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Abstract

Utility elicitation is an important component of many
applications, such as decision support systems and rec-
ommender systems. Such systems query users about
their preferences and offer recommendations based on
the system’s belief about the user’s utility function. We
analyze the connection between the problem of gener-
ating optimal recommendation sets and the problem of
generating optimal choice queries, in the context of both
Bayesian and regret-based elicitation. Our results show
that, somewhat surprisingly, under very general circum-
stances, the optimal recommendation set coincides with
the optimal query.1

Adaptive Utility Elicitation

Preference elicitation is a challenging task for a number of
reasons. First of all, full elicitation of user preferences is
prohibitively expensive in most cases (w.r.t. time, cognitive
effort, etc.) and we must often rely on partial information.
Second, many decision problems have large outcome or de-
cision spaces; techniques for elicitation and recommenda-
tion must therefore be scalable. Third, it should be easy for
users to provide information about their preferences, possi-
bly accounting for noisy responses.

Adaptive utility elicitation (Braziunas and Boutilier 2008)
tackles these challenges by representing the system knowl-
edge about the user in form of beliefs, that are updated
following user responses. Elicitation queries can be chosen
adaptively given the current belief. In this way, one can often
make good (or even optimal) recommendations with sparse
knowledge of the user’s utility function.

There are two main frameworks for representing util-
ity uncertainty. In one approach (Boutilier et al. 2006)
the system maintains an explicit representation of a set of
feasible utility functions, usually represented compactly by
constraints; recommendations are generated using the min-
imax regret criterion. Alternatively, a pure Bayesian ap-
proach (Chajewska et al. 2000; Boutilier 2002) places a
probabilistic prior over the possible utility functions (typi-
cally in the form of a density over utility function parame-
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1We summarize the key contributions of two earlier papers (Vi-
appiani and Boutilier 2009; 2010), providing a unified view.

ters), and updates the distribution based on observations; the
option with greatest expected utility is recommended.

Given the current belief about the user’s utility function, it
is important to select good queries so that recommendations
can quickly improve. In the case of Bayesian preference
elicitation, a natural criterion for queries is expected value
of information (EVOI); it is, however, extremely expensive
computationally and, because of this, most approaches se-
lect queries using heuristics with no theoretical guarantees.
For regret-based elicitation, we introduce a non-probabilistic
analogue of EVOI. Such informative criteria can often gen-
erate better queries than strategies that aim at reducing un-
certainty per se, such as entropy-based methods.

In both frameworks, we show how (myopically) optimal
or near-optimal queries can be generated by exploiting the
connection with the problem of generating an optimal rec-
ommendation set.

An Exploration/Exploitation Tradeoff?

In general, there is a tension between making good rec-
ommendations for the user and eliciting “useful” informa-
tion from the user. Intuitively, in order to make a good rec-
ommendation the system should exploit its current knowl-
edge of the utility function. On the other hand, when ask-
ing queries, the system aims to acquire more information, so
better recommendations can be made in the future.

Since utility is uncertain, there is often value in recom-
mending a set of options from which the user can choose
her most preferred. Picking a “diverse” set of recommended
options increases the odds of recommending at least one
item with high utility. Intuitively, such a set of “shortlisted”
recommendations should include options that are diverse
in the following sense: recommended options should be
highly preferred relative to a wide range of “likely” user
utility functions (relative to the current belief) (Price and
Messinger 2005; Boutilier, Zemel, and Marlin 2003). This
stands in contrast to some recommender systems that define
diversity relative to product attributes (Reilly et al. 2005),
with no direct reference to beliefs about user utility. It is not
hard to see that “top k” systems, those that present the k op-
tions with highest expected utility, do not generally result in
good recommendation sets (Price and Messinger 2005).

Resolving this tension is also important because in online
recommendation systems, options can be shown with dual
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goal of recommendation and elicitation. This is common,
for instance, in conversational recommender systems such
as Critique Shop (Reilly et al. 2007), where several products
are displayed, and user selections are not only used to up-
date the preference model, but might also lead to purchase
decisions. Since a user can end the interaction at any time, it
is important that the system always shows products that are
likely to be highly preferred.

Among the many possible types of queries, we focus
on choice queries. Such queries are commonly used in con-
joint analysis and product design (Louviere et al. 2000), re-
quiring a user to indicate which choice/product is most pre-
ferred from a set of k options. Hence, we can view any
set of products as either a recommendation set or query (or
choice) set. Given a set, one can ask: what is the value of
the set viewed as recommendation set; or what is its value
as a query? We consider the connection between these two
criteria in both the Bayesian and the regret-base elicitation
frameworks. In both cases we show that, quite surprisingly,
under very general assumptions, the optimal recommenda-
tion set is also an optimal query set.

