
Tree Sequence Kernel for Natural Language

Jun Sun† Min Zhang‡ Chew Lim Tan†
†School of Computing, National University of Singapore ‡Institute for Infocomm Research

sunjun@comp.nus.edu.sg mzhang@i2r.a-star.edu.sg tancl@comp.nus.edu.sg

Abstract

We propose Tree Sequence Kernel (TSK), which im-
plicitly exhausts the structure features of a sequence
of subtrees embedded in the phrasal parse tree. By in-
corporating the capability of sequence kernel, TSK en-
riches tree kernel with tree sequence features so that
it may provide additional useful patterns for machine
learning applications. Two approaches of penalizing the
substructures are proposed and both can be accom-
plished by efficient algorithms via dynamic program-
ming. Evaluations are performed on two natural lan-
guage tasks, i.e. Question Classification and Relation
Extraction. Experimental results suggest that TSK out-
performs tree kernel for both tasks, which also reveals
that the structure features made up of multiple subtrees
are effective and play a complementary role to the sin-
gle tree structure.

Introduction

Kernel methods, which are able to efficiently evaluate the
similarity between feature vectors, have been widely applied
in many machine learning tasks. Basically, kernel methods
employ a symmetric kernel function, of which the corre-
sponding kernel matrix is positive semidefinite, to measure
the similarity of dot product between two objects. By appro-
priately designing the kernel function, the dot product be-
tween the high dimensional feature vectors can be implicitly
evaluated without enumerating all the features.

By applying in certain learning machines, such as Support
Vector Machines, kernel methods can benefit many clas-
sification tasks in Natural Language Processing (NLP). In
many cases, the input data of these tasks are expressed as se-
quences and trees. Consequently, kernel methods have been
applied in these structures, i.e. sequence kernel (Lodhi et
al. 2002) and tree kernel (Collins and Duffy 2002), both
of which are instantiations of Convolution kernels (Haus-
sler 1999). In terms of the tree structure, Collins and Duffy’s
tree kernel explores the feature space of all subtree types in
the syntactic parse tree. To compute the similarity between
two parse trees, the kernel function is evaluated by counting
the number of common subtrees in each type. Tree kernel

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

has been successfully applied in many tasks such as syntac-
tic parsing (Collins and Duffy 2002), question classification
(Moschitti 2006), semantic parsing (Moschitti 2004), rela-
tion extraction (Zhang, Zhou, and Aw 2008) and bilingual
alignment (Sun, Zhang, and Tan 2010). In view of the suc-
cess of tree kernel, additional attempts have been made to
enlarge the substructure space. Partial tree kernel (Moschitti
2006) allows partial rule matching by ignoring some child
nodes in the original production rule. Grammar driven tree
kernel (Zhang et al. 2008) modifies the original rules by gen-
eralizing certain grammar tags.

Alternatively, we propose Tree Sequence Kernel (TSK),
which adopts the structure of a sequence of subtrees other
than the single tree structure. Unlike previous works (Mos-
chitti 2006; Zhang et al. 2008) which tend to modify the
original rules in a parse tree, TSK strictly complies with the
original production rules. Leveraging sequence kernel and
tree kernel, TSK enriches sequence kernel with syntactic
structure information and enriches tree kernel with discon-
nected subtree sequence structures. By combining the bene-
fits of both structures, it is expected that TSK would be more
powerful than the single tree based kernels.

To achieve the integration of sequence kernel into tree ker-
nel, we propose Set Sequence Kernel (SSK) at first, which
allows multiple choices of symbols in any position of a se-
quence. SSK is then combined with tree kernel to accom-
plish the evaluation of TSK. We propose two SSKs with dif-
ferent perspectives in penalizing the substructures. In conse-
quence, two TSKs are correspondingly constructed. To ver-
ify their effectiveness, we apply TSK in two NLP tasks, i.e.
Question Classification and Relation Extraction. The evalu-
ation is conducted against Collins and Duffy’s tree kernel.
Experimental results suggest that TSK outperforms tree ker-
nel, which consequently ensures the effectiveness of the tree
sequence features in the corresponding tasks.

