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Abstract

The automated processing of multiple seismic signals to de-
tect and localize seismic events is a central tool in both geo-
physics and nuclear treaty verification. This paper reports
on a project, begun in 2009, to reformulate this problem in
a Bayesian framework. A Bayesian seismic monitoring sys-
tem, NET-VISA, has been built comprising a spatial event
prior and generative models of event transmission and detec-
tion, as well as an inference algorithm. Applied in the con-
text of the International Monitoring System (IMS), a global
sensor network developed for the Comprehensive Nuclear-
Test-Ban Treaty (CTBT), NET-VISA achieves a reduction of
around 60% in the number of missed events compared to the
currently deployed system. It also finds events that are missed
even by the human analysts who post-process the IMS output.

1 Introduction to the Problem
Seismic events are large disturbances in the earth’s crust,
caused primarily by earthquakes and explosions (nuclear
or conventional). They generate seismic waves that travel
through the earth and generate measurable signals at detec-
tor stations. The basic problem is this: given continuous
signal traces from multiple stations, determine what events
have occurred and their onset times, latitudes, longitudes,
depths, magnitudes, and types (natural or man-made).

What might seem at first sight to be a simple triangulation
problem is actually extraordinarily complex and far from be-
ing solved. There are several sources of difficulty:
• Seismic waves occur in several types and follow a variety

of qualitatively distinct paths through the earth; seismol-
ogists recognize over 100 different type/path combina-
tions, called phases (Storchak, Schweitzer, and Bormann
2003). Velocities vary with wave type, depth, and geolog-
ical properties of the medium, and the travel time between
any two points on the earth and the attenuation of various
frequencies and wave types are not known accurately.

• Each detector is subject to local noise that may mask true
signals and cause false detections; in wide-area monitor-
ing systems, up to 90% of all detections are false.

• Phases from a given event may arrive at a distant station
between fifteen minutes and several hours after the event,
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while dozens or hundreds of events may occur each day,
generating thousands of overlapping sets of detections.
The combinatorial problem of proposing and comparing
possible events (subsets of detections) is daunting.

The mathematics of seismic event detection and localization
has been studied for almost 100 years (Geiger 1912). Most
systems operate in two-stage pipeline: station processing is
responsible for detection of arriving signals that exceed am-
bient noise levels by a given threshold, while network pro-
cessing groups detections together to form event hypotheses.
(Thus, it resembles the data association problem in multitar-
get tracking (Bar-Shalom and Fortmann 1988).) Station pro-
cessing attaches attributes to each detection: onset time, az-
imuth (direction from the station to the wave source), slow-
ness (related to the angle of declination of the signal path),
amplitude, phase label, etc., all of which may be erroneous.
The time and location of each event are typically found by
heuristic methods such as grid search (Shearer 1997), soft-
constraint solving (Waldhauser and Ellsworth 2000), and
wavefront intersection (Pujol 2004), combined with ad hoc
scoring functions to resolve ambiguity.

Our work is aimed in particular at seismic monitoring
for nuclear explosions using the UN’s International Moni-
toring System (IMS) for the Comprehensive Nuclear-Test-
Ban Treaty (CTBT). The IMS is the world’s primary global-
scale, continuous, real-time system for seismic event moni-
toring. Data from 120 IMS stations are transmitted via satel-
lite in real time to the International Data Center (IDC) in Vi-
enna, where event-bulletins are issued at predefined latency.
Perfect performance remains well beyond the reach of cur-
rent technology: the final (SEL3) bulletin from IDC’s au-
tomated system, a highly complex and well-tuned piece of
software, misses nearly one third of all seismic events in the
magnitude range of interest, and about half of the reported
events are spurious. A large team of expert analysts post-
processes the automatic bulletins to improve their accuracy
to acceptable levels.