Formal Model

The system is charged with the task of recommending an op-
tion to a user in some multiattribute space, for instance, the
space of possible product configurations. Options or prod-
ucts are characterized by a finite set of attributes X =
{X1, ...Xn}, each with finite domain Dom(Xi). For in-
stance, attributes may correspond to the features of vari-
ous cars, such as color, engine size, fuel economy, etc.;
X ⊆ Dom(X ) is the set of feasible configurations, defined
by constraints on attribute combinations. The user has a util-
ity function u : Dom(X )→ R. The precise form of u is not
critical, but we assume that u(x;w) is parametric in w ∈W .
We often refer to w as the user’s “utility function” for sim-
plicity, assuming a fixed form for u.

Given a choice set S with x ∈ S, let S�x denote that x
has the greatest utility among the items in S (for a given util-
ity function w). Note that the regions W ∩ S � xi, xi ∈ S,
partition utility space (ignoring “ties” which are easily dealt
with, but complicate presentation). If we assume that the
user correctly identifies the preferred item when presented
with a choice query (noisy responses are discussed below),
the choice of xi ∈ S refines the set of feasible utility
functions W by imposing k − 1 constraints of the form
u(xi;w) ≥ u(xj ;w), j �= i. We use S � xi to denote
the event of the user selecting xi among the items in S.

The mathematical analysis now diverges depending on
whether one assumes a Bayesian (using a density over pos-
sible utility parameters) or a non-Bayesian approach based
on strict uncertainty. We provide decision and elicitation cri-
teria for both cases (summarized in the following table).

Bayesian Regret-based

Value of a
Single Recommendation Expected Utility Minimax Regret

Value of a Expected Utility
Recommendation set of a Selection (EUS) Minimax Setwise Regret

Value of a Query Expected posterior Utility (EPU) Worstcase Regret (WR)

Bayesian Elicitation The system’s uncertainty about the
user preferences is reflected in a distribution, P (w; θ) over
the space W of possible utility functions. Here θ denotes the
parameterization of our model, and we often refer to θ as our
belief state. Given P (·; θ), we define the expected utility of
an option x to be EU (x; θ) =

∫
W

u(x;w)P (w; θ)dw. If re-
quired to make a recommendation given belief θ, the optimal
option x∗(θ) is that with greatest expected utility EU ∗(θ) =
maxx∈X EU (x; θ), with x∗(θ) = argmaxx∈X EU (x; θ).
When the user selects an option x in a choice set S, the be-
lief is updated to P (w; θ|S � x).

In broad terms, we assume that the utility of a recommen-
dation set S is the utility of its most preferred item. A proba-
bilistic model can account for “noisy” responses: when pre-
sented with a choice query, the user will, with some prob-
ability, choose something different than her true preferred
item. A response model R dictates, for any choice set S, the
probability PR(S � xi;w) of any selection given utility
function w. Under utility uncertainty, probability of selec-
tion/response is given by PR(S � xi; θ) =

∫
W

PR(S �
xi;w)P (w; θ)dw. We then define the expected utility of se-
lection (EUS) of recommendation set S given θ and R:

EUSR(S; θ) =
∑

x∈S

PR(S � x; θ)EU (x; θ|S � x) (1)

We consider different response models. In the noiseless
response model, PR(S � x;w) = 1 if w ∈ S�xi, 0 other-
wise. The constant noise model instead assumes each option
x, apart from the most true preferred option, is selected with
(small) constant probability, independent of w. Finally in the
logistic response model, commonly used in choice model-
ing, selection probabilities are given by PL(S � x;w) =

exp(γu(x;w))∑
y∈S exp(γu(y;w)) , where γ is a temperature parameter.2

When treating S as a query set (as opposed to a recom-
mendation set), we are not interested in its expected utility,
but rather in its expected value of information (EVOI), or
the (expected) degree to which a response will increase the
quality of the system’s recommendation. Given belief state
θ, the expected posterior utility (EPU ) of query set S under
response model R is

EPUR(S; θ) =
∑

x∈S

PR(S � x; θ)EU ∗(θ|S � x) (2)

EVOI (S; θ) is then EPU (S; θ) − EU ∗(θ), the expected
improvement in decision quality given S. An optimal query
(of fixed size k) is any S with maximal EV OI , or equiva-
lently, maximal EPU .

Regret-based Elicitation The system maintains an ex-
plicit representation of the set W θ of feasible utility func-
tions (as in the previous case, θ represents the belief state)
that are consistent with previous responses to queries (and
possibly prior knowledge); we refer to as strict uncertainty.