The Tree Sequence Structure

A tree sequence embedded in a parse tree is the structure of
an arbitrary number of subtrees. When the subtree number
is restricted to 1, the tree sequence structure is equivalent to
a single tree structure. In other words, single tree structure is
a special case of the tree sequence structure. We present in
Fig. 1(b,c,d) some examples of tree sequence structures em-
bedded in the parse tree of Fig. 1(a). The subtree sequence

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

921

NNJJ

last year

NNS

results

...

NN POS

JJ

JJ

last good'syear

NP

NP

NNS

results

NNJJ

last year

NN POS

'syear

NN POSJJ

last 'syear

, ,

POSJJ

last 's

, ...

NN POSJJ

last 's

NP

NN POSJJ

'syear

NP

NN POSJJ

last 'syear

NP

NN POSJJ

last year

NP

NN POSJJ

's

NP

NN POSJJ

last 's

NP

NN POSJJ

last

NP

NN POSJJ

NP

NN

POS

JJ

last

's

year

NN POSJJ

last 'syear

NP

a. b. c.

d.

Figure 1: Illustration for Tree Sequence Structure

can be either contiguous, i.e. covering a contiguous context
(Fig. 1(b) and first three in Fig. 1(c)) or be non-contiguous,
i.e. with gaps between the adjacent subtrees (last one in
Fig. 1(c) and Fig. 1(d)).

From Fig. 1, we may find that TSK are advantageous over
tree kernel in certain aspects.

First, TSK may enrich the single tree representation with
additional meaningful patterns. For the case of contiguous
spans, tree kernel can only capture syntactic information
when the span is covered by a single tree structure. As shown
in Fig. 1(b), 11 types of subtree features over the context of
“last year ’s” can be captured by tree kernel. However, cer-
tain meaningful patterns like “last year” cannot be individu-
ally captured. On the contrary, when the tree sequence struc-
ture is allowed, additional subtree sequence features can be
captured as shown in Fig. 1(c), where the syntactic struc-
ture over “last year” can be captured as a subtree sequence
consisting of two subtrees. As for the non-contiguous case,
since single tree based kernels require the structure features
to be connected, it cannot deal with disconnected structures.
Instead, TSK is able to employ the structure of multiple sub-
trees that cover a non-contiguous context as shown in exam-
ple Fig. 1(d) and the last example of Fig. 1(c).

Second, TSK may help to match large structures. In sin-
gle tree based kernels, matching large structures is hard to
achieve, since large structures tend to be very sparse in the
data set. In addition, the structure may not be entirely ben-
eficial. It is quite likely that only certain parts of a large
structure can be employed as meaningful patterns. TSK ad-
dresses the large structure matching problem by decompos-
ing a large structure into multiple disconnected parts and
matching certain parts each time. When the meaningful parts
are matched together, additional useful patterns can be cap-
tured by TSK. For example, in Fig. 1(a), to match the pattern
of “last year” and “results” together, tree kernel can only
consult to the entire tree structure which may be too sparse
to be matched. Alternatively, TSK can match this pattern by
a non-contiguous subtree sequence which consisting of three
subtrees in Fig. 1(d).

The structure of tree sequence has been found to be ef-
fective in syntactic driven tasks, such as syntax based statis-
tical machine translation. Sun, Zhang, and Tan (2009) pro-
pose non-contiguous tree sequence based translation model
which employs tree sequence as translation equivalences.
In this model, the tree sequence structure relaxes the struc-
tural constraint of single tree based models without sacrific-

ing the grammatical information embedded in each subtree.
Hence, the tree sequence structure is beneficial in capturing
the structural divergence beyond the syntactic constraints
across languages. Witnessing their success in applying tree
sequence in multilingual parse trees, we attempt to use tree
sequence in monolingual applications.

Preliminary Knowledge

Before presenting the algorithms for TSK, we briefly review
tree kernel and sequence kernel, which will benefit under-
standing of TSK afterwards.

