred(Q) := PredicateNames(Q);
SΠ,Q := RelevantPredicateNames(DGΠ, pred(Q));
RelΠ,Q := RelevantRules(Π, SΠ,Q);
Answer := ComputeAnswerSet(RelΠ,Q ∪Q);
return Answer;

The time complexity of constructing the predicate depen-
dency graph, getting the predicate names, and finding the
relevant predicate names and rules is O(|Π| × |BΠ∪Q| +
|pred(Π ∪ Q)|2). However, computing an answer set of a
given program is NP-hard (Dantsin et al. 2001).

Similarity/diversity queries: Some queries may have too
many answers. In such cases, it might be more desirable to
compute a subset of answers (e.g., genes) which are sim-
ilar/diverse to each other with respect to some given dis-
tance measure (e.g., based on the functional distance be-
tween genes). Also, to be able to analyze relations be-
tween genes/drugs, the experts may want to find a set
of genes/drugs that are distant/close to a previously com-
puted/known set of genes/drugs. However, no existing soft-
ware provides such a utility to be able to reason about
biomedical knowledge resources.

In (Eiter et al. 2009), the authors introduce two on-
line methods: 1) to compute n answer sets that are simi-
lar/diverse to each other by a distance of k; 2) to compute
n answer sets that are distant/close to a given set of an-
swer sets by a distance of k. Both methods compute dis-
tances with respect to a distance function implemented in the
programming language C++, and consider these distances
while computing an answer set incrementally by a branch-
and-bound approach. Therefore, these methods avoid com-
puting all answer sets to find similar/diverse or distant/close
solutions. Utilizing these methods and their implementation
CLASP-NK (based on the ASP solver CLASP), we can find
similar/diverse or distant/close genes/drugs without comput-
ing all answers to queries like Q5.

4 Generating Shortest Explanations
Let Π be the relevant part of a ground normal ASP pro-
gram with respect to a given query Q (also a ground normal
ASP program), that contains rules describing the knowledge
extracted from biomedical ontologies/databases, the knowl-
edge integrating them, and the background knowledge. Let
X be an answer set for Π ∪ Q, that contains an atom x that
characterizes an answer to query Q as described above. The
goal is to understand why x is computed as an answer to the
query Q, i.e., why x is in X .

Explanations: Let us first define the positive dependency
graph of a program: The positive dependency graph of a
ground normal ASP program Π is a directed graph, whose
vertices denote the atoms in Π, and edges 〈x, y〉 denote
the existence of a rule r (1) in Π where x ∈ H(r) and
y ∈ B+(r).

Let Π be a ground normal ASP program, X be an answer
set for Π, and x be an atom in X . An explanation for x with
respect to Π and X is a finite sequence 〈R1, . . . , Rn〉 of rules
in Π such that the following hold:

• H(Ri) ∪ B+(Ri) ⊆ X and B−(Ri) ∩ X = ∅ for 1 ≤
i ≤ n;

• H(Ri) �= H(Rj) for 1 ≤ i < j ≤ n;
• H(Rn) = x,
• for every Ri, for every atom a ∈ B+(Ri), there exists a

rule Rk (i �= k) such that H(Rk) = a;
• for every Ri (1 ≤ i < n), H(Ri) ∈ B+(Rj) for some
j �= i;

• The positive dependency graph of the ASP program
{R1, . . . , Rn} is acyclic.

Informally, an explanation for an atom is a sequence of rules
which are the reasons of that atom being in an answer set.

787

Consider a program Π, consisting of three rules, a, b ←
a, not c and b, labeled by R1, ...R3 respectively. Let I =
{a, b}. Then, the sequence 〈R1, R2〉 is an explanation of b
with respect to Π and I; the sequence 〈R3〉 is another ex-
planation. As it is illustrated by this example, there may be
different explanations for an atom. Among them, we are in-
terested in shortest explanations, with the minimum number
of rules. In the example above, the sequence 〈R3〉 is a short-
est explanation for b.

