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Abstract

Logic, and declarative representation of knowledge in gen-
eral, have long been a preferred framework for problem solv-
ing in AI. However, specific subareas of AI have been eager
to abandon general-purpose knowledge representation in fa-
vor of methods that seem to address their computational core
problems better. In planning, for example, state-space search
has in the last several years been preferred to logic-based
methods such as SAT. In our recent work, we have demon-
strated that the observed performance differences between
SAT and specialized state-space search methods largely go
back to the difference between a blind (or at least planning-
agnostic) and a planning-specific search method. If SAT
search methods are given even simple heuristics which make
the search goal-directed, the efficiency differences disappear.

Introduction

A main benefit of logic-based representations is declara-
tivity, the separation between the representation language
and the algorithms for reasoning about the representation:
a logic representation has a well-defined semantics that can
be understood and reasoned about without knowing how it
is going to be used computationally. Further, the automated
reasoning methods available for example for the classical
propositional logic are powerful, relatively simple, and due
to their all-purpose nature, ideal for creating systems that
combine multi-modal reasoning.

The promise of logic in planning was initially shown in
the works by Kautz and Selman (1996) in the late 1990s,
but has hence been overshadowed by more traditional algo-
rithms, most notably state-space search with heuristic search
algorithms (Bonet and Geffner 2001). The more open-ended
state-space search framework has made it possible to easily
combine several different search methods: most of the lead-
ing state-space search planners use multiple search modes
and/or heuristics. However, progress after the initial suc-
cesses of state-space search has been slow. As we will see
in the experiments later, the scalability of the most recent
planners is essentially at the same level of the planners from
2004 and even earlier. Also, the state-space search frame-
work by itself does not support powerful modes of reason-
ing. For example, a large number of well-known state-space
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search planners either limit to the simplest possible STRIPS
language or have deficiencies in their handling more com-
plex features, such as disjunction or conditionality, which in
the SAT framework are trivial.

Arguably, the propositional logic provides a more flexible
framework for representing the planning problem and addi-
tional features, such as control knowledge (Huang, Selman,
and Kautz 1999) or symmetry-breaking constraints (Rinta-
nen 2003), without needing any modifications in the search
algorithm itself. But, the performance gap between the best
SAT-based planners and the best planners overall has been
perceived to be prohibitively wide, at least seemingly out-
weighing the benefits of the SAT framework.

However, we have recently shown that the performance
gap disappears when introducing planning-specific heuris-
tics to SAT solving: even a very simple one will lift the ef-
ficiency of SAT to the same level as with best state-space
search planners (Rintanen a2010; b2010). These results,
summarized in this paper, demonstrate that the advantages of
declarative representation of planning problems don’t con-
flict with efficiency. Interestingly, for finding optimal plans,
SAT-based search (with reasonably weak assumptions) has
recently been proved to be strictly more efficient than corre-
sponding state-space search methods (Rintanen 2011b).

The structure of the paper is as follows. The next section
explains the background of the work. Then we present the
variable selection scheme (Rintanen a2010) and briefly dis-
cuss some heuristic extensions to it. In the experiments sec-
tion we present a comparison between our planner and lead-
ing classical planners.

Preliminaries

The classical planning problem involves finding an action
sequence from a given initial state to a goal state. The ac-
tions are deterministic, which means that an action and the
current state determine the successor state uniquely. A state
s : A → {0, 1} is a valuation of A, a finite set of state
variables. In the simplest formalization of planning, actions
are pairs (p, e) where p and e are consistent sets of propo-
sitional literals over A, respectively called the precondition
and the effects. We define prec((p, e)) = p. Actions of this
form are known as STRIPS actions for historical reasons.
An action (p, e) is executable in a state s if s |= p. For a
given state s and an action (p, e) executable in s, the unique
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successor state s′ = exec(p,e)(s) is determined by s′ |= e
and s′(a) = s(a) for all a ∈ A such that a does not occur in
e. This means that the effects are true in the successor state
and all state variables not affected by the action retain their
values. Given an initial state I , a plan to reach a goal G (a
set of literals) is a sequence of actions o1, . . . , on such that
execon(execon−1(· · · execo2(execo1(I)) · · ·)) |= G.