2For comparison queries (i.e., |S| = 2), PL is the logistic func-
tion of the difference in utility between the two options. This model
is also variously known as the Luce-Sheppard, Bradley-Terry, or
mixed multinomial logit.
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Unlike the Bayesian case, we do not have probabilistic in-
formation about the relative likelihood of the different w ∈
W θ. When the utility function is linear in its bounded pa-
rameters w, the belief θ is characterized by a set of linear
constraints that define W θ to be a convex polytope. When-
ever the user answers a query, the polytope gets trimmed;
“belief update” in this setting consists of simply adding the
new constraints: W θ|S�xi = W ∩ S�xi.

Minimax regret (Savage 1954; Kouvelis and Yu 1997;
Boutilier et al. 2006) can be used to generate recommen-
dations that minimize the worst-case loss incurred by as-
suming an adversary will choose the user’s utility func-
tion w from W θ to maximize the difference in utility be-
tween the optimal configuration (under w) and the rec-
ommendation. The maximum regret MR(x; θ) of choos-
ing x is MR(x; θ) = max

xa∈X
max
w∈W θ

u(xa;w) − u(x;w); the

minimax-regret optimal recommendation is the item mini-
mizing max-regret: x∗(θ) = argmin

x∈X
MR(x; θ). Minimax

regret MMR(θ) is its value. MR(x; θ) bounds the loss as-
sociated with x, and is zero iff x is optimal for all w ∈ W θ;
any choice that is not minimax optimal has strictly greater
loss than x∗(θ) for some w ∈W θ.

We now generalize minimax regret to recommendation
sets. Define the setwise max regret of a set S:
SMR(S; θ) = max

xa∈X
max
w∈W θ

u(xa;w)−max
x∈S

u(x;w) =

= max
xa∈X

max
w∈W θ

min
x∈S

u(xa;w)− u(x;w)

Intuitively, given a recommendation set, an adversary want-
ing to maximize regret should do so assuming that the user
can select any from a set of k options. Formally, we choose
the set of k options first, but delay the specific choice from
the slate until after the adversary has chosen a utility func-
tion w. The regret of a set is the difference between the util-
ity of the best configuration under w and the utility of the
best option w.r.t. w in the slate.

When treating S as a query set (as opposed to a recom-
mendation set), we are not interested in its max regret, but
rather in how much a query response will reduce minimax
regret. In our distribution-free setting, the most appropri-
ate measure is myopic worst case regret (WR), a measure
of the value of information of a query. Generalizing the pair-
wise measure of (Boutilier et al. 2006), we define the myopic
worst-case regret (WR) of S = {x1, . . . , xk} to be:
WR(S; θ) = max[MMR(θ|S � x1), . . . ,MMR(θ|S � xk)]

An optimal query set S∗ is any S (of fixed size) that min-
imizes worst case regret. Intuitively, each possible response
xi ∈ S gives rise to updated beliefs about the user’s util-
ity function. We use the worst-case response to measure the
quality of the query (i.e., the response that leads to the up-
dated W with greatest remaining minimax regret). The opti-
mal query minimizes this value.

Theoretical Results
We now develop the connection between optimal recom-
mendation sets and optimal choice queries. As our theoreti-
cal results are formally analogous for both uncertainty rep-
resentations (Bayesian and regret-based), we present them

together. With a slight abuse of notation, let θ denote the
system’s current knowledge about user preferences. In the
regret-based model, θ is a set of constraints on utility param-
eters; in the Bayesian model, θ reflects probabilistic beliefs
about the value of utility parameters.

First notice that, as a direct consequence of our defini-
tions, the value of a set as recommendation bounds its value
as a choice query. More formally, EPU (S; θ) ≥ EUS (S; θ)
(for any response model). In the regret-based approach, as
the objective is to be minimized, WR(S; θ) ≤ SMR(S; θ).
We can then introduce a transformation Tθ that modifies a
set S such that its value as recommendation set usually in-
creases. This transformation is used in two ways: (i) to prove
the optimality of optimal recommendation sets when used
as query sets; (ii) and directly as a computationally viable
heuristic strategy for generating query sets.

Definition 1 Let S = {x1, · · · , xk} be a set of options. De-
fine: Tθ(S) = {x∗(θ|S � x1), · · · , x∗(θ|S � xk)}where
x∗(θ|S � xi) is the optimal option when the belief θ is
conditioned on S � xi.

Intuitively, T refines a recommendation set S of size k by
producing k updated beliefs based on each possible user
choice from S, and replacing each option in S with the op-
timal option under the corresponding update (where “opti-
mal” is either in expectation or minimax-regret optimal de-
pending on the model of uncertainty).

