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Abstract

This paper develops and tests formulas for representing play-
ing strength at chess by the quality of moves played, rather
than by the results of games. Intrinsic quality is estimated via
evaluations given by computer chess programs run to high
depth, ideally so that their playing strength is sufficiently far
ahead of the best human players as to be a ‘relatively om-
niscient’ guide. Several formulas, each having intrinsic skill
parameters s for sensitivity and c for consistency, are argued
theoretically and tested by regression on large sets of tourna-
ment games played by humans of varying strength as mea-
sured by the internationally standard Elo rating system. This
establishes a correspondence between Elo rating and the pa-
rameters. A smooth correspondence is shown between statis-
tical results and the century points on the Elo scale, and rat-
ings are shown to have stayed quite constant over time. That
is, there has been little or no ‘rating inflation’. The theory
and empirical results are transferable to other rational-choice
settings in which the alternatives have well-defined utilities,
but in which complexity and bounded information constrain
the perception of the utility values.

Keywords. Computer games, chess, sequential decision
making, probabilistic inference, machine learning, data min-
ing, statistics.

1 Introduction
Player strength ratings in chess, and other games includ-
ing Go, Scrabble R©, and Backgammon, are based on the re-
sults of games, and are subject to both luck when opponents
blunder and to drift in the player pool. This paper aims to
rate players intrinsically by the quality of their decisions, as
benchmarked by computer programs run to sufficient depth.
Our work brings new evidence on controversial questions of
import to the chess community, with ramifications for skill
assessment in other games:

1. Has there been ‘inflation’—or deflation—in the chess Elo
rating system over the past forty years?
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2. Were the top players of earlier times as strong as the top
players of today?

3. Does a faster time control markedly reduce the quality of
play?

4. Can recorded games from tournaments where high results
by a player are suspected as fraudulent reveal the extent
to which luck or collusion played a role?

A previous study (Guid and Bratko 2006) evaluated only
the chess world champions, used a relatively low depth (12
ply) of the now sub-elite program CRAFTY (Hyatt 2011),
and most importantly for our purposes, evaluated only the
played move and Crafty’s preferred move, if different. The
departure point for our work is that to assess chess skill more
accurately, we use the more-informed context provided by
the evaluations of all possible moves. At a game turn with
L-many legal moves, we can list them m0,m1, . . . ,mL−1 in
order of their evaluations e(m0), e(m1), . . . , e(mL−1), and
use these as a measure of the moves’ utilities. Engines are
often set to give the evaluations always from White’s point
of view, but we define e(mi) in terms of the player to move,
in the standard units of a hundredth of a pawn. Thus the
evaluations are listed in non-increasing order.

The main statistical principle is that when the move m0

is given a clear standout evaluation, it is more likely to be
selected by a human player than when it is given slight pref-
erence over several alternatives. For instance, if e(m0) ≈
e(m4) � e(m5), then each of the five best moves should
have somewhere near 20% probability.

Basically all chess programs proceed by iterative deepen-
ing, which means that move evaluations are computed for
successive base-search depths d = 1, 2, 3, . . ., and the val-
ues at depth d − 1 are used to structure the search at depth
d. Our theory is formally indifferent about whether the eval-
uations come from a single program or are averaged over a
jury of programs. The work reported here used the commer-
cial chess program RYBKA 3 (Rajlich and Kaufman 2007),
which was rated the strongest program on the CCRL rating
list (Banks and others 2010) between its release in August
2007 and the release of RYBKA 4 in May 2010. RYBKA 3
was run in a mode that evaluates up to 50 moves fully, ex-
cept for pruning the search for moves evaluated over 4 pawns
worse than the optimal move, until it reported the end of the
depth-13 iteration. In the vast majority of positions there
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were fewer than 50 un-pruned moves, so capping L at 50 did
not affect the context information. A complication of using
different chess programs is that the same search depth can
represent widely different playing strengths between pro-
grams, since one may invest more time in advanced search
heuristics and/or (pseudo-)random ‘Monte Carlo’ simula-
tions of play starting with a given move, and hence take
longer to complete the iteration at each depth. There have
also been hearsay allegations that RYBKA versions under-
state the actual depth.

