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Abstract

In this paper, we propose a new unsupervised approach
for word segmentation. The core idea of our approach
is a novel word induction criterion called WordRank,
which estimates the goodness of word hypotheses (char-
acter or phoneme sequences). We devise a method
to derive exterior word boundary information from the
link structures of adjacent word hypotheses and incor-
porate interior word boundary information to complete
the model. In light of WordRank, word segmentation
can be modeled as an optimization problem. A Viterbi-
styled algorithm is developed for the search of the op-
timal segmentation. Extensive experiments conducted
on phonetic transcripts as well as standard Chinese and
Japanese data sets demonstrate the effectiveness of our
approach. On the standard Brent version of Bernstein-
Ratner corpora, our approach outperforms the state-of-
the-art Bayesian models by more than 3%. Plus, our ap-
proach is simpler and more efficient than the Bayesian
methods. Consequently, our approach is more suitable
for real-world applications.

Introduction
Word segmentation, i.e., identifying word boundaries in
continuous speech or text, is raised as the fundamental prob-
lem in Natural Language Processing (NLP) for its wide ap-
plication in speech recognition, information extraction, ma-
chine translation, etc..

Supervised methods have reported great results for word
segmentation in the literature lately (Wang, Zong, and Su
2010), but their applicability is limited in practice due to
their dependence on human efforts. In this paper we fo-
cus on unsupervised methods which have been increasingly
gaining attention in recent NLP research. For word segmen-
tation, unsupervised methods are of great interest for three
reasons. Firstly, they can learn to perform accurate word
segmentation given input of any human language with little
extra manual effort. In addition, they may give computa-
tional explanation on how children segment speech and dis-
cover words, starting from a state where they don’t know
any word knowledge. Furthermore, they may support the
domain adaptation of supervised methods.
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Recently the state-of-the-art results are reported by non-
parametric Bayesian methods (Goldwater, Griffiths, and
Johnson 2006; Johnson 2008; Mochihashi, Yamada, and
Ueda 2009). But owing to their inference procedure, they
all suffer the problem of high computational cost, which im-
pedes them to be applied in practical applications.

Zhikov (2010) pointed out the problem and presented an
efficient algorithm, yet with a little sacrifice in performance.
He also pointed out another difficulty of unsupervised word
segmentation is to find a reliable word induction criterion.

In this paper, we address both these issues by proposing a
sound criterion for word segmentation, which could be com-
puted efficiently.

It is intuitive that word boundary is key to recognize
words. Previous works have been proposed to utilize lo-
cal statistics along with heuristics to infer word boundaries
(Sun, Shen, and Tsou 1998; Jin and Tanaka-Ishii 2006). But
they focused on deciding the position of word boundaries in-
stead of recognize words as a whole. In contrast, we present
a framework for measuring the goodness of word hypotheses
in an indirect way in terms of boundary information. It in-
volves two constituents, i.e., exterior boundary values (left-
side and right-side) and interior boundary value, which are
scores associated to word hypotheses. Firstly we construct
link structures of adjacent word hypotheses in order to ex-
plore the word boundaries and their relevance. Then we use
a link analysis algorithm to calculate the exterior boundary
values which measure the goodness of their boundaries. At
last we introduce interior boundary value which represents
the interior combing degree of word hypotheses, to complete
the model. With the criterion, a Viterbi-styled algorithm
is developed to search for the optimal segmentation. We
conduct extensive experiments on various standard corpus
in different languages and our method delivers remarkable
performance. On the Brent version of Brent-Ratner corpus
(Brent 1999), our method outperforms the state-of-the-art
methods using nonparametric Bayesian models. In addition,
it is shown that our method is more efficient compared to
them.

The rest of of paper is organized as follows. After dis-
cussing related work, we describe WordRank as our method-
ology. Then we describe the experiments and finally con-
clude the paper.
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Related Work

Unsupervised word segmentation are of great interest to
NLP researchers. A good number of methods have been
proposed in the literature, with fairly good performances re-
ported. To conclude, there are two major categories, i.e.,
boundary prediction and word recognition.