Explanation trees: To compute shortest explanations,
we use “explanation trees” whose vertices correspond
to atoms/rules and edges describe dependencies between
atoms/rules. Intuitively, an explanation tree whose root cor-
responds to an atom x represents all possible explanations
for x; the idea is then to extract a shortest explanation among
all explanations.

An explanation tree of x with respect to Π and X is a tree
〈V,E〉, where V is the set of vertices and E is the set of
edges, with the following properties:

• V ⊆ X ∪Π;
• x is the root of the tree;
• for every vertex v ∈ X , the set of outgoing-edges from
v is Ev = {〈v, r〉 : r ∈ Π, H(r) = v, B+(r) ⊆
X, B−(r) ∩ X = ∅, v /∈ descendant(r)} (here
descendant(r) denotes the descendants of the vertex r);

• for every vertex v ∈ Π, the set of outgoing-edges from v
is Ev = {〈v, a〉 : a ∈ B+(v)}.

By weighting this tree appropriately (as described next),
we can extract a shortest explanation for the atom denoted
by the root of the tree.

Finding shortest explanations: Our algorithm to find a
shortest explanation for an atom x with respect to a normal
ASP program Π and an answer set X for Π such that x ∈ X
is summarized in Algorithm 2.

Algorithm 2 Generating Shortest Explanations
Input: A normal ASP program Π, an answer set X for Π,

an atom x ∈ X .
Output: A shortest explanation for x wrt Π and X .

T := createTree(Π, X, x, {}, {});
Tw := labelTree(Π, X, T, x);
L := extractShortExp(Π, X, Tw, x);
return L;

First, it generates an explanation tree T . For every vertex
v in T that denotes an atom x, it finds every rule R in Π
that support x (i.e., every rule R ∈ Π such that H(R) = x,
B+(R) ⊆ X , and B− ∩X = ∅) and assigns these rules as
the children of v in T . For every vertex v in T that denotes a
rule R, it assigns the atoms in B+(R) as the children of v.

Next, Algorithm 2 assigns weights to the vertices of the
explanation tree T so that we can find a shortest explanation.
Since the length of an explanation depends on the number of
rules it contains, we need to assign weights to the vertices of
the tree in such a way that the weight of a vertex v ∈ X
in the tree corresponds to the number of rules in a shortest
explanation for v and the weight of a vertex u ∈ Π in the tree

corresponds to the sum of the weights of its children. As a
child of a vertex u ∈ Π is a vertex u′ ∈ X and the weight
of u′ is the number of rules in a shortest explanation of u′,
the weight of u becomes the least number of rules needed
to explain atoms in its body. So, starting at a vertex v ∈ X
and traversing a path by moving towards the vertex which
has the smallest weight until a leaf is reached, we can find a
shortest explanation of v (vertices v′ ∈ Π on the path). Thus,
the weight W (v) of a vertex v can be defined as follows:

• If v ∈ Π, W (v) = 1 +
∑i=n

i=1 W (ci), where ci is the ith
child of v.

• If v ∈ X , W (v) = min1≤i≤n(W (ci)), where ci is the
ith child of v.

As the final step, Algorithm 2 extracts a shortest explana-
tion for x with respect to Π and X from a given weighted ex-
planation tree T . The explanation computed by Algorithm 2
is indeed the shortest .

Proposition 2. Let Π be a normal ASP program, X be an
answer set for Π, and x be an atom in X . Algorithm 2 finds
a shortest explanation for x with respect to Π and X .

The time complexity of generating a weighted explana-
tion tree and extracting a shortest explanation from that
tree, in the worst case, is h × b, where h is the maximum
height of the tree and b is the maximum branching factor
of a vertex in the tree. Since the set of vertices of the ex-
planation tree is a subset of X ∪ Π, h = |X| + |Π| and
b = max{|X|, |Π|}. Therefore, the time complexity of Al-
gorithm 2 is O((|X|+ |Π|)×max{|X|, |Π|}).

