
Learning to Interpret Natural Language
Navigation Instructions from Observations

David L. Chen and Raymond J. Mooney
Department of Computer Science
The University of Texas at Austin

1616 Guadalupe, Suite 2.408
Austin, TX 78701, USA

dlcc@cs.utexas.edu and mooney@cs.utexas.edu

Abstract

The ability to understand natural-language instructions is crit-
ical to building intelligent agents that interact with humans.
We present a system that learns to transform natural-language
navigation instructions into executable formal plans. Given
no prior linguistic knowledge, the system learns by simply
observing how humans follow navigation instructions. The
system is evaluated in three complex virtual indoor environ-
ments with numerous objects and landmarks. A previously
collected realistic corpus of complex English navigation in-
structions for these environments is used for training and test-
ing data. By using a learned lexicon to refine inferred plans
and a supervised learner to induce a semantic parser, the sys-
tem is able to automatically learn to correctly interpret a rea-
sonable fraction of the complex instructions in this corpus.

1 Introduction

An important application of natural language processing is
the interpretation of human instructions. The ability to parse
instructions and perform the intended actions is essential for
smooth interactions with a computer or a robot. Some recent
work has explored how to map natural-language instructions
into actions that can be performed by a computer (Branavan
et al. 2009; Lau, Drews, and Nichols 2009). In particular, we
focus on the task of navigation (MacMahon, Stankiewicz,
and Kuipers 2006; Shimizu and Haas 2009; Matuszek, Fox,
and Koscher 2010; Kollar et al. 2010; Vogel and Jurafsky
2010).

The goal of the navigation task is to take a set of natural-
language directions, transform it into a navigation plan that
can be understood by the computer, and then execute that
plan to reach the desired destination. Route direction is
a unique form of instructions that specifies how to get
from one place to another and understanding them depends
heavily on the spatial context. The earliest work on in-
terpreting route directions was by linguists (Klein 1982;
Wunderlich and Reinelt 1982). While this domain is re-
stricted, there is considerable variation in how different peo-
ple describe the same route. Below are some examples from
our test corpus of instructions given for the route shown in
Figure 1:

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: This is an example of a route in our virtual world.
The world consists of interconnecting hallways with vary-
ing floor tiles and paintings on the wall (butterfly, fish, or
Eiffel Tower.) Letters indicate objects (e.g. ’C’ is a chair) at
a location.

“Go towards the coat rack and take a left at the coat
rack. go all the way to the end of the hall and this is 4.”

“Position 4 is a dead end of the yellow floored hall with
fish on the walls.”

“turn so that the wall is on your right side. walk forward
once. turn left. walk forward twice.”

“foward to the fish. first left. go tot [sic] the end.”

“Place your back to the wall of the ’T’ intersection.
Turn right. Go forward one segment to the intersection
with the yellow-tiled hall. This intersection contains a
hatrack. Turn left. Go forward two segments to the end
of the hall. This is Position 4.”

As seen in these examples, people may describe routes
using landmarks (e.g. yellow floored hall) or specific actions
(e.g. walk forward once). They may describe the same object
differently (e.g. coat rack vs. hatrack). They also differ in
the amount of detail given, from just information about the

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

859

destination (e.g. Position 4 is a dead end ...) to step-by-step
instructions along with verification steps (e.g. This intersec-
tion contains a hatrack). Thus, even ignoring spelling and
grammatical errors as well as logical errors (e.g. confusing
left and right), navigation instructions can be quite diverse
and contain different information which makes interpreting
them a challenging problem.

In this paper we introduce a general framework for learn-
ing to interpret navigation instructions given only sample
observations of humans following such instructions. The
system first infers a formal navigation plan for each instruc-
tion based on the observed actions. Using this as supervi-
sion, it then learns a semantic parser that can map novel in-
structions into navigation plans executable by a (simulated)
robot. Using a learned lexicon to refine the plans is shown to
help correctly infer more complex navigation plans. This is
vital in successfully following long instructions where error
recovery is necessary.