Boundary prediction methods usually utilize local statis-
tics along with heuristics to decide whether there is a word
boundary between two language units (characters, phome-
nes or syllables) given the local context. The representative
examples involve Ando-Lee Criterion (Ando and Lee 2000),
Mutual Information (MI) (Sun, Shen, and Tsou 1998) and
Branching Entropy (BE) (Jin and Tanaka-Ishii 2006). Re-
cently Fleck (2008) proposed a promising algorithm called
WordEnds. It trained a boundary classifier with the utter-
ance boundary cues and then used it to mark word bound-
aries. Zhikov, Takamura, and Okumura (2010) proposed
an efficient algorithm combining the strength of Minimum
Description Length (MDL) criterion and local statistics BE.
High performance in terms of both accuracy and speed was
reported.

In contrast, word recognition methods concentrate on rec-
ognizing word units. One class of word recognition methods
are based on word induction criteria. They utilize statistic
measurements to represent the goodness of word hypotheses
and then perform optimal search by virtue of them. Descrip-
tion Length Gain (DLG) (Kit and Wilks 1999) and Acces-
sory Variety (AV) (Feng et al. 2004) fall into this category.
Another class refers to the language models. Brent (1999)
and Venkataraman (2001) proposed generative models and
used incremental search procedure to find the most proba-
ble segmentation of the whole corpus. Goldwater, Griffiths,
and Johnson (2006) presented an alternative framework with
nonparametric Bayesian methods. They developed unigram
and bigram models with Dirichlet Process (DP) and Hierar-
chical Dirichlet Process (HDP) respectively. A Gibbs Sam-
pling algorithm was used for inference. Mochihashi, Ya-
mada, and Ueda (2009) extended their work by introducing
a nested model on word spelling and proposing a more effi-
cient sampling procedure. Johnson (2008) presented Adap-
tor Grammar, a grammar-based framework combining the
strength of nonparametric Bayesian methods and various of
grammars. The state-of-the-art results are reported by the
Bayesian models.

WordRank

In this section we propose a new word induction criterion
called WordRank. The intuition behind is that word bound-
aries between adjacent words indicate the correctness of
each other, i.e., if a word hypothesis has a correct (or wrong)
word boundary, we may infer that its neighbor would simul-
taneously have correct (or wrong) word boundary at its cor-
responding side. It further indicates that the goodness of a
word’s boundaries depend on their neighbors’ boundaries,
which is similar to PageRank (Brin and Page 1998) where
the importance of a web page depends on all the pages that
link to it.

It inspires us to construct link structures based on the ad-

jacent relationship of word hypotheses and use a link analy-
sis algorithm, similar to the HITS algorithm originally pro-
posed for ranking web pages (Kleinberg 1999), to calculate
the goodness of word boundaries called Exterior Boundary
Value (EBV). And then we estimate the goodness of word
hypotheses in terms of EBV.

Constructing the Link Structures

Given an unsegmented corpora, we may retrieve “crude”
word hypotheses by considering all the character sequences
as word hypotheses. In order to reduce the number of word
hypotheses and retrieve valid ones, we use three filtering
strategies. Firstly, a practical maximum length of word hy-
potheses Lmax is introduced. Then we filter out all the word
hypotheses that only occur once in the corpora. Last but not
least, we perform an efficient statistical sub-string reduction
(Lü, Zhang, and Hu 2004) algorithm (linear time complex-
ity) to remove all the equally frequent character sequences
based on the observation that two overlapping character se-
quences with the same frequence, the shorter one is probably
redundant and hence could be discarded. Figure 1(a) depicts
a small corpus of three utterances and some retrieved valid
word hypotheses along with frequences. 1

In addition, the retrieving process offers an opportunity to
perform filtering operation based on word form constraint.
Word hypotheses that violate the constraints are not consid-
ered to be valid. Note different constrains are applied ac-
cording to specific language settings. In this paper we only
consider the vowel constraint for English transcripts, i.e., ev-
ery word must contain a vowel. Whereas for Chinese and
Japanese we do not use any word form constraint.

