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Abstract

Most of the previous work on brain-computer interfaces
(BCIs) exploiting the P300 in electroencephalography
(EEG) has focused on low-level signal processing al-
gorithms such as feature extraction and classification
methods. Although a significant improvement has been
made in the past, the accuracy of detecting P300 is lim-
ited by the inherently low signal-to-noise ratio in EEGs.
In this paper, we present a systematic approach to op-
timize the interface using partially observable Markov
decision processes (POMDPs). Through experiments
involving human subjects, we show the P300 speller
system that is optimized using the POMDP achieves
a significant performance improvement in terms of the
communication bandwidth in the interaction.

Introduction

Brain-computer interfaces (BCIs) interpret the electrical ac-
tivities of the neurons in the brain and convey the cor-
responding messages or commands to the external sys-
tems (Wolpaw et al. 2002). There are a variety of de-
vices and methods for BCIs but non-invasive methods such
as electroencephalography (EEG) recorded from the scalp
are suitable for practical BCIs due to user safety, ease of use
and the low set-up cost. Hence, we only concern ourselves
with non-invasive BCIs using EEGs. However, due to the
low signal-to-noise ratio in EEGs and hence the low com-
munication bandwidth, they are yet to be widely adopted in
practice.

One of the most reliable and popular signal features in
EEGs used for constructing BCIs is the P300 component
in the event related potential (ERP). The ERP is elicited by
an infrequent or particulary significant somatosensory stim-
ulus. P300 is a positive peak component in the ERP at
about 300ms after the stimulus (Farwell and Donchin 1988;
Wolpaw et al. 2002). The P300 speller (Farwell and
Donchin 1988) for the purpose of emulating a keyboard is
perhaps one of the most well known BCIs based on P300. In
a typical setting of the P300 speller system, the user faces the
6×6 matrix where each entry contains one letter (see Fig-
ure 1). To input a letter, the user gazes at the letter that they
want to input, and then all the letters in a row or a column are
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flashed (stimulated) together in a random order. If the gazed
letter is flashed, the P300 is elicited with some probability
at approximately 300ms after the flash. Thus, using a classi-
fier trained for detecting the P300, we can identify the target
letter that the user is gazing, i.e. wants to input. However,
since there is a significant chance of classification error, the
rows and columns are flashed and classified multiple times
and the results are combined. The P300 speller system uses
a visual flash as the stimulus, but other type of stimuli (e.g.
sound) can be used for constructing P300-based BCIs.

Most of the previous work on P300-based BCIs has fo-
cused on improving the accuracy of feature extraction and
classification for high performance, while using a simple
stimulus control of randomly ordering the stimuli. In addi-
tion, the stopping condition for the stimulus control is often
specified in an ad-hoc manner. For example, conventional
P300 speller systems flashes every row and column in a ran-
dom order for a prescribed number of times and combine
the classification results to select a target letter. Instead, we
could search for a stimulus control that reduces the number
of flashes and stops with a target letter selection when addi-
tional flashes are unnecessary1.

This paper presents a systematic approach using the par-
tially observable Markov decision process (POMDP) to ob-
tain an optimal stimulus control. We describe how the P300
speller system can be modeled as a POMDP and show that
it can significantly improve the performance of the system.

Compared to our previous work (Park, Kim, and Jo 2010)
in which we had 4 and 6 targets on the screen, we have
extended the approach to the full P300 speller system with
36 targets, and leveraged the regularity in the targets in the
POMDP framework for further performance improvement.

P300 Speller System Architecture

This section describes the components used in the typical
architecture for P300-based BCIs. Our P300 speller imple-
mentation uses the same architecture except for the system
controller component, which we cover in the later section.

1Hill et al. (2009) were one of the first to propose improving the
stimulus control, but they search for an open-loop controller with a
fixed number of flashes.
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Figure 1: The typical architecture of the P300-based BCI
systems. Our focus is concentrated on the system controller
component in improving the performance of the system. A
P300 speller matrix is depicted on the lower right corner.