The rest of the paper is organized as follows. We first re-
view relevant work in the area of learning natural language
instructions and grounded language acquisition in Section 2.
We then formally define our learning problem and the virtual
environment we use to test our navigation system in Sec-
tion 3. Details of our system are described in Section 4. We
present experimental results in Section 5. Finally, we discuss
possible future work in Section 6 and conclude in Section 7.

2 Related Work
Building systems that learn to interpret navigation instruc-
tions has recently received some attention due to its appli-
cation in building mobile robots. Our work is the most sim-
ilar to that of Matuszek et al. (2010). Their system learns
to follow navigation instructions from example pairs of in-
structions and map traces with no prior linguistic knowl-
edge. They used a general-purpose semantic parser learner
WASP (Wong and Mooney 2006) to learn a semantic parser
and constrain the parsing results with physical limitations
imposed by the environment. However, their virtual world is
relatively simple with no objects or attribute information as
it is constructed from laser sensors.

Similarly, Shimizu and Haas (2009) built a system that
learns to parse navigation instructions. They restrict the
space of possible actions to 15 labels and treat the parsing
problem as a sequence labeling problem. This has the advan-
tage that context of the surrounding instructions are taken
into account. However, their formal language is very limited
in that there are only 15 possible parses for an instruction.

There is some recent work that explores direction fol-
lowing in more complex environments. Vogel and Jurafsky
(2010) built a learning system for the HCRC Map Task cor-
pus (Anderson et al. 1991) that uses reinforcement learning
to learn to navigate from one landmark to another. The envi-
ronment consists of named locations laid out on a map. Kol-
lar et al. (2010) presented a system that solves the naviga-
tion problem for a real office environment. They use LIDAR
and camera data collected from a robot to build a seman-
tic map of the world and to simulate navigation. However,
both of these systems were directly given object names or
required other resources to learn to identify objects in the

world. Moreover, both systems used lists of predefined spa-
tial terms. In contrast, we do not assume any existing lin-
guistic knowledge or resource.

Besides navigation instructions, there has also been work
on learning to interpret other kinds of instructions. Recently,
there has been some interest in learning how to interpret En-
glish instructions describing how to use a particular web-
site or perform other computer tasks (Branavan et al. 2009;
Lau, Drews, and Nichols 2009). These systems learn to pre-
dict the correct computer action (pressing a button, choosing
a menu item, typing into a text field, etc.) corresponding to
each step in the instructions.

Our work also fits into the broader area of grounded lan-
guage acquisition, in which language is learned by sim-
ply observing its use in some naturally occurring percep-
tual context (see Mooney (2008) for a review). Unlike most
work in statistical NLP which requires annotating large cor-
pora with detailed syntactic and/or semantic markup, this ap-
proach tries to learn language without explicit supervision in
a manner more analogous to how children acquire language.
This approach also grounds the meaning of words and sen-
tences in perception and action instead of arbitrary semantic
tokens. One of the core issues in grounded language acqui-
sition is solving the correspondence between language and
the semantic context. Various approaches have been used
including supervised training (Snyder and Barzilay 2007),
iteratively retraining a semantic parser/language generator
to disambiguate the context (Kate and Mooney 2007; Chen,
Kim, and Mooney 2010), building a generative model of the
content selection process (Liang, Jordan, and Klein 2009;
Kim and Mooney 2010), and using a ranking approach (Bor-
des, Usunier, and Weston 2010). Our work differs from these
previous approaches in that we explicitly model the relation-
ships between the semantic entities rather than treating them
as individual items.

3 Problem Definition and Evaluation Data
The goal of the navigation problem is to build a system that
can understand free-form natural-language instructions and
follow them to move to the desired destination. In particu-
lar, we approach the problem assuming no prior linguistic
knowledge: syntactic, semantic, or lexical. This means we
have to learn the meaning of every word, including object
names, verbs, spatial relations, as well as the syntax and
compositional semantics of the language. The only super-
vision we receive is in the form of observing how humans
behave when following sample navigation instructions.