We then construct the link structures based on the adja-
cent relationship of all the valid word hypotheses. It could
be viewed as a graph G = (V,ELN , ERN ), comprising a set
of nodes V and two sets of directed edges ELN and ERN .
The nodes represent all the valid word hypotheses. A edge
(p, q) ∈ ELN denotes p occurs on the left of q in the cor-
pora, and a edge (p, q) ∈ ERN denotes p occurs on the right
of q. Note for symmetry, a edge (p, q) ∈ ELN indicates a
edge (q, p) ∈ ERN , we retain the redundancy in the illustra-
tion for clarity and perception.

Figure 1(b) shows part of the constructed graph on the
corpus of Figure 1(a). Consider “dog” for example, it occurs
on the right of “that” in the utterance “doyouseethatdog”, as
well as “the” in “idontseethedog”. Accordingly, there are
directed ERN edges from “dog” to “that” and “the” respec-
tively, meanwhile two ELN edges in opposite direction con-
nect to “dog”.

Calculating Exterior Boundary Values

Having constructed the link structures of adjacent relation-
ship of word hypotheses, we are allowed to clarify our first
observation on EBV of word hypotheses:

Observation 1 A word hypothesis is likely to have correct
left-side word boundary in case it has many left neighbors

1Note we do not perform filtering for the small corpus for the
purpose of demonstration.
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(a) Segmented, unsegmented corpus and
valid word hypotheses

(b) Illustration of the link structure (partial) (c) Illustration of iterative updating

Figure 1: Illustrations of constructing the link structures of word hypotheses and calculating the exterior boundary values

having right-side word boundaries identified to be correct,
and vice versa.

Accordingly, within the link structures described above,
boundaries between adjacent word hypotheses exhibit mu-
tually reinforcing relationship (Kleinberg 1999). For exam-
ple, consider word hypotheses occur on the left of “og” in
the corpus, “thatd” and “thed” are there, as shown in Fig-
ure 1(b). Since “og” has wrong left-side word boundary,
both “thatd” and “thed” would hardly have correct right-side
word boundary. In other words, the boundary correctness of
“og” affects its neighbors, and the “influence” spreads out
via the link structure of word hypotheses circularly.

We define two EBVs, i.e., Left-side Boundary Value
(LBV) and Right-side Boundary Value (RBV), represent-
ing the goodness of left-side and right-side boundary re-
spectively. According to the aforementioned statement, a
word hypothesis would receive a high LBV if its left ad-
jacent word hypotheses having high RBV s, and receive
high RBV if its right adjacent word hypotheses having high
LBV s.

An iterative algorithm is developed for calculating these
values. In the initial stage, LBV s and RBV s of all valid
word hypotheses are set to 1. At each iteration, the associate
values are updated as follows:

LBV (w)(i+1)=
∑

(l,w)∈ELN

RBV (l)(i) (1)

RBV (w)(i+1)=
∑

(r,w)∈ERN

LBV (r)(i+1) (2)

where ELN and ERN are edge sets of G described above.
We update LBV s and RBV s by accumulating the neighbor-

ing RBV s and LBV s via inbound edges respectively (See
Figure 1(c)). We firstly perform the updating of LBV s of
all word hypotheses, then the updating of RBV s.

