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Abstract

In this paper, we model the pair-wise similarities of a set
of documents as a weighted network with a single cutoff
parameter. Such a network can be thought of an ensem-
ble of unweighted graphs, each consisting of edges with
weights greater than the cutoff value. We look at this
network ensemble as a complex system with a tempera-
ture parameter, and refer to it as a Latent Network. Our
experiments on a number of datasets from two differ-
ent domains show that certain properties of latent net-
works like clustering coefficient, average shortest path,
and connected components exhibit patterns that are sig-
nificantly divergent from randomized networks. We ex-
plain that these patterns reflect the network phase tran-
sition as well as the existence of a community struc-
ture in document collections. Using numerical analysis,
we show that we can use the aforementioned network
properties to predicts the clustering Normalized Mutual
Information (NMI) with high correlation (ρ > 0.9). Fi-
nally we show that our clustering method significantly
outperforms other baseline methods (NMI > 0.5)

Introduction
Lexical networks are graphs that show relationship (e.g., se-
mantic, similarity, dependency, etc.) between linguistic enti-
ties (e.g., words, sentences, or documents) (Ferrer i Cancho
and Solé 2001). One specific type of lexical networks in-
clude those in which edges represent a similarity relation
between documents. These networks are fully connected,
weighted, and symmetric (if the similarity measure is sym-
metric).

If we apply a cutoff value c ∈ [0, 1], and prune the edges
with values smaller than c, we will have an ordinary binary
lexical network (i.e., an unweighted network in which edges
denote a binary relationship). Therefore, at each value c, we
have a different network. In other words, binding a network
with a cutoff parameter c on edge weights as the single pa-
rameter of the network, will result in an ensemble of net-
works with different properties. We refer to this ensemble
of networks as a latent network. More accurately, a latent
network, L, is an ensemble of lexical networks that are orig-
inated from the same document collection and differ by the
value of a single parameter.

Copyright c© 2011, Association for the Advancement of Artificial
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In our work, we analyze different properties of latent net-
works when the cutoff value changes, and will discuss how
the network undergoes different phases and exhibits high de-
grees of community structure. Finally, we propose a predic-
tive model to estimate the best cutoff value for which the
network community structure is maximum and use this esti-
mation for clustering the document collection.

Data

For our experiments, we use the data from (Qazvinian and
Radev 2011) on collective discourse, a collective human be-
havior in content generation. This data contains 50 differ-
ent datasets of collective discourse from two completely dif-
ferent domains: news headlines, and scientific citation sen-
tences. Each set consists of a number of unique headlines or
citations about the same non-evolving news story or scien-
tific paper.

Table 1 lists some of these datasets with the number of
documents in them.

ID type Name Story/Title #
1 hdl miss Venezuela wins miss universe 2009 125
2 hdl typhoon Second typhoon hit philippines 100
3 hdl russian Accident at Russian hydro-plant 101

· · · · · · · · ·
25 hdl yale Yale lab tech in court 10
26 cit N03-1017 Statistical Phrase-Based Translation 172
27 cit P02-1006 Learning Surface Text Patterns ... 72
28 cit P05-1012 On-line Large-Margin Training ... 71

· · · · · · · · ·
50 cit H05-1047 A Semantic Approach To Recognizing TE 7

Table 1: The datasets and the number of documents in each
of them (hdl = headlines; cit = citations)

Annotation

Following (Qazvinian and Radev 2008), we asked a number
of annotators to read each set and extract different facts that
are covered in each sentence. Each fact is an aspect of the
news story or a contribution of the cited paper.

For example, one of the annotated datasets, Yale, is the
set of the headlines about a murder incident at Yale. The
manual annotation of the Yale dataset has resulted in 4
facts or classes:
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(a)τ = 0.00 (b)τ = 0.25 (c)τ = 0.50 (d)τ = 0.75 (e)τ = 1.00

Figure 1: Lexical network for the Yale dataset at 5 different τ values

ID sentence f1f2f3f4

1 annie le slay suspect raymond clark due in court 1 1 1 0
2 attorneys to spar today over sealed annie le file 1 0 0 0
3 former yale lab tech due in court 0 1 1 0
4 former yale lab tech due in court for murder charge 0 1 1 1
5 photos: accused yale lab tech due in court today 0 1 1 0
6 raymond clark due in court 0 1 1 0
7 suspect in yale student killing to enter plea 1 0 1 1
8 yale lab tech murder suspect expected 0 1 0 1
9 yale lab tech murder suspect expected to plead not guilty 0 1 1 1
10 yale slaying suspect due in court 0 0 1 0

Table 2: Full Annotation of the Yale dataset results in a fact
distribution matrix of sentences.

f1 : {annie le, yale student}
f2 : {former yale lab tech, raymond clark}
f3 : {plea, court}
f4 : {murder, killing}

Table 2 shows the headlines with sentence-to-fact assign-
ments in the Yale dataset. The full annotation of each
dataset results in a number of facts (representing classes)
and a fact distribution matrix.