Tree Kernel

Tree Kernel (Collins and Duffy 2002) assesses the number
of common subtrees between two parse trees by implicitly
evaluating the dot product of the subtree feature vectors in
high dimensional space. Given two parse trees T and T ′, the
tree kernel function can be computed as

Kt(T, T
′) =

|T |∑
i=1

⎛
⎝ ∑

n∈NT

Ii(n) ·
∑

n′∈NT ′

Ii(n
′)

⎞
⎠

=
∑

n∈NT

∑
n′∈NT ′

Λ(n, n′)

where NT and NT ′ refer to the node sets of the parse trees
T and T ′. Let T refer to the substructure space. Let Ii(n)
refer to an indicator function which equals to 1 iff the corre-
sponding subtree is rooted at the node n and 0 otherwise.

Let Λ(n, n′) =
∑|T |

i=1 (Ii(n) · Ii(n′)) evaluate the num-
ber of matched subtrees rooted at n and n′. Λ(n, n′) can be
evaluated via dynamic programming as follows:
(1) If the production rule rooted at n and n′ are different,
Λ(n, n′) = 0;
(2) else if both n and n′ are POS tags, Λ(n, n′) = λ;
(3) else Λ(n, n′) = λ

∏nc(n)
j=1 (1 + Λ(c(n, j), c(n′, j))).

where nc(n) is the number of children of node n. Let c(n, j)
be the j-th child of node n. Let λ ∈ [0, 1] be the decay factor
for the depth of the subtree. Tree kernel can be evaluated in
O(|NT | · |NT ′ |)

Sequence Kernel

Sequence kernel applied in document classification explores
the feature space with respect to bag of characters (Lodhi et

922

al. 2002) and bag of words (Cancedda et al. 2003). Given
two sequence s and s′, sequence kernel match all identi-
cal subsequences shared by s and s′. The kernel function
is then evaluated by the number of matched subsequences
(both contiguous and non-contiguous).

Let Σ be a finite symbol set. Let s = s0s1 · · · s|s|−1 be a
sequence with each item si to be a symbol, i.e. si ∈ Σ, 0 ≤
i ≤ |s| − 1. Let i = [i1, i2, . . . , im], where 0 ≤ i1 < i2 <
· · · < im ≤ |s|−1, be a subset of indices in s. Let s[i] ∈ Σm

refer to the subsequence of si1si2 · · · sim . Then for a certain
subsequence length of m, the kernel function is defined as

K̃m(s, s′) =
∑

u∈Σm

u′∈Σm

u=u′

⎛
⎝ ∑

i:u=s[i]

p(u, i) ·
∑

j:u′=s′[j]

p(u′, j)

⎞
⎠

where p(u, i) and p(u′, j) are the respective weights con-
tributed to the kernel value when u and u′ are matched. The
standard sequence kernel (Lodhi et al. 2002; Cancedda et al.
2003) employs a weighting function which penalizes both
the number of matching symbols and the length of gaps us-
ing the same decay factor ρ ∈ [0, 1]. In other words, the
penalty covers the whole span of a given subsequence from
the very beginning symbol to the ending symbol.

p(u, i) = ρ(im−i1+1)

p(u′, j) = ρ(jm−j1+1)

Set Sequence Kernel

Before proposing TSK, we propose Set Sequence Kernel
(SSK). Based on SSK, TSK can be well defined afterwards.

Let Σ be a finite symbol set. Let S = S0S1 · · ·S|S|−1

be a Set Sequence with each item Si to be an ordered sym-
bol set, i.e. Si ⊆ Σ, 0 ≤ i ≤ |S| − 1. Let S(i,̂i) be

a symbol, i.e. S(i,̂i) ∈ Si, 0 ≤ î < |Si|. Let (i, î) =

[(i1, î1), (i2, î2), . . . , (im, îm)], where 0 ≤ i1 < i2 < · · · <
im ≤ |S| − 1 and 0 ≤ îk < |Sk|, be a subset of index pairs
in S. In each index pair, the first element denotes the index
of a symbol set and the second element denotes a specific
element in this symbol set. Let S[(i, î)] ∈ Σm refer to the
subsequence S(i1 ,̂i1)