The basic idea in applying SAT to planning is, for a given
set A of state variables, an initial state I , a set O of ac-
tions, goals G and a horizon length T , to construct a for-
mula ΦT such that ΦT ∈ SAT if and only if there is a plan
with horizon 0, . . . , T . This formula is expressed in terms
of propositional variables a@0, . . . , a@T for all a ∈ A and
o@0, . . . , o@T − 1 for all o ∈ O. For a given t ≥ 0, the val-
uation of a1@t, . . . , an@t, where A = {a1, . . . , an}, repre-
sents the state at time t. The valuation of all variables rep-
resents a state sequence so that the difference between two
consecutive states corresponds to taking zero or more ac-
tions. This can be defined in several different ways (Rinta-
nen, Heljanko, and Niemelä 2006). For our purposes it is
sufficient that the step-to-step change from state s to s′ by a
set X of actions satisfies the following three properties: 1)
s |= p for all (p, e) ∈ X , 2) s′ |= e for all (p, e) ∈ X , and 3)
s′ = execon(execon−1

(· · · execo2(execo1(s)) · · ·)) for some
ordering o1, . . . , on of X .

Given a translation into propositional logic, planning re-
duces to finding a horizon length T such that ΦT ∈ SAT,
and reading a plan from a satisfying assignment for ΦT . To
find such a T , early works sequentially tested Φ1, Φ2, and
so on, until a satisfiable formula was found. More efficient
algorithms exist (Rintanen 2004).

The Variable Selection Scheme

After investigating several different ways of improving SAT-
based planning by introducing better encoding schemes, we
decided to look at the SAT solving process itself. The plan-
ners in the last 10 years had exclusively used the conflict-
driven clause learning (CDCL) algorithm as their search
method, as employed by the currently best SAT solvers
(Moskewicz et al. 2001). The algorithm repeatedly chooses
a decision variable, assigns a truth-value to it, and performs
inferences with the unit resolution rule, until a contradiction
is obtained (the empty clause is derived, or, equivalently, the
current valuation falsifies one of the input clauses or derived
clauses.) The sequence of variable assignments that led to
the contradiction is analyzed, and a clause preventing the
repeated consideration of the same assignment sequence is
derived and added to the clause set.

Our first attempt to improve CDCL was to force it to
choose as branching variables actions that contribute to the
top-level goals. Generic SAT solvers and the VSIDS heuris-
tic used by them choose branching variables blindly (from
the point of view of the planning process), and our idea was
to introduce a small bias to this process. However, it turned
out that one does not have to use any of the strength of the
VSIDS heuristic, as simply forcing the CDCL algorithm to
do a plain form of depth-first backward chaining search is
already a dramatic improvement.

The variable selection scheme (Rintanen a2010) is based
on the following observation: each of the goal literals has to
be made true by an action, and the precondition literals of
each such action have to be made true by earlier actions (or,
alternatively, these literals have to be true in the initial state.)

The first step in selecting a decision variable is finding the
earliest time point at which a goal literal can become and re-
main true. This is by going backwards from the end of the
horizon to a time point t′ in which A) an action making the
literal true is taken or B) the literal is false (and the literal
is true or unassigned thereafter.) The third possibility is that
the initial state at time point 0 is reached and the literal is
true there, and hence nothing needs to be done. In case A we
have an action already in the plan, and in case B we choose
any action that can change the literal from false to true be-
tween t′ and t′ +1 and use it as a decision variable.1 In case
A we push the literals in the precondition into the stack and
find supporting actions for them.

The first version of our algorithm (Rintanen a2010), finds
just one action in a depth-first manner, yielding an impres-
sive performance, in comparison to earlier SAT-based plan-
ners. The second variant of the algorithm (Rintanen b2010)
increased the performance still further, now surpassing the
performance of best existing planners based on any search
method. This second variant differs in two respects. First, its
depth-first search is not terminated after one action is found,
but proceeds further to identify several actions (10 in the al-
gorithm description given below), one of which will be ran-
domly chosen as the decision variable, to allow much earlier
actions as decision variables than just those supporting the
current subgoal. Second, we replaced the stack with a prior-
ity queue, which enables more flexible traversal orders.