Formally, the system is given training data in the form:
{(e1, a1, w1), (e2, a2, w2), . . . , (en, an, wn)}, where ei is a
natural language instruction, ai is an observed action se-
quence, and wi is a description of the current state of the
world including the patterns of the floors and walls and po-
sitions of any objects. The goal is then to build a system
that can produce the correct aj given a previously unseen
(ej, wj) pair.

The main challenge of this problem is that the navigation
plans described by the instructions are not directly observed.
As the example in Section 1 showed, several different plans
can be used to navigate the same route. In other words, there

860

Figure 2: An overview of our system

is not always a direct correspondence between ei and ai.
Rather, ei corresponds to an unobserved plan pi that when
executed in wi will produce ai. Thus, we need to first infer
the correct pi from the training data and then build a seman-
tic parser that can translate from ei to pi.

To train and test our system, we use the data and virtual
environments assembled by MacMahon et al. (2006). The
data was collected for three different virtual worlds consist-
ing of interconnecting hallways. An overview map of one of
the worlds is shown in Figure 1. Each world consists of sev-
eral short concrete hallways and seven long hallways each
with a different floor pattern (grass, brick, wood, gravel,
blue, flower, and yellow octagons). The worlds are divided
into three areas, each with a different painting on the walls
(butterfly, fish, and Eiffel Tower). There is also furniture
placed at various intersections (hatrack, lamp, chair, sofa,
barstool, and easel). The three worlds contain the same el-
ements but in different configurations. Each world also has
seven chosen positions labeled 1 thorough 7.

MacMahon et al. collected both human instructor data and
human follower data. The instructors first familiarized them-
selves with the environment and the seven positions. They
were then asked to give a set of written instructions on how
to get from a particular position to another. Since they did
not have access to the overview map, they had to rely on
their explorations of the environments. These instructions
were then given to several human followers whose actions
were recorded as they tried to follow the instructions. On
average, each instruction was 5 sentences long. However, to
simplify the learning problem, we manually split the action
sequences and aligned them with their corresponding sen-
tences. All the actions are discrete and consist of turning left,
turning right, and moving from one intersection to another.

4 System Description

Figure 2 shows our system’s general framework. Given the
observation (wi, ai, ei), we first construct a formal naviga-
tion plan pi based on the action sequence ai and the world
state wi. An optional step refines this navigation plan based

Figure 3: Examples of automatically generated plans.

on the instruction ei. The resulting pair (ei, pi) is then used
as supervised training data for learning a semantic parser.
During testing, the semantic parser maps new instructions
ej into formal navigation plans pj which are then carried
out by the execution module.

While we built the top two components that are respon-
sible for creating the supervised training data (ei, pi), we
use existing systems for building semantic parsers and for
executing navigation plans. Since the plans inferred by the
system are not always completely accurate representations
of the instructions, we chose a semantic-parser learner,
KRISP, that has been shown to be particularly robust to
noisy training data (Kate and Mooney 2006). Nevertheless,
other general-purpose supervised semantic-parser learners
(Zettlemoyer and Collins 2005; Wong and Mooney 2006;
Lu et al. 2008) could also be used. To carry out the plans,
we use MARCO’s execution module developed by MacMa-
hon et al. (2006) for executing navigation plans in our test
environments.

4.1 Constructing navigation plans

A simple way to generate a formal navigation plan is to
model only the observed actions. In our case, this means
forming plans that consist of only turning left and right, and
walking forward a certain number of steps. This is often suf-
ficient if the instruction directly refers to the specific action
to be taken (e.g. turn left, walk forward two steps). We refer
to these navigation plans which capture such direct instruc-
tions as basic plans.

To capture more complex instructions that refer to objects
and locations in the environment (e.g. face the pink flower
hallway, go to the sofa), we simulate executing the given
actions in the environment. We collect sensory data during
the execution and form a landmarks plan that adds interleav-
ing verification steps to the basic plan. The verification steps
specify the landmarks that should be observed after execut-
ing each basic action. Examples of both a basic plan and a
landmarks plan are shown in Figure 3.