2 Bayesian Framework and Model
The pervasive presence of model uncertainty, noise, and
combinatorial complexity suggest that a Bayesian frame-
work might be effective in extracting maximally accurate
hypotheses from the data. Whereas pipelined approaches
using local decisions and hard thresholds are ubiquitous in
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large sensing systems of all kinds, we believe that a verti-
cally integrated probability model connecting raw data to
high-level hypotheses can be far more effective, since it en-
ables all available information to be brought to bear on the
interpretation of each locally ambiguous datum. Our work
to date (Arora et al. 2010; Russell, Vaidya, and Le Bras
2010) demonstrates the effectiveness of even a partial re-
alization of this approach. Our initial system, NET-VISA,
handles the network processing stage, 1 relying on the IDC’s
pre-existing signal detection algorithms. The second phase,
SIG-VISA, will incorporate a signal waveform model and
thereby subsume the detection function.

In simple terms, let X be a random variable ranging over
all possible sets of events, and let Y range over all possi-
ble sets of detections at all detection stations. Then Pθ(X)
describes a parameterized generative prior over events and
their properties, and Pφ(Y | X) describes how the sig-
nal is propagated and measured (including travel time, at-
tenuation, noise, artifacts, sensor error, etc.). Given ob-
served recordings Y = y, we are interested in the posterior
P (X | Y = y) or the MAP argmaxx P (X =x| Y = y). We
also learn the model parameters θ and φ from historical data.
Below, we describe the model components in enough de-
tail to illustrate their close relationship to the way in which
a seismologist understands the physical processes involved.
For readers familiar with Bayesian networks, we should note
that although the model is a composition of prior and con-
ditional distributions, it is not a Bayesian network as classi-
cally defined because the number of events, and hence the
number of random variables in the model, is unknown; it is,
however, expressible as a BLOG model (Milch et al. 2005).

2.1 Events

Geophysically speaking, each point on the earth is con-
sidered to generate seismic events according to a time-
homogeneous Poisson process whose rate parameter varies
with location and depth. Mathematically, this is equivalent
to a single Poisson process with rate λe, generating events
whose locations and depths are sampled from a spatial den-
sity proportional to the seismic event rate at that point. The
magnitude of each event is drawn from an exponential dis-
tribution with decay parameter λm (known in seismology as
the Gutenberg–Richter distribution). Maximum likelihood
estimates of λe and λm may be determined from historical
event frequencies and magnitudes. To approximate the spa-
tial density of natural events, we use a kernel density model
with an exponentially decaying kernel; the decay parame-
ter was estimated by cross-validation (see Figure 1). To this
density model we added a uniform distribution, with prior
probability 0.001, to allow for explosions at an arbitrary lo-
cation.

1NET-VISA computes a single max a-posteriori (MAP) bul-
letin — a set of hypothesized events with their associated detec-
tions; this input-output specification, while not fully Bayesian in
spirit, is compatible with and enables direct comparison to the cur-
rent automated system bulletin, SEL3.

Figure 1: Heat map (large values in red, small in blue) of the
prior event location density.

2.2 Correct Detections
An event can generate up to J distinct phases (we consider
just the 14 most commonly detected phases). For each phase
and each station, we model the probability of detection as a
function of the event’s magnitude, depth, and the travel time
to the station. Specifically, we use a logistic regression with
some predefined features and a hierarchical combination of
station-specific and station-independent models to improve
estimation at stations with sparse data.

If an event phase is detected at a station, the model spec-
ifies probability distributions for the observed attributes of
that detection, conditioned on the event properties:
• The arrival time is the event time plus a travel time whose

distribution is a Laplacian; the mean of the distribution is
the sum of the standard spherically symmetric “IASPEI”
travel time prediction for that phase, which depends only
on the event depth and the distance between the event and
station, and a learned station-specific correction that ac-
counts for inhomogeneities in the earth’s crust and cor-
rects for any systematic biases in picking onset times from
waveforms. The variances are estimated per station from
historical data. (A more sophisticated model would in-
clude distance-dependent variances.)

• The azimuth and slowness also follow Laplacian distribu-
tions, with peaks pointing to the event location and vari-
ances estimated per station from historical data—some
stations are much more accurate than others.

• The arrival amplitude depends only on the event magni-
tude, depth, and distance to the station. We model the log
of the amplitude via a linear regression model with Gaus-
sian noise.