Flash timing scheme

The timing of the flashes in the system follows the typical
scheme used in P300 speller systems: The user gazes at a
target letter that the user wants to input and all the letters
in a row and a column of the 6×6 matrix are flashed at the
same time, thus 6 letters flashed at a time. The flash interval
is 250ms, turning on the letters for 125ms and then turning
off for the remaining 125ms. We refer to a trial as the se-
quence of flashes until the system selects a target letter. A
pause interval of 2.5s is given between the trials. Each trial
is composed of a row trial immediately followed by a col-
umn trial. As can be inferred from their names, the row trial
consists of the sequence of flashes for identifying the row
that contains the target letter, and vice versa for the column
trial. The target letter is determined by the row and column
selected in the row and column trials.

Data acquisition, preprocessing, and P300
classification

EEG signals were acquired by the Biopac MP 150 data ac-
quisition system using 16 channels with 1kHz sampling rate.
We refer to an epoch of EEG signals corresponding to a
flash as the windowed signal data from 16 channels between
200ms and 450ms after the flash is given. This is because
P300 is expected to appear approximately at 300ms after the
stimulus.

The epoch data is then passed into the preprocessor to ex-
tract relevant features, and then passed to the classifier to
detect the existence of P300. In order to construct the pre-
processor and the classifier, we first collected the training
data consisting of epoch instances each labeled either a tar-
get (i.e. an epoch of EEG signals after the flash on the target
letter) or a non-target.

As for the preprocessor, the raw epoch data were band-
pass filtered (0.5-30Hz) and down-sampled to 100Hz. We
then extracted features from the training data using the spa-

tial projection algorithm (Hoffmann, Vesin, and Ebrahimi
2006). We limited the maximum number of filters to 5 for
timely processing of data.

As for the classifier, we trained a support vector machine
on the preprocessed feature vectors using the LIBLINEAR
package (Fan et al. 2008). In order to obtain the likelihood
rather than the binary classification result, we used the L2-
regularized logistic regression.

Partially Observable

Markov Decision Processes (POMDPs)

A POMDP (Kaelbling, Littman, and Cassandra 1998) is a
mathematical model for sequential decision making prob-
lems under uncertainty in the observation. It is defined by an
8-tuple 〈S,A, Z, b0, T, O,R, γ〉: S is the set of environment
states; A is the set of actions; Z is the set of observations; b0
is the initial belief state where b0(s) denotes the probability
that the initial state is s; T a

s,s′ is the transition probability of

changing the state from s to s′ by executing action a; Oa
z,s′

is the observation probability of observing z when changing
to state s′ upon executing action a; Ra

s is the reward in state
s by executing action a.

The belief state b in POMDP is defined to be the proba-
bility distribution over the current states. An optimal policy
π∗ for the given POMDP model is the policy π : b �→ a
that maximizes the expected return (i.e. value), V π(b) =
E[

∑
∞

t=0
γtRat

st
|b, π], for all possible belief states.

Stimulus Control Methods

We describe three stimulus control methods used in the sys-
tem controller. The first one, πrandom, is the conventional
stimulus control method used in practice. The others, πpomdp

and πbigram-pomdp, are the POMDP-based stimulus control
methods we propose in this paper.

Random control method: πrandom

This conventional control method uses a random sequence
of flashes in a trial. Every row and column is flashed a pre-
scribed equal number of times. The row and column with
the maximum sum of the likelihood prediction values from
the classifier is selected as the target.

POMDP control method: πpomdp

This control method is an optimal policy computed from
the POMDP modeling the P300 speller. Our approach con-
structs two POMDPs, one for the row trials and the other
for the column trials, which are almost identical. Below, we
describe the POMDP modeling for the row trials.

Suppose we have N=6 rows in the matrix. The states in
the POMDP correspond to potential target rows, hence there
are a total of N states. For each row in matrix, we can ei-
ther flash it in the hope of eliciting P300 (N flash actions) or
claim that it’s the target row (N select actions), hence there
are a total of 2N actions. The output value from the P300
classifier serves as the observation, where the real value be-
tween 0 and 1 was discretized into intervals of size 0.1 (e.g.
z1 for the output value in [0.0, 0.1), z2 for the output value
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in [0.1, 0.2), etc.), hence there are a total of 10 observations.
Initial belief state is given as the uniform distribution and γ
is set to 0.99.

To make the system identify the target row as soon as pos-
sible, we give -1 reward for the flash actions. On the other
hand, to make the system identify the target row as accu-
rately as possible, we give +10 for the select actions that
correctly select the target row, and -100 for the select actions
that incorrectly select the target row.