4.2 Plan refinement

While landmarks plans capture more of the meaning of the
instructions, they can also contain a lot of extraneous infor-
mation. Thus, we employ a lexicon learning algorithm to
learn the meanings of words and short phrases. The learned
lexicon is then used to try to identify and remove the extra-
neous details in the landmarks plan.

Learning a lexicon We build a semantic lexicon by find-
ing the common parts of the formal representations associ-

861

Algorithm 1 LEXICON LEARNING

input Navigation instructions and the corresponding navi-
gation plans (e1, p1), . . . , (en, pn)

output Lexicon , a set of phrase-meaning pairs
1: main
2: for n-gram w that appears in e = (e1, . . . , en) do
3: for instruction ei that contains w do
4: Add navigation plan pi to meanings(w)
5: end for
6: repeat
7: for every pair of meanings in meanings(w) do
8: Add intersections of the pair to meanings(w)
9: end for

10: Keep k highest-scoring entries of meanings(w)
11: until meanings(w) converges
12: Add entries of meanings(w) with scores higher

than threshold t to Lexicon

13: end for
14: end main

ated with different occurrences of the same word or phrases
(Siskind 1996). More specifically, we represent the naviga-
tion plans in graphical form and compute common parts
by taking intersections of the two graphs (Thompson and
Mooney 2003). Pseudo-code for the approach is shown in
Algorithm 1. Initially, all navigation plans whose instruction
contains a particular n-gram w are added to meanings(w),
the set of potential meanings of w. Then, the algorithm re-
peatedly computes the intersections of all pairs of potential
meanings and adds them to meanings(w) until further in-
tersections do not produce any new entries. The intersec-
tion operation is performed by greedily removing the largest
common subgraph from both graphs until the two graphs
have no overlapping nodes. The output of the intersection
process consists of all the removed subgraphs. An example
of the intersection operation is shown in Figure 4. Each po-
tential word-meaning pair is given a score (described below)
that evaluates its quality. After meanings(w) converges, its
members with scores higher than a given threshold are added
as lexical entries for w. In all our experiments, we consider
only unigrams and bigrams, and use threshold t = 0.4 and
maximum meaning set size k = 1000.

We use the following scoring function to evaluate a pair
of an n-gram w and a graph g:

Score(w, g) = p(g|w)− p(g|¬w)

Intuitively, the score measures how much more likely a
graph g appears when w is present compared to when it is
not. A good (w, g) pair means that w should be indicative of
g appearing (i.e. p(g|w) should be close to 1), assuming w
is monosemous1. However, the reverse is not true since an
object or action may often be referred to using other expres-
sions or omitted from an instruction altogether. Thus, the ab-
sence of a word w when g occurs, p(¬w|g), is not evidence
against g being the meaning of w. To penalize g’s that are

1Notice that the actual magnitude of p(g|w) matters. Thus, us-
ing odds ratios as the scoring function did not work as well.

Figure 4: Example of computing the intersections of two
graph representations of navigation plans.

ubiquitous, we subtract the probability of g occurring when
w is not present. We estimate all the probability measures
by counting how many examples contain the words or the
graphs, ignoring multiple occurrences in a single example.

Refining navigation plans using the lexicon The learned
lexicon is then used to remove extraneous components from
the landmarks plans. Ideally, a refined plan only contains
actions and objects referred to in the instructions. However,
we want to be conservative in pruning nodes so that impor-
tant information is not removed from the data given to the
semantic-parser learner. Therefore, nodes are only removed
if it is quite certain they are not mentioned in the instruction
since they do not correspond to the meaning of some word
in the instruction.