S(i2 ,̂i2)
· · ·S(im ,̂im). Then for a certain

subsequence of length m, the kernel is defined as

K̃m(S, S′) =
∑

u∈Σm

u′∈Σm

u=u′

⎛
⎜⎜⎜⎝

∑
(i,̂i):

u=S[(i,̂i)]

p(u, i) ·
∑
(j,̂j):

u′=S′[(j,̂j)]

p(u′, j)

⎞
⎟⎟⎟⎠

According to Sequence kernel, the penalizing function
p(u, i) can be the lexical span length. Although this may
work well for character based sequence with each item cov-
ering exactly length of 1, it is very likely that the method
would not adapt well on tree sequence, since the size of sub-
trees varies a lot. In addition, penalty on spans may violate
the purpose of matching syntactic tree structures, that tree
structures covering different length of spans are identically

considered. As a result, instead of adapting the standard se-
quence kernel function, we propose new kernel functions for
Set Sequence using two alternative penalizing approaches.
One is to penalize the count of matching symbols. The other
is to penalize the number of gaps ignoring the span length
i.e. each gap between two matched symbols only incurs the
decay factor once, no matter how large span the gap covers.

To facilitate the illustration of TSK in later sections, we
define Km(i, j) to be the kernel value that match all the m-
length subsequences up to the indices i and j. Therefore,
SSK that matches all the subsequences with length m can
be defined as Km(|S| − 1, |S′| − 1) = K̃m(S, S′), which
evaluates symbols from the 0-th set to the last set of S
and S′. Thus we have transformed the kernel function from
K̃m(S, S′) to Km(i, j), where 0 ≤ i < |S| and 0 ≤ j < |S′|
and evaluate the latter kernel using dynamic programming.

Penalizing Count of matching symbols (μ)

The kernel function Km(i, j) which penalizes the count of
matching symbols can be evaluated as follows.

K ′′
m(i, j) = 0 if min(i, j) < m− 1 or i, j < 0

K ′
m(i, j) = 0 if min(i, j) < m− 1 or i, j < 0

K ′
m(i, j) = 1 if m = 0

K ′′
m(i, j) = K ′′

m(i, j − 1) +
∑
si∈Σ
si∈Si

∑
s′j∈Σ

s′j∈S′
j

si=s′j

K ′
m−1(i− 1, j − 1)

K ′
m(i, j) = K ′

m(i− 1, j) +K ′′
m(i, j) (1)

Km(i, j) = μm ·K ′
m(i, j)

To evaluate Km(i, j), we use two intermediate matching
functions K ′

m(i, j) and K ′′
m(i, j). Let K ′

m(i, j) refer to the
kernel values when the penalty factor μ is not taken ac-
count. In other words, each pair of matching subsequence
contributes exactly 1 to the kernel K ′

m(i, j). In Equation 1,
K ′

m(i, j) is evaluated by the kernel value which does not
match the symbols in the i-th set Si, i.e. K ′

m(i − 1, j) and
the value which matches the symbols in the i-th set Si, i.e.
K ′′

m(i, j). Given that the i-th set Si is matched, K ′′
m(i, j) is

evaluated by the kernel value which does not match the sym-
bols in the j-th set S′

j , i.e. K ′′
m(i, j− 1) and the kernel value

which matches symbols in the i-th set Si and the symbols in
the j-th set S′

j .

Penalizing Count of Gaps (τ)

The kernel function Km(i, j), which penalizes the count of
gaps in the sequence, can be evaluated as follows.

K (l)
m (i, j) = 0 if min(i, j) < m− 1 or i, j < 0

for all l ∈ {1, 2, 3, 4}
K (4)

m (i, j) = 1 if m = 0

K (1)
m (i, j) = Km(i− 1, j − 1)

K (2)
m (i, j) = K (2)

m (i, j − 1) +K (4)
m (i, j − 1)

K (3)
m (i, j) = K (3)

m (i− 1, j) +K (4)
m (i− 1, j)

923

K (4)
m (i, j) =

∑
si∈Σ
si∈Si

∑
s′j∈Σ

s′j∈S′
j

si=s′j

τ2K
(1)
m−1(i−1,j−1)+τK

(2)
m−1(i−1,j−1)