The relaxed selection of branching variables that does not
follow a strict backward chaining scheme was the stronger of
the two improvements. However, a small modification to the
initial selection scheme was vital: the set of multiple candi-
date actions computed should all contribute to the same top-
level goal, and actions contributing to other top-level goals
are ignored (Rintanen b2010).

The priority queue is controlled by a heuristic that orders
the subgoals. When the preconditions of an action at time
t become new subgoals and are pushed into the queue, we
give a preference to the precondition which must have been
true longer before t (i.e. its value is true for a higher number
of time points preceding t). There are often implicit order-
ing constraints between the preconditions of an action, and
this heuristic expresses a natural intuition about such order-
ings: because we always choose earliest possible actions that
support a subgoal, the subgoals which must be satisfied ear-
lier should be processed first, to avoid trying to satisfy the
subgoals in the wrong order.

The algorithm for computing a set of actions that support
currently unsupported top-level goals or preconditions of ac-
tions in the current partial plan is given in Fig. 1. For nega-
tive literals l = ¬a, l@t means ¬(a@t), and for positive lit-
erals l = a it means a@t. Similarly, we define the valuation

1Such an action must exist because otherwise the literal would
have to be false also at t′ + 1.
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1: procedure support(G,O, T, v)
2: empty the priority queue;
3: for all l ∈ G do push l@T into the queue;
4: X := ∅;
5: while the priority queue is non-empty and |X| < 10 do
6: pop l@t from the priority queue;
7: t′ := t− 1;
8: found := 0;
9: repeat

10: if v(o@t′) = 1 for some o ∈ O with l ∈ eff(o)
11: then (* The subgoal is already supported. *)
12: for all l′ ∈ prec(o) do push l′@t′ into the queue;
13: found := 1;
14: else if v(l@t′) = 0 then
15: o := any o ∈ O such that l ∈ eff(o) and v(o@t′) �= 0;
16: X := X ∪ {o@t′};
17: for all l′ ∈ prec(o) do push l′@t′ into the queue;
18: found := 1;
19: t′ := t′ − 1;
20: until found = 1 or t′ < 0;
21: end while
22: return X;

Figure 1: Computation of supports for (sub)goals

1: S := support(G,O, T, v);
2: if S �= ∅ then v(o@t) := 1 for any o@t ∈ S;
3: else
4: if there are unassigned a@t for a ∈ A and t ∈ {1, . . . , T}
5: then v(a@t) := v(a@(t− 1)) for a@t with minimal t
6: else v(o@t) := 0 for any unassigned o@t;

Figure 2: Variable selection for the CDCL algorithm

v(l@t) for negative literals l = ¬a by v(l@t) = 1− v(a@t)
whenever v(a@t) is defined. For positive literals l = a of
course v(l@t) = v(a@t).

The procedure in Fig. 1 is the main component of the vari-
able selection scheme for CDCL given in Fig. 2, in which an
action is chosen as the next decision variable for the CDCL
algorithm if one is available. If none is available, all subgoals
are already supported. Some unassigned variables still typ-
ically remain, and the remaining fact variables are assigned
the value they have in the predecessor state (line 5) and the
action variables the value false (line 6). The code in Fig. 2
replaces VSIDS in the CDCL algorithm.

Comparison

We have compared our planner with the new heuristic (Mp),
the same planner with the VSIDS heuristic (M), and the
leading classical planners that use other search methods.

The test material was over one thousand instances from
the planning competition problem sets from 1998 until
2008. Since the variable selection scheme is defined for the
STRIPS language only, we chose all the STRIPS problems2,

2An extension of the heuristics for PDDL with conditional ef-
fects and disjunction yields similar results (Rintanen 2011a).
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Figure 3: Number of instances that are solved in a given time

except that we did not choose benchmarks from an earlier
competition if the same domain had been used in a later
competition as well. We also excluded Schedule (2000) be-
cause to most planners it is difficult to ground efficiently.
It is solved very efficiently by our planner and some other
planners after it has been grounded.