At each iteration the values are normalized in order to
maintain the number scale, by dividing each LBV score by
the sum of the squares of all LBV scores, and dividing each
RBV score by the sum of the squares of all RBV scores, as
follows:

LBV (w)′ =
LBV (w)√∑

t LBV (t)2
(3)

RBV (w)′ =
RBV (w)√∑

t RBV (t)2
(4)

We iterate the updating-maintaining procedure for k times
to retrieve the convergent scores (The convergence was
proved by Kleinberg (1999)). Algorithm 1 presents the spe-
cific algorithm.

Consequently we calculate the EBV scores of word hy-
potheses via combining their LBV s and RBV s as follows
2:

EBV (w) = LBV (w) ∗RBV (w) (5)

Completing with Interior Boundary Value

It is not sound enough to represent the goodness of word
hypotheses using only EBV (based on LBV and RBV)
since we observe that word combinations (e.g., collocations)
would have high LBV and RBV scores for their correct left

2We have tried various combining strategies such as addition,
minimum and multiplication. The difference is trivial.

868



Algorithm 1 Iterative Calculating for LBV and RBV
Require: G(S,ELN , ERN ), n, k

1: initialize LBV (0), RBV (0)

2: for i ← 1 to k do
3: for j ← 1 to n do
4: update LBV (S[j])(i) according to Eq.(1)
5: end for
6: for j ← 1 to n do
7: update RBV (S[j])(i) according to Eq.(2)
8: end for
9: for j ← 1 to n do

10: normalize LBV (S[j])(i) according to Eq.(3)
11: end for
12: for j ← 1 to n do
13: normalize RBV (S[j])(i) according to Eq.(4)
14: end for
15: end for
16: return (LBV (k),RBV (k))

and right boundary, which leads to a long word bias problem
that word combinations are preferred while searching for the
optimal segmentation.

The root of this problem is that the exterior boundary val-
ues (LBV and RBV) only focus on the exterior of word
hypotheses with the interior ignored. We may supplement
the deficiency by incorporating a subtle indicator of bound-
ary inside word hypotheses, named Interior Boundary Value
(IBV), based on the following observation:

Observation 2 There are usually strong indicators of word
boundary inside word combinations while rarely in true
words.

Consider the following example: “thatdog”, is a word
hypothesis composed of “that” and “dog”. We may easily
locate the word boundary between “t” and “d” since “td”
hardly occurs within a word in English. In contrast, we
may not find this boundary indicator inside a true word such
as“that” and “dog”.

There are numbers of statistical measurements for the pur-
pose of word boundary indicating (See Section 2 for details).
For simplicity of implementation we choose Mutual Infor-
mation (MI), a well-defined statistical measurement, mea-
suring the combining degree of pairs of adjacent characters
(Sun, Shen, and Tsou 1998). It is defined as follows:

MI(x : y) = log2
p(x, y)

p(x)p(y)

where p(x, y) is the co-occurrence probability of charac-
ter x and y, and p(·) is the probability that the single charac-
ter occurs in the corpus. It has been reported that high MI
value indicates a good chance of two characters combining
together, while low MI value, conversely, indicates a word
boundary between the two characters.

Given a word hypothesis with length L, it has L− 1 com-
bining points, and thus L − 1 MI values. We use the min-
imum one to calculate IBV since the lowest MI value is
the strongest indicator of word boundary. Another intuition

behind is: in terms of MI, we may also consider IBV as the
overall interior combining degree of the whole word hypoth-
esis, which depends on the combining degree of its weakest
combining point. This is similar to the well-known Cannikin
Law that how much water a cannikin may hold depends on
its shortest plank.

As discussed above, IBV (w) of word hypothesis w is
calculated as follows:

IBV (w) = minL−1
i=1

(
MI(ci : ci+1)

)
(6)

where L is the length of w, ci is the ith character of w.
Finally we calculate WordRank by incorporating EBV

and IBV as follows:

WR(w) =EBV (w) ∗ f(IBV (w)
)

=LBV (w)∗RBV (w)∗f(IBV (w)
)

(7)

where f(·) is the auxiliary function utilized for searching
for the optimal performance. We use two common func-
tions, namely, polynomial and exponential, which are the
most representative types of functions, denoted as fpoly and
fexp:

fpoly(x) = xα fexp(x) = βx

The parameters α and β could be regard as adjustors for
balancing the effects of exterior and interior information
where higher values indicate higher dominance of interior
against exterior. The best state of WordRank is reached
when the exterior and interior are balanced. We decide the
optimal value of the parameters experimentally.