Network Properties
One way to look at a latent network is to use a physical point
of view. The network is a complex system, and the temper-
ature of this system will determine the interaction of the
nodes. Here, nodes with smaller similarities will join each
other at higher temperatures. In fact, the temperature of this
system can be interpreted as

τ = 1− cutoff (1)
increasing which will cause more nodes to connect to each
other.

Figure 1 shows the cosine similarity-based latent network
for the 10 documents in the Yale dataset at 5 different τ
values. At τ = 0 (cutoff = 1.00) all the edges are pruned and
the network is empty, while on the other end of the spectrum,
where τ = 1 all edges with positive weights are present.

A simple 2-D visualization of a latent network does not
reveal much information about it. Describing different as-
pects of the network structure is easier when looking at
quantitative network properties. We observe some of the la-
tent networks’ properties over different network tempera-
tures. Starting at τ = 0 and gradually increasing it till it

reaches τ = 1 will cause more edges to emerge and network
properties to change.

Number of Edges

Increasing the temperature τ (and thus decreasing the cutoff)
will cause different edges to appear in the network according
to the distribution of edge weights. To compare the number
of edges in different networks we use the normalized num-
ber of edges at each τ based on Equation 2, in which e(τ)
is the number of edges at temperature τ , and n is the total
number of documents (nodes).

ne(τ) =
2e(τ)

n(n− 1)
(2)

Number of Connected Nodes

Another property that we are interested in is the number of
nodes that have positive degrees at each τ . The number of
connected nodes quantifies the distribution of e(τ) edges be-
tween n nodes. Here, we normalize this number by the total
number of nodes in the graph based on Equation 3.

nn(τ) =
|{i|ki(τ) > 0}|

n
(3)

where ki(τ) is the degree of node i at temperature τ .

Connected Components

A connected component (cc) of a graph is a subgraph in
which there is a path between any two node pairs. The pat-
tern in which smaller components merge into larger com-
ponents or join the largest connected component (lcc) can
quantify community structure in a network. Here, we ob-
serve the number of different connected components and
the size of the largest connected component at each network
temperature τ .

ncc(τ) =
# cc(τ)

n
; nlcc(τ) =

|lcc(τ)|
n

(4)

In a network, where community structure is weak, new
nodes join the largest connected component one-by-one, and
the giant component includes most of the nodes in the graph.
However, in a network with an inherent community struc-
ture, we expect to see the formation of smaller separate con-
nected components that will only merge in high tempera-
tures.
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Average Shortest Path and Diameter

In graph theory, the shortest path between two vertices is
path with the smallest number of edges. In network analysis,
the average shortest path (asp) of a network is the mean of
all shortest path lengths between reachable vertices. More-
over, the diameter (d) of a network is defined as the length
of the longest shortest path. We observe the normalized av-
erage shortest path (nasp) and the normalized diameter (nd)
of each network at different values of τ .

nasp(τ) =
asp(τ)

n
; nd(τ) =

d(τ)

n
(5)

Clustering Coefficient

The clustering coefficient of a graph measures the number
of closed triangles in the graph. The clustering coefficient
describes how likely it is that two neighbors of a vertex are
connected. In social networks, it can represent the idea that
“the friends of my friends are my friends.” (Newman 2003a).

Watts and Strogatz’s definition of clustering coeffi-
cient (Watts and Strogatz 1998) is based on a local clustering
value for each vertex that is averaged over the entire net-
work. The clustering coefficient for a given vertex i is the
number of triangles connected to vertex i divided by the to-
tal possible number of triangles connected to vertex i. More
formally, in a undirected graph, if mi(τ) is the number of i’s
neighbors that are connected at temperature τ , and ki(τ) is
the degree of node i at τ , then the clustering coefficient of i
can be defined by Equation 6.

ci(τ) =
2mi(τ)

ki(τ)(ki(τ)− 1)
(6)

The global clustering coefficient of the network is defined
by Equation 7. Higher global clustering coefficient values of
a network would imply the existence of groups of nodes in
the network that are densely connected.

cc(τ) =
1

n

∑
i

ci(τ) (7)

Phase Transition

Increasing τ in a latent network will cause new edges to
emerge and network properties to change. We observe these
changes in non-overlapping intervals of τ ∈ [0, 1].

