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Abstract

There are many diverse domains like academic collab-
oration, service industry, and movies, where a group of
agents are involved in a set of activities through interac-
tions or collaborations to create value. The end result of
the value creation process is two pronged: firstly, there
is a cumulative value created due to the interactions and
secondly, a network that captures the pattern of histor-
ical interactions between the agents. In this paper we
summarize our efforts towards design and analysis of
value creation networks: 1) network representation of
interactions and value creations, 2) identify contribution
of a node based on values created from various activi-
ties, and 3) ranking nodes based on structural properties
of interactions and the resulting values. To highlight the
efficacy of our proposed algorithms, we present results
on IMDB and services industry data.

Motivation
In this work, we focus on developing algorithms for domains
which require different entities (people) to work together to-
wards a common goal referred as deliverable. The motiva-
tion of this work lies in services industry in which there is
high emphasis on people interacting with other people and
serving customers rather than transforming physical goods
in the process. However, we contend that the proposed meth-
ods are applicable to wide variety of collaboration based do-
mains. A typical deliverable can be thought of as a workflow
consisting of various stages of specialized tasks. For a suc-
cessful execution, not only each agent has to complete the
specialized task assigned to her but also interact with other
nodes in workflow. The final outcome or value created of the
workflow depends on both the capability of individual nodes
as well as the quality of interaction among them. Before pre-
senting the key challenges we briefly present two motivating
examples.
Software Support Services One of the predominant com-
ponents of the software services industry is to handle main-
tenance and support services requests. For each request,
the service delivery manager puts together a team of agents
to resolve the request. The team may include developers,
testers, reviewers, etc. Finally, an outcome indicating the
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effectiveness with which the request is resolved is recorded
After serving a sufficiently large number of service requests,
the delivery manager may wish to rank the agents. One
might be tempted to believe that the manager would like to
rank the agents based on their average effectiveness. How-
ever, our interviews with domain experts revealed that the
importance of an agent is not just based on average effec-
tiveness. Domain experts would like to take into account an
agent’s connection pattern in the delivery network as well
due to the following reasons. Since each request requires
handoffs between the agents responsible for them, an agent’s
connections indirectly capture the agent’s influence: famil-
iarity with the subdomains of the connected agents due to
the handoffs and ability (or inability) to work with the other
agents (depending on the outcomes). When a new service
request arrives, estimates of the agents’ influence (or rank)
and their role/expertise can be utilized to make a decision on
the composition of the team to resolve the new request and
thereby maximizing the chance of favorable outcome.
Academic Collaboration As a second example, we con-
sider the problem of ranking authors based on academic pub-
lications. The goal of academic publication is to disseminate
new knowledge and novel insights obtained from academic
research. So, the outcome of every academic publication
can be measured based on parameters like, the conference
or journal in which it appeared, sustained citations it gets
over a period of time, awards it wins and so on. At the
same time, the influence of an academic researcher is not
determined merely by the outcomes of the papers. The con-
nections an author develops and the influence of coauthors
play a major role in the overall influence of an academic re-
searcher. So, the ranking of academic researchers needs to
take into account the structure of their interactions (obtained
from a database like DBLP) and the impact of their papers
(obtained from citations, impact ratings of conferences etc).

Consider the example shown in Figure 1(a) which models
agent interactions in three different applications. There are
five agents A, B, C, D, and E and four interactions involv-
ing subsets of them. In case of service delivery, outcome is
measured based on customer satisfaction index, in case of
academic collaboration, citation is assumed to be the out-
come, and in case of movies, the average IMDB rating. The
structure of their interactions is captured in Figure 1(b).

In this work we focus on the following questions:
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Individual Interactions

Illustrative Outcomes for Different Communities 

Service Interactions
I. Deal acquisition

Success(S) / Failure(F) S S F S

II. Revenue generated
(in millions of USD )

20 32 28 17

Co-authorship
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Co authorship
III. Journal impact factor 1.409 2.143 1.102 0.326

IV. Citation count 32 12 15 47

Movie co-stars
V. IMDB ratings

(Out of 10)
6.7 7.4 8.3 9.4

VI. Box-office revenue
(In USD)

55,808,744 70,098,308 100,003,359 107,928,162
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Figure 1: Example of Interactions, Values and Representation (a) Individual Interactions and Sample Values in different do-
mains(b) Representation capturing only the interactions (c) Interaction Network capturing interactions as well as outcomes

Q1: The computer science literature is rich in modeling in-
teraction of nodes via a directed or undirected graph. How
to extend the graph based representation to capture the out-
come of the interactions? In essence, a single representa-
tion which captures both the structure as well the outcome
in meaningful fashion. We refer to such representation as
value creation networks.
Q2: Given the historical interaction and outcome data for an
agent, how does an agent impacts the outcome of workflows
in which it is involved? A simple average based methods are
not suitable for this problem, primarily due to human aspect
of the problem. Consider an super agent a ensures that all the
workflows that he is involved in succeed. Consider an agent
b who is failure-prone when teamed with ordinary agents.
Let 80% of the workflows of b also contain a. Let us further
say that a large fraction of the rest (20%) of the workflows
of b have failed. The aggregate based approach would infer
that b is a highly successful agent. However, we would like
to infer that b is prone to failures.
Q3: Finally, given the complete interaction data for all
agents, how to rank the agents? The ranking should con-
sider the structure as well as the value created by the agent.