5 Biomedical Queries for Drug Discovery
We applied our methods to find answers to the following
biomedical queries, in addition to Q1–Q5:

Q6 What are the drugs that treat the disease Asthma and target
the gene ADRB1?

Q7 What are the side effects of the drugs that treat the disease
Asthma and that target the gene ADRB1?

Q8 What are the genes that interact with at least 3 genes and
that are targeted by the drug Epinephrine?

Q9 What are the drugs that treat the disease Asthma or that
react with the drug Epinephrine?

Q10 What are the genes that are related to the gene DLG4 via
a gene-gene interaction chain of length at most 3 and that
are targeted by a drug in the Statin group?

To answer these queries, we considered the biomedi-
cal knowledge resources about genes, drugs and diseases,
such as PHARMGKB, DRUGBANK, BIOGRID, CTD and
SIDER. In particular, we extracted 347965 triples (as ASP
facts) from BIOGRID, 17266 triples from DRUGBANK,
61102 triples from SIDER, 1809 triples from PHARMGKB,
1877799 triples from CTD.

We defined a “rule layer” over these knowledge resources,
in the language of GRINGO. This ASP program contains
rules to integrate the knowledge resources, such as:

drug_gene(D,G) :- drug_gene_pharmgkb(D,G).
drug_gene(D,G) :- drug_gene_ctd(D,G).

788

which integrates the knowledge extracted from PHAR-
MGKB and CTD, about “which drug targets which gene.”
The rule layer also defines auxiliary definitions, such as
chains of gene-gene relations from a starting gene Y whose
length is at most L:
gene_reachable_from(X,1) :-

gene_gene(X,Y), start_gene(Y).
gene_reachable_from(X,N+1) :-

gene_gene(X,Z), gene_reachable_from(Z,N),
0<N, N<L, max_chain_length(L).

We represented each query as an ASP program as well.
For instance, query Q4 is represented in ASP as follows:
start_gene("ADRB1"). max_chain_length(3).
related_gene(G) :- gene_reachable_from(G,L).
answer_exists :- related_gene(G).
:- not answer_exists.

Query Q4 has an answer if the ASP program consisting of
the rule layer and the program describing the query above
has an answer set. If the ASP program has an answer set,
answers to Q4 are extracted from the atoms of the form
related gene(G). For instance, the gene CD53 is an an-
swer to Q4 extracted in this way.

Query Q2 is represented in ASP as follows:
gene_not_targeted_by_some_drug(GN) :-

gene_name(GN), not drug_gene(DRG,GN),
drug_category(DRG,"Hmg-coa ... inhibitors").

gene_targeted_by_all_drugs(GN) :- gene_name(GN),
not gene_not_targeted_by_some_drug(GN).

answer_exists :- gene_targeted_by_all_drugs(GN).
:- not answer_exists.

Query Q3 on the other hand is represented as follows:
clique("DLG4").
4{clique(N):gene_gene("DLG4",N)}4.
:- clique(N1), clique(N2),

not gene_gene(N1,N2), N1 > N2.
answer_exists :- clique(GN).
:- not answer_exists.

To answer these queries that are not concerned about
similarity/diversity of genes/drugs, we used the ASP solver
CLASP(Version 1.3.6).

The similarity query Q5, on the other hand, is represented
in ASP as follows:
1{pick_a_gene(G):drug_gene("Epinephrine",G)}1.
answer_exists :- pick_a_gene(G).
:- not answer_exists.

For the computation of 3 most similar genes, we considered
the distance function Δ for a set S of genes, as the max-
imum distance over the pairwise gene distances in S; the
distance between two genes is taken as the number of drugs
that target both of these genes subtracted from a large num-
ber. Therefore, the less the distance between two genes, the
more similar the genes are. This distance function is im-
plemented in C++; and CLASP-NK considers distance of a
set of genes while computing an answer, and thus does not
even have to compute the gene-gene distance matrix in ad-
vance. (Note that, since we consider about 29750 genes, the
computation of such a matrix may not be feasible in terms

Table 1: Experimental Results
Query with the complete program with the relevant part
Q1 36.1 sec. 7.3 sec.