The solid black lines in Figure 2 show 4 network prop-
erties for the Yale dataset: clustering coefficient, average
shortest path, number of connected components, and the size
of the largest connected component. This figure also plots
the same properties for a network of the same size and edge
weights, but in which edges are randomly assigned to node
pairs. We can think of this randomization as a random per-
mutation of edges that preserves the number and the weights
of edges.

Figure 2 reveals a lot of information about the structure of
the Yale latent network. When τ = 0 where the network
is empty the latent network and the randomized version are
identical. For values of τ ∈ [0, 0.2], the two networks exhibit
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Figure 2: clustering coefficient (cc), average shortest path
(nasp), connected components (ncc), and largest connected
component (nlcc) in the Yale latent network over τ , com-
pared with a randomized network of the same size.

similar behavior: clustering coefficient is very small, short-
est path lengths increase, the number of connected compo-
nents decrease and the largest connected component get big-
ger. However, for values of τ > 0.2 the two networks show
different behavior until τ is approximately greater than 0.8,
where both networks become very dense and exhibit similar
patterns again.

We refer to each of these intervals, in which the network
has a different behavior, as a phase. One such phase is when
the network’s different connected components exhibit high
degrees of community structure. The shaded area in Figure 2
(τ ∈ [0.2, 0.4]) shows a phase in which the clustering coeffi-
cient spikes; shortest paths, unlike the randomized network,
get smaller; the number of connected components is non-
decreasing; and the largest connected component does not
get larger. These patterns suggest the formation of dense
communities in this interval because of two reasons: (1)
Nodes connect to smaller components rather than the giant
component. (2) Current components in the graph get denser
rather than joining each other. Our goal in the rest of this pa-
per is to predict a value τ̂ that best characterizes this phase,
and for which the network has the best clustering of nodes
represented by different connected components.

To cluster the network at each τ , we simply assign all
the nodes in a connected component to the same clus-
ter, and assign isolated (degree = 0) nodes to separate in-
dividual clusters. To evaluate this clustering we use the
fact distribution matrices from the annotations and calcu-
late the normalized mutual information (NMI) proposed
by (Manning, Raghavan, and Schütze 2008). Let’s assume
Ω = {ω1, ω2, . . . , ωK} is the set of clusters and C =
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{c1, c2, . . . , cJ} is the set of classes. Then,

NMI(Ω,C) =
I(Ω;C)

[H(Ω) +H(C)]/2
(8)

where I(Ω;C) is the mutual information:

I(Ω,C) =
∑
k

∑
j

P (ωk ∩ cj) log
P (ωk ∩ cj)

P (ωk)P (cj)
(9)

=
∑
k

∑
j

|ωk ∩ cj |
N

log
N |ωk ∩ cj |
|ωk||cj | (10)

where P (ωk), P (cj), and P (ωk∩cj) are the probabilities of
a document being in cluster ωk, class cj , and in the intersec-
tion of ωk and cj , respectively. Here, H is entropy:

H(Ω) = −
∑
k

P (ωk) logP (ωk) (11)

= −
∑
k

|ωk|
N

log
|ωk|
N

(12)

I(Ω;C) in Equation 9 measures the amount of information
that we would lose about the classes without the cluster as-
signments. The normalization factor ([H(Ω) +H(C)]/2) in
Equation 8 enables us to trade off the quality of the clus-
tering against the number of clusters, since entropy tends to
increase with the number of clusters. For example, H(Ω)
reaches its maximum when each document is assigned to
a separate cluster. Because NMI is normalized, we can use
it to compare cluster assignments with different numbers
of clusters. Moreover, [H(Ω) + H(C)]/2 is a tight upper
bound for I(Ω;C), making NMI obtain values between 0
and 1 (Manning, Raghavan, and Schütze 2008).

The evolution of a latent network over τ can be illus-
trated using a dendrogram, and characterized by the qual-
ity of the clustering that the connected components produce.
Figure 3 shows NMI(Ω,C) versus τ in the Yale dataset
aligned with a clustering dendrogram. The shaded area in
the plot (τ ∈ [0.2, 0.4]) shows the area in which any cut on
the dendrogram will result in a maximum community struc-
ture characterized by NMI.

Optimization

To find the best cut on the dendrogram, we propose a model
that is similar to the Information Bottleneck method (Dai et
al. 2006) in optimizing clustering mutual information.