Transition probabilities for the flash actions are given as
the identity matrix assuming that the target does not change
within the trial. Those for the select actions are given as the
uniform distribution assuming that the target will randomly
change to a new one with equal probability.

The observation probabilities for the flash actions are esti-
mated by constructing the histogram of classifier output val-
ues for each human subject from the training data. Although
simple, this approach may overfit the true observation prob-
abilities, hence we mix (i.e. smooth out) the estimated ob-

servation probabilities Ôa
z,s with the uniform distribution so

that Oa
z,s = (1− qo)Ô

a
z,s+ qo(1/N), where qo is the mixing

weight. In the experiments, we set qo to 0.3 for for all sub-
jects. The observation probabilities for the select actions are
given as the uniform distribution since the classifier output
value does not contain any useful information.

POMDP control method with bigram: πbigram-pomdp

This control method is basically the same as πpomdp, except
that the POMDP model uses the bigram prediction of the
target letters. Using the online text archive of novels, we
construct the bigram model of letters, and use the model to
compute the initial belief state for the current target row and
column given the previously selected target letter. In con-
trast, πpomdp starts from the uniform distribution.

Solving POMDP Model for P300 Speller

There are two constraints in computing an optimal policy
for the POMDP modeling the P300 speller system. First,
there is an observation delay for the flash actions since P300
appears 300ms after the flash. The epoch window starts
at 200ms and ends at 450ms, and a small amount of addi-
tional delay incurred by data processing and classification
makes the epoch data available shortly after 500ms. Since
the flash intervals are of 250ms, this implies that the ob-
servations are delayed for 2 time steps. Second, there is
a phenomenon known as repetition blindness (Fazel-Rezai
2007) which refers to the situation in which P300 may not be
elicited when a stimulus on the target is given again within
500ms.

We re-define the optimal value function to incorporate the
constraints above:

V ∗(b, 〈at−d, . . . , at−1〉)

= max
at∈A−A′

∑
st−d,...,st

b(st−d)
∏t−1

i=t−d T
ai

si,si+1
Rat

st

+ γ
∑

z Pr(z|b, at−d)V
∗(bzat−d

, 〈at−d+1, . . . , at〉),

where d=2 is the number of time steps in the observation
delay, and A′ is the set of actions executed within 500ms.

bzat−d
is the successor belief state of b after executing action

at−d and observing z. Note that the value function depends
on the belief state as well as the actions that were executed
within the delay window.

We extended the point-based value iteration (Pineau, Gor-
don, and Thrun 2006) to compute the optimal value function
and the optimal policy according to above definition. The
observation delay makes the dimension of the value function
much larger than the original value function. In other words,
we have to compute the optimal value function for every
delayed action sequence 〈at−d, . . . , at−1〉 ∈ |A|d. How-
ever, noting that our POMDP model is symmetric (Doshi
and Roy 2008; Kim 2008), and we adopted the technique in
permutable POMDPs and extended it to handle observation
delays. Our POMDP algorithm implemented in Java solves
the model within a few minutes.

Experiments

Experimental setting

10 able-bodied students (7 male and 3 female students)
at Korea Advanced Institute of Science and Technology
(KAIST) participated in the experiment. The experiment
was approved by the KAIST Institutional Review Board (ap-
proval # KH2010-24).

Each subject went through 4 sessions in the experiment:
training, random, pomdp, and bigram-pomdp. In the train-
ing session, we collected the training data from 20 trials us-
ing the random control method πrandom. Each trial assigned a
random target letter. The trials used 10 flashes for each row
and column, hence there were a total of 120 row and column
flashes per trial. Once we collected the training data, we
obtained the preprocessor and P300 classifier. The obser-
vation probabilities in the POMDP were also computed for
each subject by constructing the histogram of classifier out-
put values. Thus, using the control methods πrandom, πpomdp,
and πbigram-pomdp obtained from the training data, we asked
the subject to input “MACHINE LEARNING” in each of
the remaining sessions.

Subjects A, C, E, G, and I went through the sessions in the
order of training, pomdp, bigram and random. On the other
hand, subjects B, D, F, H, and J went through the sessions
in the order of training, random, pomdp, and bigram. We
used two different setups because the random session takes
significantly more time than the pomdp or bigram sessions,
and we wanted to see whether the subject fatigue affected
performance.