Rules: 3662195 Rules:797129
Q2 36 sec. 8.6 sec.

Rules: 3662689 Rules: 919827
Q3 36.3 sec. 8.5 sec.

Rules: 3662155 Rules: 1065150
Q4 36.5 sec. 30 sec.

Rules: 3662187 Rules: 2991820
Q5 36.2 sec. 5.1 sec.

Rules: 3663880 Rules: 527064
Q6 36.3 sec. 29.9 sec.

Rules: 3703031 Rules: 3041876
Q7 36.9 sec. 5.7 sec.

Rules: 3664914 Rules: 764244
Q8 36.7 sec. 6.2 sec.

Rules: 3665821 Rules: 765155
Q9 43.8 sec. 5.9 sec.

Rules: 3662159 Rules: 309488
Q10 36.5 sec. 29.9 sec.

Rules: 3672390 Rules: 1084597

of the time/memory required.) CLASP-NK finds a set S of
3 similar genes targeted by Epinephrine, whose distance is
at most k as follows: first it picks a gene g1 targeted by
Epinephrine; after that, it searches for another gene g2 tar-
geted by Epinephrine such that the distance of g2 to g1 is
at most k (here the distance is computed on-the-fly), in a
branch-and-bound fashion (e.g., if the distance is greater
than k, CLASP-NK does not proceed with the search along
this branch of the search tree); the search proceeds in this
way until 3 genes are computed. With a binary search, one
can try to minimize the value of k; however, the underly-
ing online method of CLASP-NK is not complete (due to the
gene picked at the first iteration).

Table 1 shows, for each query, the computation times
(CPU sec.s for a workstation with two 1.60GHz Intel Xeon
E5310 Quad-Core Processor and 16GB RAM) and the pro-
gram sizes, with the complete rule layer and with the rele-
vant part of the rule layer. For instance, for the query Q2,
CLASP takes 36 seconds to find an answer with the complete
program containing 3662698 rules, whereas it takes 8.6 sec-
onds to find an answer with the relevant part of the program
containing 919827 rules. As seen from the other results, it is
advantageous to apply our method of query answering with
respect to the relevant part of the program.

After we computed answers to these queries, we also gen-
erated shortest explanations for queries whose representa-
tion does not involve choice/cardinality expressions, as de-
scribed in the previous section. For instance, the following
is a part of the explanation as to why the gene CD53 is an
answer to query Q4:

gene_reachable_from("PRKCA",2) :-
gene_gene("PRKCA","DLG4"),
gene_reachable_from("DLG4",1),
max_chain_length(3).

gene_reachable_from("CD53",3) :-
gene_gene("CD53","PRKCA"),
gene_reachable_from("PRKCA",2),
max_chain_length(3).

789

related_gene("CD53") :-
gene_reachable_from("CD53",3).

According to this explanation, CD53 is an answer to Q4 be-
cause it is reachable from ADRB1 with a chain of length 3:
CD53 is related to PRKCA which is related to DLG4 which
is further related to ADRB1.
Expressing queries and explanations in a natural lan-
guage: We can express queries Q1, Q6–Q9 in the con-
trolled natural language BIOQUERYCNL of (Erdem and
Yeniterzi 2009), as shown above. These queries then are au-
tomatically translated into an ASP program, as described in
(Erdem and Yeniterzi 2009), after matching the predicate
names with the ones appearing in the rule layer. The ASP
programs for queries Q1, Q6–Q9 are obtained in this way.

For these queries, we can also express explanations in
BIOQUERYCNL. For instance, the following is an expla-
nation for why ADRB1 is an answer to the query Q1:

the drug Epinephrine targets the gene ADRB1 accord-
ing to CTD and the gene DLG4 interacts with the gene
ADRB1 according to BIOGRID.

Extending BIOQUERYCNL to other queries is part of our
ongoing work.