The only game-specific information used by our methods
is the sequence of values e(mi) and the identity of the move
m∗ that was actually played. This minimal information is
common to other games, and can come from any decision-
making scenario in which authoritative evaluations of op-
tions are available, beyond what is comprehended by agents
who are subject to bounded rationality. The general problem
is to what extent the probabilities of selection of the various
options are correlated with these actual (hindsight) utility
values.

2 Background and Previous Literature
The Elo rating system (Elo 1978) computes an expected
score E based on the differences rP −rO between the rating
of a player P and the ratings of various opponents O, and
updates rP according to the difference between the actual
score and E. Since only rating differences matter there is no
absolute meaning to the numbers produced, but considerable
effort has been expended by the World Chess Federation
(FIDE) and national federations to keep the ratings stable
over time. The term ‘master’ generally designates a player
rated 2200 or above, while grandmasters typically have rat-
ings above 2500, and world champions since Bobby Fischer
in 1972 have held ratings around 2800. This paper samples
games between players rated within 10 points of a given Elo
century mark.

By fitting to itemized skill levels, our paper continues
work on reference fallible agents in the game context (Reib-
man and Ballard 1983; Haworth 2003; Haworth and An-
drist 2004; Andrist and Haworth 2005). The aim is cre-
ate stochastic agents whose overall behavior imitates that
of actual players. The present work establishes that such
a reference-fallible model is well supported by data taken
on a far larger scale than previous studies. This paper uses
a richer model than (DiFatta, Haworth, and Regan 2009;
Haworth, Regan, and DiFatta 2010) which are based on
Bayesian inference.

We have already mentioned the Guid-Bratko study.
Their ‘Average Difference’ (AD) statistic is the average of
e(m0)− e(m∗), subject to some adjustments for ‘complex-
ity’ that we did not employ. We ran not only their selection
of world-championship games but also more than 150,000
high-level games representing most of the history of chess,
using RYBKA 3 to depth 13 in Single-PV mode, which is the
program’s normal playing mode. Owing to search-pruning
and the program’s manner of reporting results, this mode
guarantees full evaluation only for the preferred move m0.
Thus when the played move m∗ was different, e(m∗) was
estimated by using the evaluation e(m′

0) of the position that

resulted from m∗ being played. These runs were used in the
work reported here only to determine a scaling adjustment
described in Section 3.1 below.

3 Basic Model
Our key abstract concept is a model fallible agent A, which
is intended to represent a player P of a given skill level. The
agents are stochastic, so the main question is, what is the
probability pi of A choosing move mi at a given game turn
t? We wish to generate values of pi, based on the values of
fitted parameters that define A, that are realistic for the play-
ers P that A is modeling. Once the parameters are given, pi
should be a function of the evaluations e(mj) of the avail-
able moves at turn t. Before introducing our parameters, we
note three principles about the definition of the agents A.

(a) The choices made by A at different game turns are inde-
pendent, even for successive game turns.

(b) The context of alternative move choices is used only to
define probability proxies yi for the moves mi. The prox-
ies depend on any agent parameters, here called s and c
and defined below, but the manner of converting them into
the projected probabilities pi does not. The latter conver-
sion is the same for all agents, modeling players of all
skill levels.

(c) For all agents A, the proxies are given by selecting a curve
gA from a family of like curves according to the param-
eters for that agent, and computing yi = gA(δi). Here
δi is computed from the difference e(m0) − e(mi) but
weighted as described below, while gA is a continuous,
decreasing function of δi, with gA(0) = 1.