+τK
(3)
m−1(i−1,j−1)+K

(4)
m−1(i−1,j−1)

Km(i, j) =
4∑

l=1

K (l)
m (i, j)

Similar with the previous section, we also propose cer-
tain intermediate matching functions, i.e. K(l)

m (i, j), l ∈
{1, 2, 3, 4}, to accomplish efficient evaluation of Km(i, j).
Let K(1)

m (i, j) refer to the case where neither the symbols
in set Si or the symbols in set S′

j are matched in the sub-

sequence. Let K(2)
m (i, j) refer to the case where a symbol

in set Si is matched but none of the symbols in set S′
j are

matched in the subsequence. Let K(3)
m (i, j) refer to the case

where none of the symbols in set Si are matched but a sym-
bol in set S′

j is matched in the subsequence. Let K(4)
m (i, j)

refer to the case where a symbol in set Si and a symbol in set
S′
j match to each other in the subsequence. The decay factor

τ is incurred in computing K
(4)
m (i, j), when both symbols

are matched. The evaluation of Km(i, j) can be achieved by
the sum of all the four cases.

Generally, the evaluation of both kernel functions can be
accomplished in O(m|Σ|S|

i=0Si|·|Σ|S′|
j=0S

′
j |), where m is max-

imal number of symbols allowed in a matched subsequence.

Tree Sequence Kernel

In order to evaluate TSK, we integrate the algorithms of SSK
and tree kernel by means of certain modifications.

To apply the SSK algorithm, we first transform the parse
tree structure into a valid Set Sequence structure. Given a
parse tree T with span length L, the node set Si for all the
indices 0 ≤ i < L can be constructed by delivering all the
nodes n to set Si, when the end index of the span covered
by n equals to i. In Fig. 2, we construct the Set Sequence for
a parse tree with span [0, 4] by sending the internal nodes
to the set S0, . . . , S4. For example, since NN1 is ended with
index 1, we put NN1 in S1.

The general idea of the TSK evaluation is to match the
subtrees in a subtree sequence from left to right and from top
to bottom. Given a subtree sequence to be matched, the key
issue to achieve this goal is the root node rooted at each sub-
tree. When the root node n of a subtree t is matched, we need
to vertically move downwards and match the entire subtree
structure t. In addition, we also need to horizontally move to
the right side of t and match the root node n′ of the subtree
t′ that is adjacent to t. A gap is allowed between the sub-
tree t and the subtree t′. Consequently, the subtree sequence
matching problem is transformed into a problem of match-
ing the root node sequences and the single tree structures.
To implement this idea in dynamic programming, the hori-
zontal evaluation is achieved by incurring SSK on the node
sequence set of the given parse tree pair. In other words, any
matched node in the node set will be considered as the root
of the subtree to be matched. At the same time, the verti-

NN2DT2

NP2

PP

NP3

IN

the theonbook desk

NN1DT1

NP1

NP1
NN1

DT1 IN DT2

NN2
NP2
NP3

PP

S0 S1 S2 S3 S4

Figure 2: Construction of Node Set Sequence

cal evaluation is achieved by using the tree kernel function
Λ(., .) within the root-matched subtrees.

Before presenting the algorithms, we define certain nota-
tions. Let Π be a finite node symbol set. For any node n, let
nb refer to the beginning index of the span covered by n,
while ne refer to the end index. Take the node NN3 in Fig. 2
for example. We have NN3

b = 3 and NN3
e = 4.

Penalizing Count of matching subtrees (μ)

At the beginning, we modify certain kernel functions in the
context of SSK to adapt the SSK computation to TSK with
the penalty of the count of matching subtrees. Briefly, the
adaptation of SSK to TSK is achieved by two major modifi-
cations:

First, TSK incurs the tree kernel computation of Λ(n, n′)
when the node n ended with i matches the node n′ ended
with j. This is achieved by modifying K ′′

m(i, j) in the con-
text of SSK.