We consider noiseless responses first. In this case, T im-
proves the value of set S in the following sense: the value of
the resulting set Tθ(S) as a recommendation is no less than
the value of the original set S as query. Formally:

• In the Bayesian approach, EUS (Tθ(S); θ) ≥ EPU (S; θ)
(Viappiani and Boutilier 2010)

• In the regret-based model, SMR(Tθ(S), θ) ≤ WR(S, θ)
(Viappiani and Boutilier 2009)

The proof is quite technical, but relies on partitioning the
space W based on S � xi and T (S) � xi. From this
observation (which we dub the query iteration lemma) our
main results follow. Consider the optimal recommendation
set (i.e., maximizing EUS in the Bayesian model, or mini-
mizing SMR in the regret-based model). While one might
suppose that a weaker recommendation set could yield bet-
ter value as a query, our results show that this is not possi-
ble: the function T provides an operational mechanism for
producing a set that is optimal as both a recommendation
set and as a choice query. Somewhat surprisingly, there is
no exploration/exploitation tradeoff after all! The decision-
theoretic “diversity” of the optimal recommendation set is
(myopically) maximally informative for elicitation.

Theorem 1 Let S∗ be an optimal recommendation set of
size k. Then S∗ is an optimal choice query. More formally,

• In the Bayesian model, let S∗ = argmaxS EUS (S, θ).
Then EPU(S∗, θ) = maxS EPU (S)

• Let S∗ = argminS SMR(S, θ) in the regret-based model.
Then WR(S∗

W , θ) = minS WR(S; θ)
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Furthermore, the value of the optimal set as a recommen-
dation coincides with its value as query: EPU (S∗, θ) =
EUS (S∗, θ) and WR(S∗; θ) = SMR(S∗; θ).

The fact that the same set of options comprises the opti-
mal recommendations and the (myopically) optimal choice
query means that we can leave termination decisions in
the hands of the user without relying on distinct deci-
sion/querying phases.

Noisy Response Models We have analyzed the impact
of several noisy response models in the Bayesian setting
(regret-based elicitation does not directly account for noise).
For the constant noise model, the query iteration lemma
holds and the optimal recommendation set of size at most k
is also the optimal query set of size at most k.3 For the logis-
tic model, we analyze the loss Δ(S; θ) = EUSNL(S; θ) −
EUSL(S; θ) that arises due to noise. In this model, selec-
tion probabilities are function of the difference of utilities
between items and there is a precise value for which loss
is maximum. Based on this, we show that optimal recom-
mendation sets are near-optimal queries. We also show that
the bound is surprisingly small in practice (Viappiani and
Boutilier 2010).

Algorithms

Our theoretical results also have practical implications.
Optimizing a recommendation set is a simpler problem
with lower complexity than typical methods for comput-
ing EVOI. So even in settings where elicitation is strictly
separated from recommendation, one can optimize w.r.t. the
simpler objective in both cases. Optimization of (Bayesian)
recommendation sets is also submodular, so greedy opti-
mization gives strong worst-case guarantees and can be im-
plemented using lazy evaluation to achieve a significant
speedup (Krause and Guestrin 2007). Moreover, noiseless
optimization is quite effective even when evaluated in a
noisy setting, as guaranteed by our analysis of the logistic
response model.

The T transformation gives rise to a natural heuristic
method for computing good query/recommendation sets.
Query iteration (QI) starts with an initial set S, and locally
optimizes S by repeatedly applying operator T (S) until a
fixed point is reached.4 While the optimal set is a fixed
point, there may be others; thus, QI is sensitive to the ini-
tial set S. We consider several initialization strategies. In the
regret-based approach, the current solution, consisting of the
MMR-optimal x∗ and the adversarial choice xa, can be used
to initialize QI; and the approach can be generalized to sets
of any size k (Viappiani and Boutilier 2009).

3This weaker form of the Theorem is due to the fact that T might
produce a set of smaller cardinality (this is not a concern in the
noiseless model, as EUS is monotone). We thank the anonymous
reviewer for this observation. If one allows multisets (the same op-
tion can be shown more than once) then Theorem 1 holds.

4In the Bayesian model, such fixed point corresponds
to the condition EUS(T (S); θ)=EUS(S; θ); the condition is
SMR(T (S); θ)=SMR(S; θ) in the regret-based approach.

Experimental results (Viappiani and Boutilier 2009;
2010) involving decision problems with hundreds of op-
tions show that our strategies are very effective in gener-
ating queries that quickly reduce the actual regret or loss.
In most simulations, the optimal product is discovered with
just a few queries. QI is extremely fast, computing optimal
sets in a fraction of a second, and is particularly well-suited
to large datasets (see the following table for an experiment
with Bayesian elicitation).

Computation Time exact EPU exact EUS greedy EUS Query Iteration
with lazy eval

Dataset 1 Size=187 1815s 405s 1.02s 0.15s
Datase 2 Size=506 2 weeks 2 days 0.93s 0.05s

Future Directions
We are interested in elicitation strategies that combine prob-
abilistic and regret-based models. Other interesting direc-
tions are: further theoretical and practical investigation of
local search strategies such as query iteration, the develop-
ment of strategies for elicitation in large-scale configuration
problems, and automatically learning user response models.
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