• Finally, we model the phase label assigned by the sta-
tion processing software as being randomly generated
from a multinomial distribution whose parameters de-
pends on the true phase; again, the multinomial distribu-
tion is learned from historical data.

Figure 2 shows two of the empirical and modeled distribu-
tions for one phase-site.

2.3 False Detections
Each station generates false detections, which may be the
result of thermal and electrical noise or real but local events
(ocean waves breaking, trees falling, ice cracking, and so
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Figure 2: Conditional detection probabilities and arrival
time distributions (relative to the IASPEI prediction) for the
P phase at Station 6.

on). We assume a time-homogeneous Poisson process with a
constant rate specific to each station. (A more sophisticated
model would allow for time-varying and seasonal noise lev-
els.) The station processing software, of course, does not
know that the detections are false, and assigns them all the
attributes of normal detections. We model the time, azimuth,
and slowness of these false detections as drawn from a uni-
form distribution over their respective ranges. The ampli-
tude of the false detection is modeled by an empirically esti-
mated mixture-of-Gaussians model. Finally, the phase label
follows an empirically estimated multinomial distribution,

2.4 Inference
The model components described above, when combined,
determine the joint probability distribution over events and
detections. As noted earlier, for compatibility reasons NET-
VISA computes an approximate MAP bulletin—the most
likely set of hypothesized events given the observed detec-
tions. Because detections from real seismic sensors are ob-
served incrementally and roughly in time-ascending order,
our inference algorithm also produces an incremental hy-
pothesis which advances with time. Although the sequence
of observations is of unbounded length, there is a physical
limit on the travel time of any phase, so we can use a moving
observation window of fixed length.

The most natural algorithm for finding a MAP bulletin in
the temporal context would be some form of Viterbi algo-
rithm, adapted to the context of a hypothesis space of un-
bounded size using, say, an online version of simulated an-
nealing. In practice, we have found that an incremental, de-
terministic hill-climbing search suffices to find high-quality
hypotheses by a sequence of local moves that improve the
posterior likelihood. (Calculating the likelihood change due
to each potential move is rendered very efficient because
of decomposability across events and across detections as-
signed to an event.) Beginning with the hypothesis that all
new detections in our window are false detections and there
are no events, we repeatedly apply the following moves:

Birth Move We randomly pick a detection, invert it into
an event location (using the detection’s time, azimuth, and
slowness), and sample an event in a 10 degree by 100 second
ball around this inverted location. The depth of the event is
fixed at 0, and the magnitude is uniformly sampled.

Improve Detections Move For each detection in the de-
tection window, we consider all possible phases for all
events that could have caused the detection. We then as-

sociate the best event-phase for this detection that is not al-
ready assigned to a higher-likelihood detection at the same
station. If this best event-phase does not improve the overall
likelihood, the detection is changed to a false detection.

Improve Events Move For each event, we consider 10
points chosen uniformly at random in a small ball around the
event (2 degrees in longitude and latitude, 100 km in depth,
5 seconds in time, and 2 units of magnitude), and choose
whichever point has highest likelihood (if better).

Death Move Any event making a negative contribution
to the overall likelihood is deleted, and all of its currently
associated detections are marked as false alarms.
Theoretically, this algorithm can reach a local maximum.
We have experimented with various stochastic optimization
algorithms that, in the limit, will find a MAP bulletin; occa-
sionally, at great computational expense, these algorithms
find a better maximum than our deterministic search, but
the likelihood differences are usually negligible compared
to those resulting from model improvements.

3 Experimental Results
A 3-month dataset (660 GB) has been made available by
the IDC for the purposes of this research. We have divided
the dataset into 7 days of validation, 7 days of test, and the
rest as training data. We compute the accuracy of an event
history hypothesis by comparison to a chosen ground-truth
history. A bipartite graph is created between predicted and
true events. A distance weighted edge is added between a
predicted and a true event that are at most 5 degrees in great-
circle distance and 50 seconds in time apart. Finally, a min-
weight max-cardinality matching is computed on the graph.
We report 3 quantities from this matching—precision, re-
call, and average error (average distance in kilometers be-
tween matched events).