Second, each symbol matched in SSK is considered as
the root node of a subtree in the matching subtree sequence.
When a node pair (n, n′) is matched in K ′′

m(i, j), it reuses
the kernel values before the beginning indices of (n, n′).
This avoids the matching of other nodes in the span cov-
ered by (n, n′), since any two subtrees in a given sub-
tree sequence cannot overlap. This again requires modify-
ing K ′′

m(i, j) in the context of SSK by changing K ′
m−1(i−

1, j − 1) to K ′
m−1(nb − 1, n′

b − 1).
Therefore, with other equations to be the same, we only

need to modify K ′′
m(i, j) in SSK as follows:

K ′′
m(i, j) = K ′′

m(i, j − 1) +∑
n∈Π
ne=i

∑
n′∈Π
n′
e=j

n=n′

K ′
m−1(nb − 1, n′

b − 1) · Λ(n, n′)

Penalizing Count of Gaps (τ)

Similar modification is required for TSK evaluation when
penalizing the count of gaps. In this kernel, the tree ker-
nel computation Λ(n, n′) is incurred at the evaluation of
K

(4)
m (i, j). Therefore, with other equations to be the same,

924

the modification is only required for K(4)
m (i, j) as follows:

K (4)
m (i, j) =

∑
n∈Π
ne=i

∑
n′∈Π
n′
e=j

n=n′

⎛
⎜⎝

τ2K
(1)
m−1(nb−1,n′

b−1)

+τK
(2)
m−1(nb−1,n′

b−1)

+τK
(3)
m−1(nb−1,n′

b−1)

+K
(4)
m−1(nb−1,n′

b−1)

⎞
⎟⎠ · Λ(n, n′)

In fact, if the minimum matching structure is restricted
to a CFG rule with the height of 2, the set sequence can
be constructed by the set of production rules, instead of
simple nodes. In real implementation, we also rank the el-
ements by alphabetical order for each node set (as shown
in Fig. 2) to achieve fast matching (Moschitti 2006). The
time complexity of TSK is incurred by the time cost of SSK
and tree kernel. If we consider that tree kernel is evalu-
ated before SSK. The cost is the sum of both kernels to be
O(m|NT | · |NT ′ |+ |NT | · |NT ′ |), where m is the maximal
number of subtrees allowed to be matched. In fact, we eval-
uate TSK by incurring SSK and tree kernel simultaneously,
since partial results of both kernels can be reused. Briefly,
the overall cost is O(m|NT | · |NT ′ |).

Experiments

To assess the effectiveness of TSK, we apply it in two NLP
applications, i.e. Question Classification and Relation Ex-
traction. Both tasks are addressed as a multi-class classifica-
tion problem. We use the one vs. others strategy to choose
the category with the largest margin. In our implementation,
TSK is integrated into the tree kernel tool (Moschitti 2006),
which employs SVM as the learning machine. To be consis-
tent with previous work, the experimental results of Ques-
tion Classification are demonstrated with classification ac-
curacy, while for Relation Extraction evaluations are carried
out with respect to Precision (P), Recall (R) and F-measure
(F). We compare TSK with Collins and Duffy’s Tree kernel
(TK) for both tasks.

Question Classification

Question Classification is a crucial sub-task for implement-
ing question answering systems. Given a question sentence,
it is necessary to identify what specific issues the question
concerns. In our experiment, we follow the standard experi-
mental setup in the previous work (Moschitti 2006). The ex-
periments are conducted on the coarse grained question tax-
onomy with six major categories: Abbreviations, Descrip-
tions, Entity, Human, Location and Number. We use the
TREC data (Li and Roth 2002). The corpus consists of 5.5k
labeled questions for training and 0.5k questions for testing.
Stanford parser (Klein and Manning 2003) is used to gener-
ate the phrasal parse tree structures.

In experiments, different penalty factors for TSK are
demonstrated and compared. Additionally, we also construct
experiments using a polynomial kernel d = 2 over the bag
of words (BoW) and bag of N-grams (BoN) respectively. All
the experiments are conducted on different scale of training
data from 1k to the 5.5k with respect to the original division
in the data set.