To refine (ei, pi), we first select the highest-scoring lexi-
cal entry (w, g) such that w and g appear in ei and pi, respec-
tively. We then remove w from ei and mark all occurrences
of g in pi, ignoring any redundant markings. This process is
repeated until no words remain in ei or no more lexical en-
tries can be selected. Finally, we remove all nodes in pi that
were not marked and the remaining graph becomes the new
refined plan p′i.

4.3 Learning a semantic parser

Once we obtain the supervised data in the form of (ei, pi),
we use KRISP (Kate and Mooney 2006) to learn a semantic
parser that can transform novel instructions ej into naviga-
tion plans pj (i.e. transform turn to face the sofa into Turn(),
Verify(front: SOFA).)

KRISP is a publicly available learning algorithm for train-
ing parsers that translate from natural language strings to a
formal language defined by a context-free grammar (CFG).
Given parallel training data in the form of natural language
strings with their corresponding formal meaning represen-
tations, it learns a set of string classifiers that decide how
to construct meaning representations. In particular, it uses
support vector machines (SVM) classifiers with string ker-

862

Original Single-sentence

instructions 706 3236
Vocabulary size 660 629
Avg. # sentences 5.0 (2.8) 1.0 (0)
Avg. # words 37.6 (21.1) 7.8 (5.1)
Avg. # actions 10.4 (5.7) 2.1 (2.4)

Table 1: Statistics about the original corpus collected by
MacMahon et al. as well as the segmented version of it that
we use for learning. The average statistics for each instruc-
tion are shown with standard deviations in parentheses.

nels to decide when a word or phrase is indicative of a pro-
duction rule of the CFG being applied. When semantically
parsing a sentence, each classifier estimates the probability
of each production rule covering different substrings of the
sentence. This information is then used to compositionally
build a complete string in the formal language for the sen-
tence. Given the partial matching provided by string kernels
and the over-fitting prevention provided by SVMs, KRISP

has been shown to be robust to noisy training data (Kate and
Mooney 2006).

4.4 Executing instructions

After semantically parsing the instruction, we need to ex-
ecute the navigation plan to reach the intended destina-
tion. We use the execution module in MARCO (MacMahon,
Stankiewicz, and Kuipers 2006) for this purpose. MARCO is
a system that is designed to follow free-form natural lan-
guage route instructions in our test environment. Using a
syntactic parser and hand-engineered transformation rules
for encoding knowledge about object names, verbs and spa-
tial relationships, raw text is first translated into a com-
pound action specification. The executor then carries out the
specification by interleaving actions and perceptions to gain
knowledge of the environment and to execute the actions.
It has error recovery mechanisms for reconciling conflicting
specifications (e.g. if the instruction is walk two steps to the
chair when the chair is actually three steps away) and for
inferring implicit commands.

To execute a navigation plan, we first transform it from
our formal representation into a compound action specifica-
tion and then use MARCO’s executor to carry out the actions
in the virtual worlds.

5 Experimental Evaluation

To evaluate our approach, we use the instructions and fol-
lower data collected by MacMahon et al. (2006) to train
and test our system. The data contains 706 non-trivial route
instructions for three virtual worlds. The instructions were
produced by six instructors for 126 unique starting and end-
ing position pairs spread evenly across the three worlds.
There were 1 to 15 human followers for each instruction.

Since this data was originally collected only for testing
purposes and not for learning, each instruction is quite long
with an average of 5 sentences. However, for learning, it is
more natural to observe the instructors interact with the fol-

Precision Recall F1

Basic plans 81.46 55.88 66.27

Landmarks plans 45.42 85.46 59.29
Refined landmarks plans 78.54 78.10 78.32

Table 2: Partial parse accuracy of how well the inferred nav-
igation plans match the human annotations.

lowers as they progress. Thus, to create our training data,
we first segmented the instructions into individual sentences.
Then for each sentence, we paired it with an action se-
quence based on the majority of the followers’ actions and
our knowledge of the map. During this process, close to 300
sentences that could not be matched to any actions were dis-
carded. Most of them were of the form “This is position n”.
Statistics for the original and segmented data can be seen in
Table 1. We use the single-sentence version of the corpus for
training and both versions for testing.