The factors in Equation (7) represent three parts of infor-
mation of a word hypothesis respectively, i.e., exterior (left-
side and right-side) word boundary information and interior
word boundary information. It shows that a word hypothe-
sis with high score of correct exterior boundaries and high
score of interior combing degree would be likely to be a cor-
rect word, which is fully aligned with the common observa-
tion. In this case, the word combinations with high LBV
and RBV but low IBV would be less preferred, thus the
long word bias problem described above is fixed. In light of
this equation, the model of WordRank is completed.

Segmentation Algorithm

For segmentation, we develop a Viterbi-styled algorithm
for the search of the optimal segmentation with WordRank
scores. Formally, we search for the word segmentation that
maximizes the following objective function:

S∗ = argmaxw1⊕...⊕wn=u

n∏

i=1

WR(wi)

where u is an utterance of continuous characters, w1 ⊕
...⊕ wn is the possible segmentation of u where wi is some
valid word hypothesis. WR(w) is the associate WordRank
score of w. Since we regard word segmentation as an opti-
mal problem, the segmentation with highest function value
would be considered as the resulting solution.
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Experiments

Experiment Setup

In order to demonstrate the effectiveness of our approach,
we conduct experiments on the Brent version Bernstein-
Ratner corpus (Brent 1999), as well as standard Chinese data
sets from SIGHAN Bakeoff-2005 (Emerson 2005) and the
Japanese Kyoto corpus (Kurohashi and Nagao 1998). Since
most recently proposed methods are evaluated against these
corpus, we are allowed to perform comprehensive compar-
isons.

We firstly extract valid word hypotheses, then construct
the link structures of adjacent relationship of word hypothe-
ses and finally calculate the WordRank scores following the
method described in Section 3. We set Lmax = 11 for En-
glish transcripts and set Lmax = 5 for Chinese and Japanese
(Lmax is determined by the max length of the majority of
words observed in the evaluation corpus). In practice we
run the updating-maintaining procedure for 30 iterations 3

to compute the exterior boundary values. For computing in-
terior boundary value, we use both polynomial and expo-
nential functions, correspondingly the resulting models are
denoted as WR(poly) and WR(exp) respectively. They are
incorporated with the Viterbi-styled algorithm proposed in
the previous section for searching for the optimal segmenta-
tion.

We use word token Precision (P), Recall (R) and F-score
(F) as evaluation metrics. All experiments were conducted
on the Linux platform, with a 2.4GHz Xeon 3430 CPU and
4GB of memory.

Experiments on English Phonetic Transcripts

We firstly perform experiments on the Bernstein-Ratner cor-
pus for the purpose of directly comparing with the state-of-
the-art results. The original corpus of orthographic form has
been converted to phonemic representation using a phone-
mic dictionary with 1-character phone symbols, e.g, the cor-
responding phonemic representation of “look at this” is “lUk
&t DIs”.

Recall that our approach involves a single parameter, i.e.,
α or β, which are parameters of the auxiliary functions for
computing IBV . For English transcripts, we experimen-
tally use α = 4.4 and β = 4.6. Since the parameter value
solely counts on characteristics of the target languages, e.g.,
morpheme complexity, average word length, etc., we only
need a small annotated development data to decide the opti-
mal parameter value while adapting our method to different
languages.