6 Discussion
One of the recent related work on efficient query answering
in ASP is (Alviano and Faber. 2010), which describes DLV-
MAGIC as an extension of DLV based on dynamic magic
sets. DLVMAGIC checks whether a given query (as a single
atom) is a cautious/brave consequence of a stratified ASP
programs. The underlying idea is to modify the given pro-
gram by means of additional rules for a more efficient com-
putation of an answer. On the other hand, our system does
not modify the given program but extracts some part of it for
a more efficient computation of an answer. Also our method
applies to queries which contain auxiliary definitions with
unstratified negation, constraints, aggregates, etc..

The most recent work related to explanation generation
in ASP are (Pontelli, Son, and El-Khatib 2009) and (Brain
and Vos 2005), in the context of debugging normal ASP pro-
grams. (Brain and Vos 2005) studies the question “why is an
atom x in an answer set X for an ASP program Π.” As an
answer to this question, the authors find the rule in Π that
supports x with respect to X; whereas we compute a short-
est explanation (a sequence of rules) to answer this question.

(Pontelli, Son, and El-Khatib 2009) studies also the same
question, and, as an answer, finds a “justification”, which
is a labeled graph that provides an explanation for the truth
values of atoms with respect to an answer set. There is a
provable correspondence between a justification and an ex-
planation as we defined above:
Proposition 3. Let Π be a normal ASP program, X be
an answer set for Π, and x be an atom in X . An of-
fline justification of x with respect to X and some U ∈
Assumptions(Π, X) can be translated into an explanation
for x with respect to Π and X . An explanation for an atom
x with respect to Π and X can be transformed into a sub-
graph of an offline justification of x with respect to X and
some U ∈ Assumptions(Π, X).

The reason for not being able to transform an explanation
into a complete justification is the lack of information about
why an atom is not in the given answer set. Although there
is such a correspondence between a justification and an ex-
planation, (Pontelli, Son, and El-Khatib 2009) finds an ex-
planation whereas we find a shortest explanation.

Also related to our work are (Syrjanen 2006) that studies
why a program does not have an answer set, and (Gebser et
al. 2008) that studies why a set of atoms is not an answer set.
Extending our work to such questions as part of generating
explanations for biomedical queries is under consideration.

Acknowledgments This work has been supported by
TUBITAK Grant 108E229.

References
Alviano, M., and Faber., W. 2010. Dynamic magic sets for
super-consistent answer set programs. In Proc. of ASPOCP.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Brain, M., and Vos, M. D. 2005. Debugging logic programs
under the answer set semantics. In Proc. of ASP’05.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Comput. Surv. 33(3):374–425.
Eiter, T.; Erdem, E.; Erdogan, H.; and Fink, M. 2009. Find-
ing similar or diverse solutions in answer set programming.
In Proc. of ICLP, 342–356.
Erdem, E., and Yeniterzi, R. 2009. Transforming controlled
natural language biomedical queries into answer set pro-
grams. In Proc. of the Workshop on BioNLP, 117–124.
Ferraris, P., and Lifschitz, V. 2005. Weight constraints as
nested expressions. TPLP 5:45–74.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. clasp: A Conflict-Driven Answer Set Solver. In Proc.
of LPNMR, 260–265.
Gebser, M.; Phrer, J.; Schaub, T.; and Tompits, H. 2008.
A meta-programming technique for debugging answer-set
programs. In Proc. of AAAI’08.
Gebser, M.; Schaub, T.; and Thiele, S. 2007. Gringo : A new
grounder for answer set programming. In Proc. of LPNMR,
266–271.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9:365–385.
Lifschitz, V. 2008. What is answer set programming? In
Proc. of AAAI.
Pontelli, E.; Son, T. C.; and El-Khatib, O. 2009. Justifica-
tions for logic programs under answer set semantics. Theory
and Practice of Logic Programming 1–56.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extend-
ing and implementing the stable model semantics. Artificial
Intelligence 138:181–234.
Syrjanen, T. 2006. Debugging inconsistent answer set pro-
grams. In Proc. of NMR’06.

790