5.1 Generating navigation plans

We first examine how well our system infers the correct
navigation plans from the observed actions. To do this, we
hand-annotated each instruction in the single-sentence cor-
pus with the correct navigation plans and compared the in-
ferred plans to these gold-standard plans. We used a partial
correctness metric to measure the precision and recall of the
inferred plans. To calculate precision, each step in the in-
ferred plan receives one point if it matches the type of the
corresponding step in the gold-standard plan. An additional
point is then awarded for each matching argument. Precision
is computed as the sum of the points divided by the total
number of possible points. Since the two plans may contain
different number of steps, we used a dynamic programming
algorithm to find a order-preserving mapping of steps from
one plan to the other such that precision is maximized. Re-
call is computed similarly with the roles of the inferred and
gold-standard plans swapped. We also compute F1 score, the
harmonic mean of precision and recall.

The results are shown in Table 2. Since the basic and land-
marks plans do not require training, their results are sim-
ply the average accuracy of the generated plans for all the
examples. For the refined landmarks plans, the lexicon is
trained on examples from two of the three maps and used
to refine plans from the same two maps. The results are av-
eraged over the three experiments. Compared to the basic
plans, landmarks plans have better recall but considerably
lower precision. However, if we use the lexicon to help re-
fine these plans then we retain both the high precision of the
basic plans and the high recall of the landmarks plans. This
indicates the system is inferring fairly accurate plans which
in turn produces reasonably accurate supervised examples
for training the semantic parser.

5.2 Building a semantic parser

Next, we evaluated the performance of the semantic parsers
trained on these inferred plans as well as semantic parsers
trained on human-annotated plans. We used a leave-one-

863

Precision Recall F1

Basic plans 86.68 48.62 62.21

Landmarks plans 50.40 31.10 38.39
Refined landmarks plans 90.22 55.10 68.37

Human annotated plans 88.24 71.70 79.11

Table 3: Partial parse accuracy of how well the semantic
parsers trained on the different navigation plans performed
on test data.

Single-sentence Complete

Simple generative model 11.08 2.15
Basic plans 56.99 13.99

Landmarks plans 21.95 2.66

Refined landmarks plans 54.40 16.18
Human annotated plans 58.29 26.15

MARCO 77.87 55.69

Human followers N/A 69.64

Table 4: Experimental results comparing different versions
of our system and several baselines on following both the
single-sentence and complete instructions. The numbers are
the percentages of trials reaching the correct destinations.

map-out approach where the semantic parser is trained on
examples from two maps and tested on instructions from the
third, unseen map. The parse outputs are compared to human
annotations using partial correctness as before. The results
are shown in Table 3. As expected, semantic parsers trained
with cleaner data performed better. However, one thing to
note is that precision of the training data is more important
than recall. In particular, semantic parsers trained on land-
mark plans performed the worst in all aspects despite the
plans having relatively high recall. This suggests the amount
of noise exceeded what could be handled by KRISP and the
system fails to learn to generalize properly. Thus, our re-
finement step is vital in keeping the plans relatively clean in
order for KRISP to learn effectively.

5.3 Executing navigation plans

Next, we tested our end-to-end system by executing the
parsed navigation plans to see if they reach the desired desti-
nations. We evaluated on both the single-sentence and com-
plete (multi-sentence) versions of the corpus. We employ a
strict metric in which a trial is successful if and only if the
final position (and orientation for the single-sentence ver-
sion) exactly matches the intended position. This makes the
experiments on the complete instructions especially difficult
since any error parsing any of the sentences in the instruc-
tion can lead to a failure on the task. We again performed
leave-one-map-out cross-validation. For each plan, we ex-
ecuted it 10 times since the execution component is non-
deterministic when the plan is underspecified (e.g. the plan
specifies a turn, but does not specify any directions or post-
conditions). The average results are shown in Table 4.