All the experiments were run in an Intel Xeon CPU E5405
at 2.00 GHz with a minimum of 4 GB of main memory and
using only one CPU core. We ran our planner for all of the
problem instances, giving a maximum of 300 seconds for
each instance. The runtime includes all standard phases of a
planner, starting from parsing the PDDL description of the
benchmark and ending in outputting a plan.

We compared our planners to LAMA (Richter, Helmert,
and Westphal 2008), the winner of the last (2008) planning
competition, and YAHSP (Vidal 2004) which placed sec-
ond in the 2004 competition. These two planners appear to
be the best performing classical planners until now. We ran
the planners with their default settings, except for limiting
LAMA’s invariant computation to a maximum of 60 sec-
onds according to Helmert’s instructions, to adjust for the
300 second time limit we used.3

The configuration of our planner Mp is as in earlier pa-
pers (Rintanen a2010; b2010). The planner uses the ∃-step
semantics encoding by Rintanen et al. (2006) and the algo-
rithm B of Rintanen et al. (2006) with B = 0.9, testing hori-
zon lengths 0, 5, 10, 15, . . . and solving a maximum of 18
SAT problems simultaneously. M differs only in its use of
VSIDS instead of the new heuristic.

The results are summarized in Figure 3, also including FF
and LPG-td from the older planners. The curves show the
number of problem instances solved (y axis) with a given
timeout limit (x axis). The numbers of solved problems by
benchmark domain are listed in Table 1. The first column is
the number of (solvable) problem instances in each domain.

3The runtimes are with fixes to bugs in LAMA that affected
Philosophers and Optical-Telegraph.
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Mp MLAMAYAHSP
1998-GRID 5 4 2 5 5
1998-GRIPPER 20 20 20 20 20
1998-LOGISTICS 30 30 29 28 30
1998-MOVIE 30 30 30 30 30
1998-MPRIME 20 19 16 20 17
1998-MYSTERY 19 17 16 19 16
2000-BLOCKS 102 90 71 51 42
2000-LOGISTICS 76 76 76 76 76
2002-DEPOTS 22 22 21 16 18
2002-DRIVERLOG 20 20 15 20 20
2002-FREECELL 20 10 4 18 18
2002-ZENO 20 20 18 20 20
2004-AIRPORT 50 43 40 37 34
2004-OPTICAL-TELEGRAPH 14 14 14 2 13
2004-PHILOSOPHERS 29 29 29 11 29
2004-PIPESWORLD-NOTANK 50 32 15 44 50
2004-PSR-SMALL 50 50 50 50 50
2004-SATELLITE 36 32 29 30 36
2006-PATHWAYS 30 30 30 30 20
2006-PIPESWORLD 50 21 9 38 41
2006-ROVERS 40 40 40 40 27
2006-STORAGE 30 30 29 18 23
2006-TPP 30 30 26 30 30
2006-TRUCKS 30 30 19 8 11
2008-CYBER-SECURITY 30 30 30 18 12
2008-ELEVATORS 30 30 13 30 21
2008-OPENSTACKS 30 15 15 30 30
2008-PARCPRINTER 30 30 30 28 30
2008-PEGSOLITAIRE 30 30 25 29 29
2008-SCANALYZER 30 27 19 27 27
2008-SOKOBAN 30 6 2 18 18
2008-TRANSPORT 30 20 10 28 30
2008-WOODWORKING 30 30 30 28 28
total 1093 957 822 897 901
weighted score 3329.1024.86 27.53 28.23

Table 1: Number of instances solved in 300 seconds

The weighted score is the sum of the proportions of solved
instances for every domain. Our earlier experiments (Rin-
tanen a2010; b2010) showed that the quality of the plans
produced by Mp is roughly the same as LAMA’s.

Conclusions

We have presented simple heuristics for controlling the
conflict-driven clause-learning algorithm when it is solving
a planning problem which has been reduced to SAT. The per-
formance of the resulting planner compares very favorably
with best earlier planners.

A notable difference between our work and VSIDS
(Moskewicz et al. 2001) is that we are not using weights of
decision variables obtained from conflicts as a part of vari-
able selection. Such weights would be able to order the top-
level goals and subgoals in the computation of actions, based
on their role in conflicts. This is a promising area for future
improvement in the implementations of the heuristic.
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