In this paper, we summarize our work (referred as inter-
action networks in (Kameshwaran et al. 2009; 2010)) which
initiates a systematic look into the analysis of interaction
network while simultaneously taking into account both the
structure and outcomes of the interactions. We highlight that
our work adds a new dimension to traditional social network
analysis which only focuses on the structural aspects of the
networks arising out of interactions.

Algorithms
Basic Notations: Let V = {1, 2, . . . , N} be the set of
agents in the system, {1, 2, . . . , T} be the set of interac-
tions, with each interaction resulting in one of the possible
outcomes R = {1, . . . ,M}. Following indices are used:
i and j for agents, t for interactions, and m for the out-
comes. An interaction t ∈ {1, 2, . . . , T} involves a subset of
agents Vt ⊆ {1, 2, . . . , N}. The pattern of the interaction is
given by the edge set Et with a non-negative δtij denoting the
weight on the edge (i, j) ∈ Et. The weight for non-existent

edges is zero. Let Rt ∈ {1, 2, . . . ,M} be the observed out-
come of the interaction. The interaction t can thus be com-
pletely characterized by the tuples (Vt, Et, {δtij}, Rt). Let
ρm ∈ R denote the utility or value of an outcome m ∈ R.
The set {ρm : m ∈ R} can be cardinally ordered and if
ρm′ > ρm′′ , then the outcome m′ is preferable to m′′. Typ-
ically, the utility of the outcomes is ascertained based on
domain knowledge and also varies over time. So, the repre-
sentation of the data and the technique should ideally allow
the user to change just the outcome values and observe the
corresponding changes during analysis.
Design of Value Creation Networks: We note that eigen
value based methods have been fairly successful in ranking
nodes in a graph. The main reason the eigenvector based ap-
proach captures the structural aspects so well is the manner
in which a node transfers part of its status to its neighbors
and derives its own status as a linear combination of the sta-
tus of its neighbors. We try to emulate similar logic in our
design and analysis of value creation networks. Consider
an interaction which involves Vt nodes and have Rt as out-
come. We need a mechanism by which the utility of Rt can
be transferred in parts to the nodes in Vt. At the same time,
the utility of the outcome Rt itself is a prior and should not
be affected by the status of the nodes in Vt. This suggests
the following natural construction. Let the outcome of inter-
action t be m. The graph (Vt, Et, {δtij}) is updated as:

Vt ← Vt ∪ {m} (1)
Et ← Et ∪ {(m, i)}, ∀i ∈ Vt (2)
δtmi ≥ 0, ∀i ∈ Vt (3)

∑

i∈Vt

δtmi = 1 (4)

The outcome m is added as a node (and is called as outcome-
node). A directed edge is added from m to each of the other
agents that participated in the interaction. The weights on
the newly added edges that are given by (3) and (4), captures
the relative contribution of agents in realizing the outcome
m. The weights on the non-existent edges are zero: δtim = 0,
∀i and δtmi = 0, ∀i �∈ Vt. The status or the influence of the
outcome node is later used in the algorithm to transfer it to
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the participating nodes via the directed edges.
Without loss of generality, we can assume that each of the

outcomes is realized in at least one of the interactions. The
aggregation of the graphs augmented with outcomes is:

V ← V ∪ {1, 2, . . . ,M} (5)
E ← E ∪ {(m, i) : ∃t, Rt = m ∧ i ∈ Vt} (6)

δmi =
∑

t

ωtδtmi, ∀i,m (7)

δim = 0 (8)

The outcomes {1, 2, . . . ,M} are added as nodes to the in-
teraction network and an edge from outcome m to a node
i exists if i had been a part of at least one interaction with
outcome m. The weights on the outcome-agent edges are
taken as linear combination of the corresponding weights in
the individual interactions. We call the above network as
the interaction network and the corresponding edge weight
matrix as the agent-outcome interaction matrix Δ of order
(N +M). For the network in figure 1(b) with outcome II of
figure 1(a), the agent-outcome interaction network is shown
in figure 1(c). The four outcomes O1, O2, O3, O4 corre-
spond to the outcomes of the four interactions. Assuming
equal contribution from each agent, weight on the directed
edge from an outcome to an agent is 1/2.