Principle (a) is needed in order to regard pi as a function of
information for the given turn t alone. It enables us to mul-
tiply probabilities from different turns, and add probabilities
to project (for instance) the total number of matches to a
computer’s first choices over a sequence of moves. It stands
in contradistinction to the reality that an actual player’s con-
secutive moves are often part of an overall plan.

Principle (b) allows the presence and values of alternative
moves to affect the probability pi of a given move mi. The
difference from saying that pi itself depends on e(mi) and
e(m0) alone, which would ignore the context information of
alternative move choices, is that the proxies undergo a sep-
arate conversion. This need not be the simple normalization
pi = yi/Y where Y =

∑
j yj .

In general we consider functions r(·) that determine the
following kind of relation between the proxies and the prob-
abilities:

yi =
r(pi)

r(p0)
.

Choosing r to be the identity function leads to the simple
normalization above. We found, however, that better results
are obtained by using r(p) = 1/ ln(1/p) instead. Then the
conversion from the proxies into the projected probabilities
is obtained by solving the equations

pi = p
1/y

i
0 ;

∑

i

pi = 1.
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Principle (c) mandates that inferior moves have smaller
proxies, for all agents. It also implies that a revision down-
ward in the authoritative value of a move causes the model
to generate a smaller proxy for it, which yields a smaller
probability for it, for all agents and regardless of the values
of other moves.

3.1 Evaluation Scaling
When one side is far ahead, one might expect that player
to care less about small differences in value, and the player
who is behind to take risks that a machine sees how to an-
swer at high depth but a human may not. We thought this
effect might materialize when the advantage was more than
a pawn, but in fact we observed a uniform scaling effect
all the way down to zero advantage. From the supplemen-
tary Single-PV data on over 150,000 chess games mentioned
above, we compiled histograms by plotting the recorded
‘raw’ AD statistic against e(m0) in intervals of 0.05 or 0.10,
excluding the origin. It was also found that the raw AD for
moves where the computer judges the player to be at a dis-
advantage −e is significantly higher than for an advantage
of +e.

These observations suggested that to model this large-
scale human behavior, the agents’ δi should not always be
e(m0)− e(mi), but rather the integral from e(m0) to e(mi)
of some function defining a non-unit differential. The sim-
ple differential dμ = 1

1+xdx, with integral ln(1 + x), was
found to level the AD histogram very well, in aggregations
of all kinds of chess events: round-robin tournaments of
every level and historical era, championship matches, open
Swiss events, rapid, and blitz. Note that in case of a move
judged inferior by b pawns, the integral for the player at a
disadvantage goes from−e to−e− b, away from the origin,
while for the player starting ahead +e the integral goes from
e to e−b, toward the origin. The former will be scaled down
more, thus tending to equalize the resulting scaled AD (ad)
for the −e and +e points of the modified histogram.

The steepness of this scaling also reduced the difference
between, say, a 2-pawn blunder and a 5-pawn blunder. This
is desirable because both blunders may be equally fatal,
hence nearly equally unlikely for a strong player. Moreover,
RYBKA 3 was the first program to offer a ‘Multi-PV cap’
feature whereby it prunes the search when a move is found
to be more-than-the-cap worse than the top move. Setting
this at 4.00 pawns saved huge amounts of time computing
bad moves, and also skirted a known issue with all RYBKA
versions when the evaluation exceeds ±5.09 pawns.

Finally, it was observed that in cases of equal-top moves,
the first-listed move was played significantly more often, to
similar degree across all training sets. To compensate for
this phenomenon (see Section 8 for speculation on cause), a
correction of -0.03 on later tied moves was determined and
applied in-tandem with the scaling.

We did not try to optimize the scaling, for instance by
finding c such that dμ′ = 1

c+xdx achieved a better mea-
sure of ‘level’ across some suite of data sets. Optically all
c outside [0.8, 1.2] produced inferior results. Rather than
compose the integral ln(1 + x) into the curves gA defining

the agents, we regarded the scale correction as a natural fea-
ture of the data and the model, common to all agents mod-
eling human players. We speculate that other games will be
found to obey a similar scaling law, perhaps implying that
human perception of value differences is figuratively judged
on log-log paper in proportion to the overall advantage or
disadvantage.