Using the final expert-generated bulletin, LEB, as ground
truth, we compared NET-VISA and SEL3 on 7 days of held-
out data. Using the probabilities for hypothesized events,
we have generated a precision-recall curve for NET-VISA,
and marked SEL3 on it as a point (see Figure 3). Also in
this figure, we show a precision-recall curve for SEL3 using
scores from an SVM trained to classify true and false SEL3
events (Mackey, Kleiner, and Jordan 2009) (SEL3 extrapo-
lation). NET-VISA has 18.4% more recall at the same pre-
cision as SEL3, and 32.6% more precision at the same recall
as SEL3. Furthermore, taking data from the more compre-
hensive NEIC (National Event Information Center) database
as ground truth for the continental United States, we find that
NET-VISA is able to detect events in the IMS data that are
not in the LEB report produced by IDC’s expert analysts;
thus, NET-VISA’s true performance may be higher than the
LEB-based calculation would suggest.

Figure 4 shows the recall and error divided among differ-
ent types of LEB events with NET-VISA precision fixed to
that of SEL3. The table on the top summarizes by LEB event
magnitude. For magnitudes up to 4, NET-VISA has nearly
20% higher recall with similar error. The table on the bottom
shows a break-down by azimuth gap, defined as the largest
difference in consecutive event-to-station azimuths for sta-
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Figure 3: Precision-recall performance of the proposed
NET-VISA and deployed SEL3 algorithms, treating the
analyst-generated LEB as ground truth.

mb Count SEL3 NET-VISA
Recall Err Recall Err

0 – 2 74 64.9 101 89.2 103
2 – 3 36 50.0 186 86.1 140
3 – 4 558 66.5 104 86.2 121
> 4 164 86.6 70 93.9 77

Azimuth Count SEL3 NET-VISA
Gap Recall Err Recall Err

0 – 90 72 100.0 28 100.0 39
90 – 180 315 88.9 76 93.7 75
180 – 270 302 51.0 134 84.4 137
270 – 360 143 51.0 176 76.9 198

all 832 69.7 99 88.1 112

Figure 4: Recall and error (km) broken down by LEB event
magnitude and azimuth gap (degrees).

tions which detect an event. Large gaps indicate that the
event location is under-constrained. For example, if all sta-
tions are to the southwest of an event, the gap is greater than
270 degrees and the event will be poorly localized along a
line running from southwest to northeast. By using evidence
about missed detections ignored by SEL3, NET-VISA re-
duces this uncertainty and performs much better.

Results in this section were produced using the validation
dataset. There were a total of 832 LEB events during this 7
day period, and roughly 120, 000 detections at 117 stations.
The inference took about 5.5 days on a single core running
at 2.5 GHz. Estimating model parameters from 2.5 months
of training data took about 1 hour.

4 Conclusions and Further Work
NET-VISA is an instance of a vertically integrated, Bayesian
approach to sensor-based monitoring in an important appli-
cation area where previous penetration of Bayesian methods
had been only fragmentary (Myers, Johannesson, and Han-
ley 2009). NET-VISA misses half as many events as the cur-
rently deployed automated system and finds events missed
by human experts; thus, it lowers the magnitude threshold
for reliable detection. Given that the difficulty of seismic

monitoring was cited as one of the principal reasons for non-
ratification of the CTBT by the United States Senate in 1999,
one hopes that improvements in monitoring may increase the
chances of final ratification and entry into force.

In addition to a variety of physics-based model improve-
ments and the integration of other sensor modalities (hy-
droacoustic and infrasound), some more generic advances
are needed. The first is to have NET-VISA output (marginals
of) the posterior distribution (easy) and integrate such out-
put into the overall operations of the IDC (hard). The second
is to reimplement NET-VISA within a declarative language
such as BLOG, given suitable improvements to the inference
engine; this would greatly facilitate further improvements to
the model by domain experts. The third is to extend the
generative model all the way to the raw signal level, so that
detection itself becomes part of a globally integrated infer-
ence process rather than being a purely local, bottom-up,
hard-threshold decision.
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