We build an L1-regularized log-linear model (Andrew
and Gao 2007) on τ and 7 network-based features dis-
cussed before to predict NMI(Ω,C) at each τ . Let’s sup-
pose Φ : X × Y → R

D is a function that maps each (x, y)
to a vector of feature values. Here, the feature vector is the
vector of coefficients corresponding to τ and 7 different net-
work properties, and the parameter vector θ ∈ R

D (D = 8
in our experiments) assigns a real-valued weight to each fea-
ture. This estimator chooses θ to minimize the sum of least
squares and a regularization term R.

θ̂ = argmin
θ

{1
2

∑
i

||〈θ, xi〉 − yi||22 +R(θ)} (13)
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Figure 3: The dendrogram for the Yale dataset’s latent net-
work. Different sentences join into connected components at
different temperatures.

where the regularizer term R(θ) is the weighted L1 norm of
the parameters.

R(θ) = α
∑
j

|θj | (14)

Here, α is a parameter that controls the amount of regular-
ization (set to 0.1 in our experiments).

To optimize the L1-regularized objective function, we use
the orthant-wise limited-memory quasi-Newton algorithm
(OWL-QN), which is a modification of L-BFGS that allows
it to effectively handle the discontinuity of the gradient (An-
drew and Gao 2007). This algorithm works quite well in
practice, and typically reaches convergence in even fewer
iterations than standard L-BFGS (Gao et al. 2007).

NMI Prediction

Using 5-fold cross validation scheme in each category, we
predict the value of NMI(Ω,C) (N̂MI) at each τ for each
network. In each fold the training data consists of 20 net-
works. For each network Li, we observe 201 values of τ
(τ ∈ [0, 1] with increments of 0.005), and calculate NMI
and 7 network-based features in Li. We use all the observa-
tions from 20 networks to predict NMI at each τ in the test
networks.

The result of this experiment is a list of N̂MIs at each
τ for each network. Table 3 shows the average correlation
between NMIs and N̂MIs in each category, using different
features. The highest correlation is when we use all the fea-
tures. However, clustering coefficient seems to play as an
important indicator of the clustering quality.

Domain Adaptation

To generalize the effectiveness of network-level features in
predicting cluster quality, we design the following experi-
ment. We first use τ and 7 network features to train a model
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Features headlines citations Mean
τ+ ne + nn + ρ 95% C.I. ρ 95% C.I.
ncc + nlcc 0.904 [0.844, 0.964] 0.923 [0.857, 0.989] 0.913
nasp + nd 0.861 [0.790, 0.932] 0.886 [0.796, 0.976] 0.873
cc 0.907 [0.856, 0.958] 0.805 [0.716, 0.894] 0.856
all 0.906 [0.845, 0.967] 0.923 [0.864, 0.982] 0.914

C.I. = Confidence Interval

Table 3: Average Pearson Correlation coefficient between
clustering NMI and predicted NMI at different τ values for
each network, using various features

headlines citations Mean
ρ 95% C.I. ρ 95% C.I.

0.865 [0.786, 0.945] 0.929 [0.867, 0.991] 0.897
C.I. = Confidence Interval; Features: all.

Table 4: Average prediction correlation when the model is
trained on the other category.

on all the 25 networks from the citations category (at 201
equally spaced values of τ ∈ [0, 1]) and use this model to
predict NMI at each τ for each headline network. We also do
the same experiment when the model is trained on headline
networks and tested on citation networks. Table 4 reports
the average correlation between predicted NMIs and actual
NMIs at various τ values.

Clustering

We have shown the effectiveness of network-based features
in predicting the clustering quality. Here, we employ our
model to find a good clustering of a document collection.
Our clustering works by simply applying the best clustering
τc, the temperature that results in the highest predicted NMI:

τc = arg max
τ∈[0,1]

N̂MI(τ) (15)

Applying τc to a latent network means pruning all the edges
whose weight is below the cutoff from Equation 1. We then
simply, assign all the nodes in each connected component to
a single cluster.

Here, to build a predictive model of NMI, we follow our
first experiment, and perform a 5-fold cross validation for
each category. We compare the results of this experiment
with 3 clustering systems: Random, Modularity-based, and
K-means.

Random The Random clustering, randomly assigns each
document to one of k clusters. Here we assigned k to be the
number of classes in each dataset (|f |). Although Random is
basically a weak baseline, using |f | as the number of classes
makes is stronger.

Modularity-based Modularity is a measure of network
community division quality and is based on the measure of
assortative mixing (Newman 2003b). Here we explain New-
man’s definition of modularity as defined in (Newman 2004;
Clauset, Newman, and Moore 2004). Consider a division in
the network with k communities. Let’s define e as the com-
munity matrix. e is a k × k symmetric matrix in which eij

Method headlines citations Mean
NMI 95% C.I. NMI 95% C.I.