4 Parameterizing the Fallible Agents
We regard the following two parameters s, c as core features
of agent behavior, with common meanings across the agent
space, and across alternate curve choices described below.
We introduce them via the inverse-exponential curve used
for the results in this paper:

yi = e−(δi/s)
c

. (1)

The s parameter represents a conversion from the
hundredths-of-a-pawn units of δi into the dimensionless
quantity δi/s used in all of our curves. The smaller s, the
greater the ratio δi/s, thus lowering the proxy and hence
the projected probability of the i-th move. Thus s governs
an agent’s ability to discriminate among moderately inferior
move choices, so we call it the sensitivity.

The parameter c appears as an exponent of δ/s, directly
or with some intervening terms. Intuitively it governs how
often a player avoids moves in the range the player discrim-
inates as inferior, and avoids poor moves overall. Hence we
regard it as a notion of consistency.

Although it is a digression from the results to mention
other curve families, the following alternatives, all normal-
ized to make g(0) = 1, illustrate the parameters in similar
roles:

• Inverse-polynomial curves:

ipa(δ) =
1

1 + (δ/s)c
, or

ipb(δ) =
1

(1 + δ/s)c
.

• Logistic function-related curves:

secha(δ) =
2

(e(δ/s)c + e−(δ/s)c)
or

sechb(δ) =
4

(e(δ/s)c + 2 + e−(δ/s)c)
.

All of these curves were found to give similar results,
largely owing to the way they approximate each other near
the origin. As stated above, we standardized our present
work on the inverse-exponential family.

5 Data Methodology and Experiments
The main data set comprised games in which both players
were within 10 Elo rating points of one of the ‘milepost’
values: 2700, 2600, 2500, . . . , run under standard time con-
trols in individual-player round-robin or small-Swiss tour-
naments. Team events and large-Swiss (meaning more than
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six times as many players as rounds) tournaments were ex-
cluded. Games were taken from three time periods: 2006–
2009, 1991–1994, and 1976–1979. These games were eval-
uated to depth 13 ply in 50-PV mode, using single core
threads for each program instance on a 64-bit quad-core PC.
Turns 1–8 of every game were skipped, as were turns that
were identified as part of a repetition, and positions with
greater than three pawns’ advantage.

Each such ‘milepost data set’ had at least 5,000 turns,
while the largest set had just over 25,000 turns, so the
relative sizes were reasonably consistent. Each set com-
prised all available games meeting the description, from
two major commercial game collections (ChessBase 2009;
Horvath and others 2010), so as to avoid any bias in game
selection.

For 1976–1979 it was possible to find reliable and large-
enough game sets only for the 2300 through 2600 mileposts,
while 1991–1994 made it possible to add 2700 and 2200.
Since FIDE has expanded its rating system to players below
2200 in recent years, for 2006–2009 it was possible to find
enough games down to 1600. The ranges around mileposts
were expanded from ±10 to ±15 or ±20 for some of the
lower sets.

Co-designer GM Larry Kaufman opined that RYBKA 3 at
reported depth d = 14 would play at 2750 level, stronger
in the early phases but weaker in the endgame (Kaufman
2008). By general considerations, and consistent with his
estimates for low depth in the same forum thread, this would
place depth 13 in the 2650-to-2700 range. This choice en-
abled the over 6,000 games in the data sets to be analyzed
on available hardware over a reasonable timeframe, at 6-8
hours per processor core per game on average.