In Table 1, we compare the results of our method to that
of previously proposed models (We collect the results from
the literatures). Notably our method (either with polynomial
or exponential auxiliary function) achieves a 78% F-score,
outperforming all the previous results. First of all, it ex-
emplifies WordRank is a sound word induction criterion for
word segmentation. Due to the deliberate modeling of both
exterior and interior information, it avoids the problem that

3Actually the scores approximately converge around 10 itera-
tions.

Models P (%) R (%) F (%)
WordEnds - - 70.7
Ent-MDL - - 75.4
HDP(2) 75.2 69.6 72.3
NPY(2) 74.8 76.7 75.7
NPY(3) 74.8 75.2 75.0
WR (poly) 78.8 78.5 78.6
WR (exp) 77.6 78.6 78.1

Table 1: Comparison of our method with previously proposed mod-
els, i.e., WordEns (Fleck 2008) and Ent-MDL (Zhikov, Takamura,
and Okumura 2010), as well as nonparametric Bayesian models,
i.e., HDP (Goldwater, Griffiths, and Mark 2009) and NPY (Mochi-
hashi, Yamada, and Ueda 2009) on English phonetic transcripts.
The n (in parentheses) means n-gram model

Models Time
HDP 10h55min
NPY 17min
WR <3min

Table 2: Comparison of computation time of our method with
Bayesian models

other word induction criterion based methods may suffer,
e.g., prefer collocations or single character as a word. Our
method also outperforms the state-of-the-art Bayesian mod-
els, confirming the effectiveness of the approach. Besides, it
is shown that our method is superior in terms of efficiency.
Table 2 shows the comparison of computational time with
Bayesian models. Our learner only needs around one fifth of
the running time of NPY (Mochihashi, Yamada, and Ueda
2009) which used an improved inference procedure. We
find the iterative procedure for computing WordRank scores
are the most time consuming step (around 83% of the total
time). As a matter of fact, it could be remarkably improved
through parallel computing, as the way Google computes
their page ranks. We leave this for future work.

Experiments on Chinese and Japanese Data Sets

Extended experiments are conducted on Chinese and
Japanese data sets to demonstrate the applicability of our
method to other languages. We decide the auxiliary pa-
rameter experimentally in the same way as for English tran-
scripts.4

Approaches MSR CityU Kyoto
NPY(2) 80.2 82.4 62.1
NPY(3) 80.7 81.7 66.6
WR (poly) 78.6 78.7 65.0
WR (exp) 79.3 78.8 66.3

Table 3: Comparison of our method with nonparametric Bayesian
models on Chinese and Japanese data sets

Table 3 sums up the comparison of our method with the
4Within the experiments we use α = 5.5 and β = 3.4 for

Chinese, while α = 5.0 and β = 3.2 for Japanese.
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state-of-the-art models. The Chinese results are similar to
English results, confirming that WordRank is a sound word
induction criterion for different languages with distinct mor-
phological structures. Whereas Japanese F-score appears a
little low. We may not able to propose an error analysis ow-
ing to our poor knowledge on Japanese, yet the state-of-the-
art nonparametric Bayesian models present similar accuracy
as shown in Table 3. It should be noticed that Mochihashi,
Yamada, and Ueda (2009) used separate testing corpus of
Chinese data sets and random subset of the Kyoto corpus
for evaluation, thus the comparison is not direct.

Conclusion

In this paper, we proposed a simple and effective unsuper-
vised word segmentation approach. We introduced a novel
word induction criterion called WordRank, for measuring
the goodness of word hypotheses. The criterion incorporates
both the exterior and interior boundary information to model
words. We devise a method to derive exterior boundary
value from the link structures of adjacent word hypotheses
and incorporate inner boundary value to complete the model.
A Viterbi-styled algorithm is developed for the search of the
optimal segmentation. Extensive experiments confirm the
soundness of our proposed word induction criterion for word
segmentation. It is also exemplified by the experiments that
our word segmentation approach based on the proposed cri-
terion is simple, efficient and effective. Thus it is a suitable
method for real-word applications.
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