In addition to evaluating the trained semantic parsers, we
also compare to several other lower and upper baselines. We

Figure 5: A plan produced by the semantic parser trained on
refined landmarks plans. While the parser misses some of
the redundant information, the plan contains sufficient de-
tails to lead to the correct destination.

constructed a lower baseline that does not utilize any of the
linguistic information in the instructions. Instead, it builds a
simple generative model of the actions in the training data.
During testing, the generative model first selects the number
of actions to perform for each instruction, and then stochas-
tically generates the action type and arguments. The low per-
formance of this baseline indicates that the task is non-trivial
even though there are only few available actions (turning and
walking forward).

For the upper baselines, we compared to three different
performances. First, we compare the performance of the
semantic parser trained on human-annotated plans as be-
fore. This represents what could be achieved if we recon-
structed the navigations plans in the training examples per-
fectly. Both the basic plans and refined landmarks plans
approach this performance on the simpler, single-sentence
task. To better understand what could be achieved in an en-
gineered (non-learning) system, we also compared to the
full MARCO system that parses and executes instructions.
Finally, we also compared to the performance of human fol-
lowers who tried to follow these instructions. While none
of our systems perform as well as MARCO, it is impor-
tant to note that our system must learn the complete lan-
guage interpreter just from observations. Moreover, our sys-
tem could be easily adapted to other languages and envi-
ronments with different objects and landmarks. On the other
hand, MARCO was fully manually-engineered for this en-
vironment and hand-tuned on this data to achieve the best
performance. As expected, human followers performed the
best, although even they were only able to complete 70% of
the tasks 2, indicating the difficulty of the complete task.

Of the different versions of our system, landmarks plans
performed the worst as expected because it failed to learn an
effective semantic parser. The systems trained on basic plans
and refined landmarks plans both perform similarly on this
final execution task, with basic plans performing slightly
better on the single-sentence task and refined landmarks

2Sometimes the instructions were wrong to begin with, since
they were recreated from memory by the instructors.

864

plans performing better on the complete task. The better
performance of the basic plans on the single-sentences task
shows that for these shorter instructions, directly modeling
the low-level actions is often sufficient. The additional ben-
efit of modeling landmarks is not seen until testing on com-
plete instructions. In this case, landmarks are often vital for
recovering from small mistakes in the instructions or the
parsing, or both. The system using refined landmarks plans
performed the best out of the three variations in this setting,
matching the trend observed in the parse-accuracy experi-
ments (Table 3). A sample parse for this system is shown in
Figure 5. While the plan is not a perfect representation of the
instruction, it contains sufficient details to complete the task
successfully in all trials.

6 Future Work

Currently, our system goes through the various stages of
learning in a pipelined manner. Consequently, a mistake
made in earlier steps will propagate to later stages. A bet-
ter approach would be to build feedback loops to iteratively
improve the estimates in each stage. Moreover, since these
are executable actions, we can test our understanding of the
language in the environment itself to receive additional rein-
forcements. However, it should be remembered that reach-
ing the correct destination is not necessary indicative of a
good plan (e.g. landmarks plans always lead to the correct
destinations but do not correspond to the actual instructions.)

Semantic parsing is only half of what is required for lan-
guage acquisition. The other half is language generation.
Since our work is focused on resolving referential ambi-
guity, there is no inherent limitation to extending our ap-
proach to language generation as well. Similar to Chen et al.
(2010), we can use the supervised training data we have es-
timated as input to a supervised learning algorithm for train-
ing a language generator.

7 Conclusions

We have presented a novel system that learns a semantic
parser for interpreting navigation instructions by simply ob-
serving the actions of human followers without using any
prior linguistic knowledge or direct supervision. We demon-
strated the need to model landmarks when executing longer,
more complex instructions. We also introduced a plan refine-
ment algorithm that fairly accurately infers the correct nav-
igation plan specified in the instructions by using a learned
semantic lexicon to remove extraneous information. Overall,
our approach demonstrates an interesting and novel form of
grounded language learning for a complex and useful task.