1k 2k 3k 4k 5.5k
BoW 78.0 84.0 85.8 86.6 87.2
BoN 74.8 81.6 82.8 86.4 88.0
TK 83.8 87.8 90.2 89.4 91.0

TSKμ 83.6 87.4 90.0 89.6 91.4

TSKτ 84.6 88.4 90.0 91.2 92.4

Table 1: Accuracy of Question Classification

We choose C = 10 for the SVM classifier. By 5-fold cross
validation on the 5.5k training data, we choose the parame-
ters for the corresponding kernels: λ = 0.2 for TK; λ = 0.25
and μ = 0.05 for TSKμ; λ = 0.15 and τ = 0.25 for TSKτ .

As shown in Table 1, we can observe that TSKτ achieves
the optimal performance. It outperforms TK by 1.4 point of
accuracy when using the entire training corpus. This indi-
cates the advantage of the additional tree sequence features
in question classification. On the other hand, TSKμ outper-
forms TK by a little amount of accuracy when using larger
training data (4k & 5.5k). However, when using small train-
ing data (1k & 2k), TSKμ underperforms TK. It’s easy to
attribute this result to the fact that the additional large struc-
tures matched by TSK tend to be very sparse in small data.
However, we also notice that TSKτ outperforms TK in small
data. The inconsistency between the performance of TSKμ
and TSKτ in small data when compared with TK indicates
that the tree sequence with many gaps may not well con-
tribute to the classification accuracy and the penalty of τ is
essential for penalizing those structures.

Furthermore, both TK and TSK achieve better perfor-
mance than the polynomial kernel only using semantic infor-
mation. This indicates the syntactic features in phrasal parse
tree are very useful for detecting question types.

Relation Extraction

Relation Extraction is a task to find various semantic rela-
tions between entity pairs in the document. For example,
the sentence “Larry Page was Google’s founding CEO” con-
veys a semantic relation of “EMPLOYMENT.executive” be-
tween the entity pairs “Larry Page” (entity type: person) and
“Google” (entity type: company).

We follow the experimental setup of Zhang, Zhou, and
Aw (2008) as our baseline. We use the corpus (ACE 2004,
LDC2005T09) with 348 documents and 4400 relation in-
stances. The corpus consists of 7 types of entities, 7 major
relation types and 23 relation subtypes. Since Zhang, Zhou,
and Aw (2008) reported that using the path-enclosed (PT)
tree structure instead of the complete constituent (MCT1),
achieves more improvement, we also follows them to use
the PT structure as our tree structure. We adopt Charniak
parser (Charniak 2001) to generate the phrasal parse trees.
Before entity identification, we extract all entity mentions
appeared in the same sentences as relation candidate pairs.

1MCT is the minimal constituent rooted by the nearest common
ancestor of the two entities under consideration while PT is the
minimal portion of the parse tree (may not be a complete subtree)
containing the two entities and their internal lexical words.

925

P R F λ μ τ
TK.flat 71.47 56.55 63.14 0.3 – –
TSKμ.flat 72.39 58.25 64.55 0.1 0.7 –
TSKτ .flat 72.75 58.00 64.55 0.1 – 0.8
TK.multi 70.98 57.88 63.77 0.3 – –
TSKμ.multi 74.35 59.83 66.30 0.2 0.7 –
TSKτ .multi 74.92 59.83 66.53 0.2 – 0.7

Table 2: Performance for Relation Extraction

Originally, the candidate entities are encapsulated with
five entity types (i.e. person, organization, location, facil-
ity and geo-political entity) and three entity mentions (i.e.
names, nomial expressions and pronouns). We propose two
methods to integrate the entity information. One is to use the
combination of the two levels of annotation as a flat gram-
mar tag (flat). The other is to interpret it as a multi-layer tree
structure (multi):

e.g. (NN Google (ORG, NAME, Entity))

flat: (Entity-NAME-ORG (NN Google))

multi: (Entity (NAME (ORG (NN Google))))

We choose C = 7 for SVM. By a 5-fold cross validation
on the training data, we choose all the kernel parameters as
listed with the corresponding results in Table 2.