6 Fitting Methodology
This section describes how we determined the best agent
A = As,c to model the players in each ‘milepost’ data set.
Recall that the analysis of the position at a given game turn
t furnishes values δti for each move mi (after scaling, and
always with δt0 = 0). For any fixed values s, c defining the
agent, we obtain the proxy values yti = gs,c(δ

t
i). The prox-

ies are then converted into the probabilities pi that agent As,c

chooses move mi. It remains to see how well these proba-
bilities correspond to frequencies of move choice in the data
set.

Given the probabilities pti for each game turn t, we can
also generate aggregate projections for the agreement mm0

between the first-listed moves mt
0 and the moves mt

∗ that
were actually played, and for the average error, by:

mmp =
1

T

∑

t

pt0

adp =
1

T

∑

t

(
∑

i

δtip
t
i).

We can similarly project the frequency Mi = 1
T

∑
t p

t
i of

playing the i-th best move, for all i (so mmp = M0). These
projected quantities depend (only) on the machine evalua-
tions of the moves and the parameters s, c which yield the

pti. It remains to find the s, c for which these quantities
are in best accord with the frequencies mma(i) over t such
that mt

∗ = mt
i, for each i = 0, 1, 2, . . ., and for which adp

agrees with the actual (scaled) average difference, calculated
as ada = 1

T

∑
t(e(m

t
0)− e(mt

∗)). This suggests several fit-
ting ideas:

• Calculate s, c to make mmp = mma(0) and adp = ada, or
if that is not possible, to minimize the (squared) distance
between the respective sides of each equation.

• Calculate s, c to maximize the projected likelihood
∏

t p
t
∗,

which the same as minimizing
∑

t ln(1/p
t
∗).

• The ‘percentiling’ method described next, which we actu-
ally used.

The trouble observed with the first is that the projections
generated for Mi, i > 0, were wide of the mark. The second
failed to yield even remotely accurate projections for mmp

and adp. The third attempts to make the Mi projections for
i ≥ 1 more accurate. First we motivate it.

If all spread tuples were the same Δ = (0, δ1, . . . , δN−1),
or if we had a large-enough set of nearly-equal tuples to
form a histogram, fitting the results to a curve would be rela-
tively simple. Let f1, f2, . . . , fN , fN+1 be the observed fre-
quencies of which indexed move in the spread was played,
with fN+1 standing for “move played not in the top N” and
hopefully negligibly small. Then given a curve gs,c(δ) and
(power-of-)metric μ, such as μ(x, y) = |x − y|2 for least-
squares, we could compute the fit score Ss,c =

μ(f1,
1

S
) + μ(f2,

gs,c(δ2)

S
) + · · ·+ μ(fN ,

gs,c(δN )

S
),

where S = 1 + gs,c(δ2) + · · · + gs,c(δN ). In the case of
equal spreads this yields the same best-fit s, c as maximum-
likelihood estimation.

When the tuples are different, however, we cannot do this.
The idea is to use a fixed grid of percentile points rather
than allow the δi to set the grid. Given a curve gs,c(δ), let
q additionally stand for a percentile. For each point (q, s, c)
in a fine-enough grid, say stepping q by 0.05 from 0 to 1, s
by 0.02 from 0 to 0.70, and c by 0.20 from 1 to 5, we iterate
through each spread tuple Δt = (0, δ2, . . . , δN ). For each
i, 1 ≤ i ≤ N , compute the probabilities pi = gs,c(δi)/St,
where St =

∑
i gs,c(δi). Let it be the index of the played

move. Define p− =
∑it−1

j=1 pj and p+ = p−+pit , giving the
endpoints of the predicted probability interval of the played
move. Then:

• If p+ ≤ q, call the tuple ‘up’.

• If p− ≥ q, call the tuple ‘down’.

• If p− < q < p+, so that the prediction for the played
move straddles the q-th percentile, count the tuple as be-
ing |q − p−|/pit up, and |q − p+|/pit down.

Finally define Rq
s,c to be the percentage of ‘up’ tuples. Given

a μ as above, the score now becomes

Ss,c =
∑

q

μ(Rq
s,c, q).
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A low score indicates a good fit across a range of percentiles
for the curve gs,c(δ).