Acknowledgments

We thank Matt MacMahon for assistance with the original
data and the MARCO framework. This work was funded by
the NSF grants IIS-0712097 and IIS-1016312. Most of the
experiments were run on the Mastodon Cluster, provided by
NSF Grant EIA-0303609.

References
Anderson, A.; Bader, M.; Bard, E.; Boyle, E.; Doherty, G. M.; Gar-
rod, S.; Isard, S.; Kowtko, J.; McAllister, J.; Miller, J.; Sotillo, C.;
Thompson, H. S.; and Weinert, R. 1991. The HCRC map task
corpus. Language and Speech 34:351–366.

Bordes, A.; Usunier, N.; and Weston, J. 2010. Label ranking under
ambiguous supervision for learning semantic correspondences. In
ICML-2010.

Branavan, S.; Chen, H.; Zettlemoyer, L. S.; and Barzilay, R. 2009.
Reinforcement learning for mapping instructions to actions. In
ACL-09.

Chen, D. L.; Kim, J.; and Mooney, R. J. 2010. Training a mul-
tilingual sportscaster: Using perceptual context to learn language.
Journal of Artificial Intelligence Research 37:397–435.

Kate, R. J., and Mooney, R. J. 2006. Using string-kernels for
learning semantic parsers. In ACL-06, 913–920.

Kate, R. J., and Mooney, R. J. 2007. Learning language semantics
from ambiguous supervision. In AAAI-2007, 895–900.

Kim, J., and Mooney, R. J. 2010. Generative alignment and seman-
tic parsing for learning from ambiguous supervision. In COLING-
10.

Klein, W. 1982. Local deixis in route directions. In Jarvella, R. J.,
and Klein, W., eds., Speech, Place, and Action: Studies in Deixis
and Related Topics. Wiley. 161–182.

Kollar, T.; Tellex, S.; Roy, D.; and Roy, N. 2010. Toward under-
standing natural language directions. In HRI-2010.

Lau, T.; Drews, C.; and Nichols, J. 2009. Interpreting written how-
to instructions. In IJCAI-09.

Liang, P.; Jordan, M. I.; and Klein, D. 2009. Learning semantic
correspondences with less supervision. In ACL-09.

Lu, W.; Ng, H. T.; Lee, W. S.; and Zettlemoyer, L. S. 2008. A
generative model for parsing natural language to meaning repre-
sentations. In EMNLP-08.

MacMahon, M.; Stankiewicz, B.; and Kuipers, B. 2006. Walk the
talk: Connecting language, knowledge, and action in route instruc-
tions. In AAAI-2006.

Matuszek, C.; Fox, D.; and Koscher, K. 2010. Following directions
using statistical machine translation. In HRI-2010.

Mooney, R. J. 2008. Learning to connect language and perception.
In AAAI-08, 1598–1601.

Shimizu, N., and Haas, A. 2009. Learning to follow navigational
route instructions. In IJCAI-09.

Siskind, J. M. 1996. A computational study of cross-situational
techniques for learning word-to-meaning mappings. Cognition
61(1):39–91.

Snyder, B., and Barzilay, R. 2007. Database-text alignment via
structured multilabel classification. In IJCAI-07.

Thompson, C. A., and Mooney, R. J. 2003. Acquiring word-
meaning mappings for natural language interfaces. JAIR 18:1–44.

Vogel, A., and Jurafsky, D. 2010. Learning to follow navigational
directions. In ACL-10.

Wong, Y. W., and Mooney, R. 2006. Learning for semantic parsing
with statistical machine translation. In HLT-NAACL-06, 439–446.

Wunderlich, D., and Reinelt, R. 1982. How to get there from here.
In Jarvella, R. J., and Klein, W., eds., Speech, Place, and Action:
Studies in Deixis and Related Topics. Wiley. 183–202.

Zettlemoyer, L. S., and Collins, M. 2005. Learning to map sen-
tences to logical form: Structured classification with probabilistic
categorial grammars. In UAI.

865