The matrix Δ captures both the inter-agent interactions
and agent-outcome interactions. It is asymmetric. The over-
all intended effect of the directed construction is to let the
outcome-nodes transfer their utilities to the agents and the
utilities of the outcome-nodes are not altered. The matrix
Δ, however does not take into account the utilities of the
outcomes {ρm}. We treat the utilities as exogenous status of
the outcomes and combine with Δ to obtain the ranking.
Outcome Aware Node Ranking: The traditional eigenvec-
tor ranking has a limitation that it can only be applied to non-
negative, symmetric matrices. Thus, if the underlying graph
is asymmetric, especially with unchosen nodes (nodes with
zero in-degree), the ranking provided by eigenvector cen-
trality is inconsistent. The unchosen nodes receive no status
from the other nodes and hence contribute nothing to the
nodes to which they are connected. But, in our construction
the zero in-degree nodes play a critical role of transferring
the status of outcomes to the nodes.

Let e be the vector that captures the status of the outcomes
nodes. That is, e[i] for agent nodes are made identical and
for outcomes nodes, it will be a function of their values. Let
x be the vector that an iterative technique computes as the
final influence of the nodes. In other words, the difference
vector (x − e) should be expressible in an eigenvector-like
form with respect to a scaling parameter α and the incident
matrix Δ of the augmented network.

(x− e) = αΔTx (9)

In other words, we are looking for an x such that,

x = αΔTx+ e (10)

Observe that the Equation (10) captures the effect of inter-
actions and the values associated with the outcomes nodes.

Our measure of influence of the nodes is similar to a central-
ity measure used by Bonacich (Bonacich and Lloyd 2001)
in finding influence of nodes in unweighted, directed graphs
in very small social networks coming from marriage data
among elite families. In what follows we establish some im-
portant properties of our approach.

Firstly, it is easy to see that, it reduces to the eigenvector
ranking when the relationships are symmetric and the value
of all the outcomes are identical (say zero). In the general
setting as above, the value of x is given by

x = (I − αΔT )−1e (11)

The vectors e and x, and identity matrix I are of order
(N + M). We can show that the method works best when
α is in the range (0, 1/λ) where λ is the largest eigenvalue
of Δ. We refer to this algorithm as Outcome Aware Ranking
Algorithm (OARA). The choice and effect of free parame-
ters α and e of OARA are described in (Kameshwaran et al.
2010).
Inferring Individual Node’s Impact: We measure the im-
pact of an agent by assigning a weight, wa in the range of
[0, 1] that is indicative of the agent’s contribution towards
success/failure of workflows. Given these weight assign-
ments and a specific workflow W , let wavg =

∑
a∈W wa

|a∈W |
be the average weight of the agents belonging to the work-
flow. One way to explain the outcome of the workflow is
to compare the average weight to certain thresholds associ-
ated with the outcomes. For simplicity, let us assume that
the utility of outcomes Rts are either 0 (failure) or 1 (suc-
cess). Our approach extends directly to the continuous case.
Let St and Ft be two thresholds in the range [0, 1] corre-
sponding to successful and failure workflows respectively.
The assignment of weights is said to explain the outcome of
a successful workflow W if wavg > St. Aggregate based
method of assigning weights would average the outcomes of

the agent’s workflows. For an agent a, wa =
∑

t:a∈Wt
Rt

|{t:a∈Wt}| .
Let f be the fraction of workflows that are explained by the
aggregation based approach. Our goal is to significantly im-
prove the fraction of explained workflows in comparison to
f . We start with any valid assignment of weights to agents.
For each workflow that is not explained by the current as-
signment, update the weights of the agents belonging to the
workflow in small quantities ε in such a way that the gap
between the threshold and its average decreases. If a work-
flow’s outcome is 1 and it is not explained, we increment
the weight of each of its agents by ε. Similarly, if the work-
flow’s outcome is 0 and it is unexplained, then, we reduce
the weights of each of its agents by the same quantity ε.
While updating the weights in this fashion, we restrict them
to the [0, 1] range. The procedure is terminated when the
fraction of the explained workflows is above a threshold F
(say 0.95) or if the fraction of the explained workflows in the
last L rounds does not increase by a minimum threshold.