We measured the performance in terms of accuracy and
practical bit rate. The accuracy is defined by the number of
correctly claimed letters over the number of total inputted
letters. The practical bit rate (Townsend et al. 2010) mea-
sures the quantity of the transferred information per unit
time, while taking into account the additional time required
to correct the error in the trials.

Results

Table 1 shows the performance of the πrandom, πpomdp, and
πbigram-pomdp. Since πrandom does not have a mechanism to
determine when to stop flashing, we report the performance
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Subject
πrandom πpomdp πbigram-pomdp

PBR Acc. #flashes PBR Acc. #flashes PBR Acc. #flashes
(bits/min) (%) /target (bits/min) (%) /target (bits/min) (%) /target

A 36.483 100.00 24 38.965 100.00 21.9 ± 4.6 41.751 100.00 19.8 ± 6.1
B 9.541 100.00 120 26.452 100.00 36.9 ± 13.8 31.437 100.00 29.5 ± 7.9
C 4.051 81.25 120 6.718 87.50 96.8 ± 26.3 10.246 100.00 111.1 ± 54.3
D 0.447 56.25 120 5.736 81.25 81.9 ± 24.7 12.912 100.00 86.1 ± 72.4
E 6.765 87.50 96 6.136 87.50 106.9± 51.0 8.201 93.75 105.6 ± 70.0
F 17.720 100.00 60 25.833 100.00 38.1 ± 9.6 32.359 100.00 28.4 ± 5.8
G 1.057 62.50 120 2.116 75.00 164.5± 108.1 2.551 81.25 196.6 ± 68.0
H 9.080 81.25 48 12.380 93.75 66.6 ± 17.4 13.713 93.75 59.1 ± 22.7
I 16.331 87.50 48 27.212 100.00 35.6 ± 12.8 30.851 100.00 30.3 ± 14.7
J 20.592 93.75 36 38.288 100.00 22.4 ± 4.8 43.873 100.00 18.3 ± 7.5

Avg. 12.206 85.625 - 18.984 92.5 - 22.790 96.875 -
s.d. 10.968 15.604 - 13.990 0.092 - 14.889 0.061 -

Table 1: Experimental results of the three control methods. PBR stands for practical bit rate.

when the practical bit rate hits its maximum value. The
πrandom control used a maximum of 10 flashes for each row
and column, hence 120 is the maximum number of flashes
per target.

A one-way within-subject ANOVA test on the practi-
cal bit rate was conducted; Mauchly’s test indicated that
the sphericity assumption had been violated (p-value ≈
0.000 < 0.05), thus the degree of freedom was corrected ac-
cording to the Greenhouse-Geisser estimates of the spheric-
ity (ε = 0.537). There was a significant difference among
the three control methods (F (1.073, 9.659) = 15.601,
p-value = 0.003 < 0.05). A post-hoc test using Bonfer-
roni indicated that the πpomdp was significantly better than
the πrandom (p-value = 0.027 < 0.05). Also, πbigram-pomdpwas
again significantly better than πpomdp (p-value = 0.001 <
0.05) as well as πrandom (p-value = 0.007 < 0.05).

In terms of the average practical bit rate, πpomdp

achieved a 55% performance improvement over πrandom, and
πbigram-pomdp achieved a 86% performance improvement over
πrandom and 20% over πpomdp.

Conclusion

We have present POMDP-based stimulus control methods
in the P300 speller system that significantly outperform the
conventional random control method. POMDP-based con-
trol methods achieve a high performance in the communi-
cation bandwidth by stimulating the rows and columns that
have high probability containing the target letter. In ad-
dition, POMDP-based control methods determine when to
stop and claim the target letter. In contrast, the conventional
random control method simply stimulate every row and col-
umn in a random order, and the stopping condition is typi-
cally implemented ad-hoc by the system expert, e.g., stimu-
lating for a prescribed number of times.

Although we have described the POMDP approach to
the P300 speller system using visual stimulus, our work is
general enough to be applied to BCIs with other stimulus
paradigms such as auditory, olfactory, or even multi-modal
stimulus. It would be also possible to apply the approach to
newer state-of-art equipments such as fMRI or near-infrared
spectroscopy (NIRS).
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