To interpret this, consider a case with one clearly-best
move given probability p0 = 0.9 that is played. For q =
0.30 the tuple will count as one-third up, two-thirds down. It
may seem counter-intuitive for a result that confirms a pre-
diction to give an overall ‘down’ score, but the prediction
that is actually tested by our method is not the individual
move but the overall frequency of hits above/below a given
percentile. Nor is it necessary to estimate the proportion of
the cumulative distribution of gs,c(δ) to the left and right of
0.30 in the spanned range—the straight one-third/two-thirds
division is correct. In effect we have converted from the ‘δ
scale’ to the percentile scale, with the effect that instead of
plotting data points for a horizontal δ-axis and fitting gs,c(δ),
we fit the derived percentile curve(s) instead.

The quality of fit can be judged in several ways. One
is the Ss,c score itself, divided by the number of percentile
points. Another is the average value of μ(Mi,mma(i)) over
all move-indices i. The latter speaks the purpose of the
percentiling method for fitting the frequencies of playing
the ith-best move for all i, in a way that involves no ex-
plicit correction for skedasticity. Since the μ used here is
squared-distance and we compare percentages, we multi-
plied by 10, 000 to create the ‘Qfit ’ entries in the tables be-
low.

7 Results
A statistical analyzing program written in C++ carried out
the two-dimensional minimization needed to implement the
above fitting method. It was found that while s varied
from 0.07 to 0.16 and beyond, the c value stayed between
0.430 and 0.545. Accordingly we computed a linear in-
terpolation of the c values for 2006–2009, getting intervals
coincidentally highly close to 0.007, yielding the cfit col-
umn. With these fixed, one-dimensional fitting of the s-
values then gave the final sfit values. The sfit and cfit val-
ues defined the agents, for which projected move-match and
average-difference statistics (mmp and adp) are shown com-
pared with the actuals (mma and ada), which together with
the above Qfit measure are shown in the following tables.

2006–2009

Elo s c cfit sfit mmp/mma adp/ada Qfit

2700 .078 .503 .513 .080 56.2/56.3 .056/.056 .009
2600 .092 .523 .506 .089 55.0/54.2 .063/.064 .041
2500 .092 .491 .499 .093 53.7/53.1 .067/.071 .028
2400 .098 .483 .492 .100 52.3/51.8 .072/.074 .016
2300 .108 .475 .485 .111 51.1/50.3 .084/.088 .044
2200 .123 .490 .478 .120 49.4/48.3 .089/.092 .084
2100 .134 .486 .471 .130 48.2/47.7 .099/.102 .034
2000 .139 .454 .464 .143 46.9/46.1 .110/.115 .065
1900 .159 .474 .457 .153 46.5/45.0 .119/.125 .166
1800 .146 .442 .450 .149 46.4/45.4 .117/.122 .084
1700 .153 .439 .443 .155 45.5/44.5 .123/.131 .065
1600 .165 .431 .436 .168 44.0/42.9 .133/.137 .129

1991–1994

Elo s c cfit sfit mmp/mma adp/ada Qfit

2700 .079 .487 .513 .084 55.2/54.9 .058/.060 .043
2600 .092 .533 .506 .087 55.3/54.6 .064/.063 .042
2500 .098 .500 .499 .092 54.3/53.8 .068/.069 .013
2400 .101 .484 .492 .103 52.3/51.9 .077/.079 .016
2300 .116 .480 .485 .117 51.0/50.3 .088/.091 .031
2200 .122 .477 .478 .122 49.7/48.7 .092/.098 .058

1976–1979

2600 .094 .543 .506 .087 53.8/53.0 .062/.061 .038
2500 .094 .512 .499 .091 53.2/52.5 .067/.068 .032
2400 .099 .479 .492 .103 52.3/51.7 .076/.079 .020
2300 .121 .502 .485 .116 50.9/50.0 .088/.090 .070