In Table 2, we find that both TSKs outperform TK in
all metrics for both representations. Specifically, The opti-
mal performance is accomplished by TSK penalizing the
count of gaps (TSKτ) in multi-layer style, which outper-
forms TK.multi by 2.76 point of F-score. In addition, we also
observe that the multi-layer representation is more effective
than the flat representation for integration of the entity in-
formation. Furthermore, by introducing more structure in-
formation from the multi-layer entity, TSK also gains more
improvement than using the flat integration.

Discussion

Compared with Question Classification, Relation Extraction
gains more improvement by using TSK. The effectiveness
of TSK on Relation Extraction can be attributed to the fact
that TSK can capture multiple items in a non-contiguous
tree sequence simultaneously. Relation Extraction is a task
focusing on paired relational constituents, which are highly
likely to be disconnected. Therefore, it will be useful to cap-
ture patterns consisting of information over both entities as
a single structure, which is hard to be captured by the single
tree based kernels. As a result, TSK, which is able to cap-
ture patterns across both entities may benefit Relation Ex-
traction. Unlike Relation Extraction, Question Classification
may consider non-contiguous patterns to be less important,
since it is sometimes unnecessary to deeply explore the non-
contiguous patterns for certain question sentences. For ex-
ample, the question sentences beginning with single inquiry
words “where” and “when” are easy to be correctly catego-
rized. On the other hand, the improvement on classification
accuracy still suggests that some question sentences indeed
receive benefit from TSK.

Conclusion

In this paper, we propose Tree Sequence Kernel (TSK),
which combines the advantages of both sequence kernel and
tree kernel. The key characteristic of the proposed kernel
is that the captured structure features are enlarged from the
structure of a single tree to the structure of multiple trees
(tree sequence). Two kernel functions with different penalty
factors are presented. Both TSKs can be efficiently evaluated
within O(m|NT | · |NT ′ |), where m is the maximal number
of subtrees allowed in a matched tree sequence and NT is
the number of tree nodes. Experimental results on Question
Classification and Relation Extraction suggest that the pro-
posed TSKs outperform the tree kernel in both applications.
Specifically, the structure of tree sequence more facilitates
the task that focuses on disconnected constituents modeling,
i.e. Relation Extraction.

References

Cancedda, N.; Gaussier, E.; Goutte, C.; and Renders, J.
2003. Word sequence kernels. The Journal of Machine
Learning Research 3:1059–1082.
Charniak, E. 2001. Immediate-head parsing for language
models. In Proceedings of ACL, 124–131.
Collins, M., and Duffy, N. 2002. Convolution kernels for
natural language. In Proceedings of NIPS, 625–632.
Haussler, D. 1999. Convolution kernels on discrete struc-
tures.
Klein, D., and Manning, C. 2003. Accurate unlexicalized
parsing. In Proceedings of ACL, 423–430.
Li, X., and Roth, D. 2002. Learning question classifiers. In
Proceedings of COLING, 1–7.
Lodhi, H.; Saunders, C.; Shawe-Taylor, J.; Cristianini, N.;
and Watkins, C. 2002. Text classification using string ker-
nels. The Journal of Machine Learning Research 2:419–
444.
Moschitti, A. 2004. A study on convolution kernels for
shallow semantic parsing. In Proceedings of ACL, 335–342.
Moschitti, A. 2006. Efficient convolution kernels for de-
pendency and constituent syntactic trees. In Proceedings of
ECML, 318–329.
Sun, J.; Zhang, M.; and Tan, C. 2009. A non-contiguous
tree sequence alignment-based model for statistical machine
translation. In Proceedings of ACL, 914–922.
Sun, J.; Zhang, M.; and Tan, C. 2010. Exploring syntactic
structural features for sub-tree alignment using bilingual tree
kernels. In Proceedings of ACL, 306–315.
Zhang, M.; Che, W.; Zhou, G.; Aw, A.; Tan, C.; Liu, T.; and
Li, S. 2008. Semantic role labeling using a grammar-driven
convolution tree kernel. IEEE transactions on audio, speech,
and language processing 16(7):1315–1329.
Zhang, M.; Zhou, G.; and Aw, A. 2008. Exploring syntactic
structured features over parse trees for relation extraction us-
ing kernel methods. Information Processing & Management
44(2):687–701.

926