Random 0.183 [0.124, 0.243] 0.272 [0.201, 0.343] 0.227
K-means(4) 0.310 [0.244, 0.377] 0.333 [0.253, 0.413] 0.321
K-means(f) 0.364 [0.289, 0.439] 0.378 [0.298, 0.458] 0.371
Modularity 0.254 [0.193, 0.315] 0.298 [0.234, 0.362] 0.276
Latent network 0.489 [0.425, 0.553] 0.575 [0.515, 0.635] 0.532

C.I. = Confidence Interval

Table 5: Average clustering Normalized Mutual Information
(NMI) for each method, in each category.

is the fraction of all edges in the network that link a vertex
in community i to a vertex in community j. The trace of this
matrix is the fraction of edges that link vertices within the
same community.

Tr e =
∑
i

eii (16)

A good division should result in a high value of the trace
matrix. Let’s also define the row sums as ai =

∑
j eij ,

which represents the fraction of edges that connect to ver-
tices in community i. In a random network in which edges
fall between nodes regardless of any community structure,
we would have eij = aiaj . In such a network, a2i shows the
fraction of edges within the community i. Given this setting,
modularity is defined as Equation 17

Q =
∑
i

(eii − a2i ) (17)

If the number of within-community edges is no better than
random, we will have Q = 0. Higher values of Q indicates
strong community structure, while Q = 1 is the maximum
value Q can obtain.

The modularity-based algorithm (Newman 2004) uses
edge betweenness to do the clustering. Edge betweenness
in a network is an extension of the node betweenness defini-
tion (Freeman 1977), and measures the number of shortest
paths in the graph that fall on the given edge. Intuitively, re-
moving edges will high betweenness values will cause node
pair to become more separated and form communities. Thus
this algorithm iteratively removes edges with highest be-
tweenness values, and stops when modularity is maximal.

K-means We finally used two variants of the K-means al-
gorithm as baselines. In the first one, we run K-means on
each collection with a constant number of clusters (k= 4 in
our experiments), and in the second one we assign k to be
the number of classes from the annotations in each dataset
(k = |f |).

Table 5 lists the average NMI achieved by each method in
each category. As this table shows the latent network model
can achieve high values of NMI in clustering while outper-
forming other state of the art algorithms.

Related Work

Several properties of lexical networks have been analyzed
before (Ferrer i Cancho and Solé 2001; Ferrer i Cancho,
Solé, and Köhler 2004). Steyvers and Tenenbaum (Steyvers
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and Tenenbaum 2005) examined free association networks,
WordNet, and the Roget Thesaurus, and noted five different
properties in semantic networks.

The evolution of lexical networks over time has also been
studied in (Dorogovtsev and Mendes 2001; Caldeira et al.
2006). These studies found that the resulting network for a
text corpus exhibited small-world properties in addition to a
power-law degree distribution.

It has been noted that although the standard growth mod-
els based on preferential attachment fit the degree distribu-
tion of the world wide web and citation networks, they fail
to accurately model the cosine distribution of the linked doc-
uments. A mixture model for cosine distribution of linked
documents is proposed in (Menczer 2004), which combines
preferential attachment with cosine similarity. This model
makes use of the idea that authors don’t just link to the
common pages on the web, but also take into account the
content of these pages. Authors tend to link to and cite arti-
cles that are related to their own content. Menczer’s model
generates networks that reproduce the same degree distribu-
tion and content distribution of real-world information net-
works. They also generate networks by simulating the Open
Directory Project (DMOZ) network and a collection of ar-
ticle published in the Proceedings of the National Academy
of Sciences (PNAS). Their results show that their model not
only fits the degree distribution, but it fits the similarity dis-
tribution, where the probability of a node to be linked is

Pr(i) = α
k(i)

mt
+ (1− α)P̄ r(i)

where i < t and α ∈ [0, 1] is a preferential attachment pa-
rameter.

Finally, graph based techniques have been used for other
applications in NLP such as summarization (Erkan and
Radev 2004), and summary evaluation (Pardo et al. 2006).

Conclusion

In this work, we define latent network, an ensemble of sim-
ilarity networks between documents, and show how we can
exploit its properties to predict the best cutoff at which the
community structure in the network, and thus the cluster-
ing quality is maximum. We will pursue 3 ideas in future:
(1) Apply the clustering technique to other tasks like text
summarization and perform an extensive extrinsic evalua-
tion of the clustering technique. (2) Extend our datasets to
even wider range of document types. (3) Examine the rela-
tion between phase transition in document collections and
the underlying Zipfian distribution. Such a model would en-
able us to explain why some certain patterns are seen in doc-
ument networks but not other social networks.
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