We conclude that there is a smooth relationship between
the actual players’ Elo ratings and the intrinsic quality of
the move choices as measured by the chess program and the
agent fitting. Moreover, the final sfit values obtained are
nearly the same for the corresponding entries of all three
time periods. Since a lower s indicates higher skill, we con-
clude that there has been little or no ‘inflation’ in ratings
over time—if anything there has been deflation. This runs
counter to conventional wisdom, but is predicted by pop-
ulation models on which rating systems have been based
(Glickman 1999).

The results also support a no answer to question 2. In the
1970’s there were only two players with ratings over 2700,
namely Bobby Fischer and Anatoly Karpov, and there were
years as late as 1981 when no one had a rating over 2700
(see (Weeks 2000)). In the past decade there have usually
been thirty or more players with such ratings. Thus lack of
inflation implies that those players are better than all but Fis-
cher and Karpov were. Extrapolated backwards, this would
be consistent with the findings of (Dangauthier et al. 2007),
which however (like some recent competitions to improve
on the Elo system) are based only on the results of games,
not on intrinsic decision-making.

8 Summary and Future Agenda
We have demonstrated that the intrinsic quality of move
choice can be ascertained based on benchmarking measures
rather than the results of games. We have modeled actual
players by a class of stochastic agents employing full in-
formation about alternative move choices, and have demon-
strated a smooth correlation between their parameters ob-
tained by standard regression techniques and the players’
Elo ratings. We have shown that the general belief that
the Elo ratings of strong players suffer from inflation is ill-
founded.

We have essentially fitted only the means of the respective
skill levels. The next task is to obtain projected variances
and confidence intervals, and test their correspondence to
the training data. This will yield a model of move choice that
is capable of testing allegations of collusion during games,
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thus answering question 4. Testing the curve of skill as a
function of time alotted per game, for question 3, will re-
quire larger amounts of data.

Another use for our model will be a better simulation
of human players of specified skill levels, especially being
faithful to their observed tendency to make occasional poor
moves. Among other things, this may yield more-realistic
settings for human-computer play and practical tournament
training. Insofar as our methods involve almost no informa-
tion specific to chess, they should be transferable to other
domains.

To add to the above about the preliminary nature of this
work, the first author believes that an important improve-
ment will be to involve the evaluations ed(mi) of moves
at depths d lower than the reference depth. The extended
model computes probability proxies as linear combinations
with non-negative weights wd over the depths, namely:

yi =
∑

d

wd · gs,c(δi,d).

All other formalism is the same—hence this paper can be
viewed as the special case w13 = 1, all other weights zero.
The weights wd are also agent properties; we would expect
stronger players to have higher weights for higher d. Of
course the weights would proliferate the number of parame-
ters needing to be fitted.

One effect of using this extended model would be that
moves mi whose strength becomes apparent only at higher
depths would have lower yi values than the present paper
computes, especially for agents modeling weaker players.
Moves whose evaluations fall would have higher proxies,
and avoiding them would be another measure of skill. These
effects might cancel in large enough test sets. We also specu-
late that the equal-top move effect in Section 3.1 may owe to
the first move having had higher value at the lowest depths
d, which the wd might correct for naturally, but we have
been hindered in investigating this by issues with the report-
ing of the bottom depths in RYBKA 3. Only recently have
open-source engines of comparable strength emerged. Us-
ing other programs, going to higher d, and improving the
mining of our many gigabytes of data are slated for future
work.

Further methodological details, including the incidence
of gamescore errors in the test-data sets and the policy
on fixing them, and difficulties in the identification of
repetitions (amending ‘0.00’ values given by chess pro-
grams that are premature according to the rules of chess),
will be found in links from the first-author’s website,
www.cse.buffalo.edu/∼regan/chess/, along with
the data and C++ and Perl code used here.
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