Experimental Results
Ranking in IMDB Data: For a given set of movies, we
construct the interaction network as follows: each actor who
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1.Marlon Brando 2. Al Pacino 3.Robert De Nero 4. Sean Bean 5.Jean Reno 6.Don Cheadle 7. John Travolta 8. Hugh Jackman
9. George Clooney 10.Casey Affleck 11. Brad Pitt 12. Matt Damon 13.Dan Fredenburgh 14.Bill Nighy 15. Johnny Depp 16. Orlando Bloom
17. Jack Davenport 18.Lee Arenberg 19.Tom Hollander 20.Jude Law 21.Anthony Hopkins 22.Sean Penn 23.Samuel L. Jackson 24.Kevin Bacon

25.Tom Hanks 26.Steve Buscemi 27.Clive Owen 28.Nicolas Cage

Table 1: List of actors used in experiments
R1 = OARA(Δ, e) 23 9 25 12 10 7 21 15 3 6 20 8 24

16 28 2 22 26 27 11 1 4 14 18 5 17 19 13
R2 = SVD(Δ) 9 23 25 12 7 10 21 15 3 20 8 6 24

28 16 2 22 26 27 11 4 1 14 5 17 18 19 13
R3 = OARA(Δ′, e) 25 28 23 9 12 10 7 21 15 3 16 20 6

8 24 2 22 26 27 11 14 1 4 18 17 5 19 13
R4 = SVD(Δ′) 9 23 25 12 7 10 21 15 3 20 8 6 24 28

16 2 22 26 27 11 1 4 14 5 17 18 19 13

Table 2: Rankings of actors under different conditions

appears in any of the movies is an agent, each movie rep-
resents an interaction that is incident on all its main actors
(we choose first 6 listed names) and the outcome associated
with the interaction is the average user ratings for the movie.
Table 1 shows the actor list used for experimentation.

We used the ranking according to the left singular vec-
tor corresponding to the largest singular value of interaction
graph as baseline algorithm. Intuitively, this heuristic does
not address the subtle technical point we covered in depth:
that of ensuring that the outcomes are used to influence the
ranking of agents and not vice versa. The experiments were
conducted under following settings:
Setting 1 R1 and R2 are ranking by OARA and SVD based
baseline respectively.
Setting 2 We pick two highly ranked actors in both the rank-
ings, say A1 and A2. For each of the movies in which either
of them appears, we artificially reduce the averaging rating
by 2. We then pick the two middle-ranked actors, A3 and
A4. We increase the ratings of those movies in which ei-
ther of them appears by 2. Let R3 and R4 be the ranking
generated on the modified data by OARA and baseline.

The different rankings obtained are as in Table 2 (With
A1 = 9, A2 = 23, A3 = 28, A4 = 16). The rankings are
given in the ascending order of ranks; the actor with the first
rank appears first and so on. One would expect the rankings
of A1 and A2 to go down and those A3 and A4 to go up. No-
tice (by comparing R1 and R3) the rankings of the both top
actors (number 23 and 9) have gone down while those of the
two chosen mid-ranked actors A3 and A4 (number 28 and
16) have gone up. Notice (by comparing R2 and R4) that
there is hardly a noticeable change in the SVD rankings be-
fore and after modification. This shows that our formulation
is takes into account the changes in outcomes or value.
Individual Impact Analysis in Services Data: We used
the simulation framework to carry out our experiments. We
generated instances of service value creation networks by
first creating a network of agents and then pushing a cer-
tain number of workflows through them. The outcome of
the workflows was decided by the average of the weights of
the assigned agents. The iterative analysis was run on the
resulting service value creation networks. The efficacy of
our approach was measured based on the how it could im-
prove the fraction of the workflows that were explained by
the final weight assignment as opposed to the fraction ex-
plained by the simple aggregation method. Tables 3 and 4
present the comparison under different settings. Moreover,

#Agents #Workflows % of Ag. Apr. % of Iter. Apr.
250 500 74 90
250 2000 64 81
250 10000 57 77
250 60000 62 78
250 80000 46 61

125 500 67 82
125 1500 62 81
125 5000 63 79
125 10000 66 78
125 30000 44 52

Table 3: Comparison of the two approaches as number of
requests is increased while keeping agents constant

#Agents #Workflows % of Ag. Apr. % of Iter. Apr.
6 10 77 90

10 10 73 91
100 100 69 84
125 1000 62 81
125 5000 63 79
250 500 71 92
250 5000 56 79
250 100000 38 50

Table 4: Comparison of the two approaches for different
choices of service requests and agents.
the overall assignment was not influenced in a big fashion
by introducing success prone or failure prone agents which
points towards stability of our assignments generated using
iterative techniques.

Conclusion
In this article, we presented the key construct of value cre-
ation networks which capture structure as well as the out-
come of the interactions. Diverse problem domains can be
modeled using such an approach. We presented a novel
update algorithm for characterizing the nodes so as to ex-
plain individual outcomes. We also presented a new al-
gorithm for ranking the nodes based on the structural and
value creation aspects of the network. We point interested
readers to our previous works (Kameshwaran et al. 2009;
2010) for elaborate details.
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