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Abstract

In this paper, we propose a bottom-up approach to gen-
erating short descriptive sentences from images, to en-
hance scene understanding. We demonstrate automatic
methods for mapping the visual content in an image to
natural spoken or written language. We also introduce
a human-in-the-loop evaluation strategy that quantita-
tively captures the meaningfulness of the generated sen-
tences. We recorded a correctness rate of 60.34% when
human users were asked to judge the meaningfulness of
the sentences generated from relatively challenging im-
ages. Also, our automatic methods compared well with
the state-of-the-art techniques for the related computer
vision tasks.

1 Introduction

The ability to have a machine correctly parse, recognize and
communicate naturally about the visual world around is a
significant advancement in machine intelligence, which tac-
itly is an augmentation of the human intellect. For real-life
scenes, humans can communicate a concise description in
the form of a sentence relatively easily. Such descriptions
might identify the most interesting objects, what they are
doing, and/or where this is happening. These descriptions
are rich, accurate, and in good agreement between other hu-
mans. They are concise: much is omitted, because humans
tend not to mention objects or events that they judge to be
less significant.

Similar to how humans use sentences to communicate,
we present naturalistic machine generated sentences, which
when presented to humans can be used to identify specific
scenes being described. As an example, the text below is
a sentence generated from our system, DISCO (Describing
Images using Scene Contexts and Objects). The reader is en-
couraged to select one of the four images presented in Figure
1 that is best described by the sentences below.

The image scenery is set with a view of tall buildings;

There are at least 5 people in the picture. Someone in

the picture has on something bluish-purple. The people

are standing on the ground. The light gray buildings are

quite prominent in the scenery.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our descriptions apply to general, all-purpose outdoor im-
ages. These are significantly more challenging to describe
than images in a specific domain such as street scenes, mar-
itime scenes etc, since there are very few domain-specific
constraints that can be applied to aid scene understand-
ing. Included in our data set are images taken in natu-
ral light, at dusk and at dawn, in foggy weather, in snow
storms and at night. Also included in the data set are im-
ages taken at different viewpoints. Unlike the images in
many of the scene categorization benchmark datasets, which
typically only contain “pure scenes”, our dataset contains
single images that simultaneously belong to multiple scene
categories, and taken at multiple viewpoints. In many of
these images, everything potentially co-occurs with every-
thing else. Some examples from our test dataset are shown
in Figure 1. The complete results of vision-to-language de-
scriptor can be accessed at
http://www.zmldesign.com/SUnProject 1.

Figure 1: Examples of images from our sentence generation
dataset.

1.1 Physically grounded application scenarios

Scenario 1: Travel Companion Bot. An example of
an application of the technique we propose is a scene-
conversation-system deployed in a car, having the ability

1Web address is case-sensitive. The reader is encouraged to test
and fill in richer descriptions to help advance this research
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to converse with its driver concerning its surrounding out-
door environment. Knight Rider was an American televi-
sion series that originally ran from 1982 to 1986, involv-
ing a sapient, artificial intelligence-based, talking car, KITT.
Implementing the technology to realize some of the mecha-
nisms manifested in the fictitious robot, KITT, such as being
able to “understand and communicate about physical visual
surrounding” would be an advancement in artificial intelli-
gence. Since cars do not remain only within a specific scene
category, but can be driven within any outdoor scene such as
for a picturesque family vacation trip, to the beach, within
the city, etc., having an all-purpose scene-independent im-
age description generator is not far-fetched in such a con-
text. Such a car/robot would need to understood its surround-
ings and be able to communicate in a natural language with
its driver and passengers. The conversation could be high-
level general scene descriptions, or could be semantically
“zoomed-in”, to be specific about an object or an event in
the scene.

Scenario 2 - Safety patrol Bot. This scenario involves
autonomous robots patrolling highways, beaches, country
roads, oil rigs, etc., with a variety of sensors to capture
videos and sound. By providing such robots with the abil-
ity to speak in a natural language, a large amount of visual
information can be compressed via language and transferred
at significantly lower bandwidth, to a human supervisor, and
potentially to other patrol bots in the area.

DISCO is currently in the early stages of realizing such
physically grounded robots, by providing rich, descriptive
sentences about physical environments.
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Figure 2: End-to-end process flow of our visual content ex-
traction and sentence generation approach

1.2 Overview of our approach

Figure 2 presents an overview of our visual content extrac-
tion and sentence generation process which is initiated with
an original input image presented to our system DISCO. The
global image properties - scene categorization and lighting
estimation are first performed on the entire image. Image
segments are then computed and presented to the multi-class
labeling and geometric layout estimation modules in order
to generate the specific details of the image. We pre-defined
an ontology of outdoor images consisting of placeholders
for scene categories, foreground objects, lighting conditions,
background regions and surface layouts. Sentences about the
image are constructed from the specific instances of the data

types in the ontology, using a forward chaining inference en-
gine.

1.3 Contributions

We summarize our primary contributions as (i) an automated
end-to-end technique for generating natural language de-
scriptions from the visual content in images, that can be
potentially useful in different real-world applications; (ii)
defining a novel computer vision problem of classifying im-
age illumination; (iii) a novel real-time technique for select-
ing optimal regions in, and parsing ad-hoc outdoor images.
We show that our technique compares well with the state-
of-the-art methods on public datasets; and (iv) a quantitative
evaluation technique with humans-in-the-loop, for measur-
ing the accuracy and meaningfulness of generated image de-
scriptions. Unlike typical tests in computer vision which are
initiated by humans (e.g. a person presents an input image
and the system returns the image segments or edges), this
test is initiated by the computer and a human judge is ex-
pected to respond to measure of the meaningfulness of the
proposed image description; The advantage of this technique
is its quantitative measure of sentence meaningfulness.

2 Related Work

Sentence generation from images touches on many facets
of computer vision that have previously been treated as
separate problems. The first of these, image segmentation,
is primarily concerned with perceptually grouping image
parts from lower-level primitive image features, without
any knowledge of the image content, in order to obtain
meaningful higher-level structures. Image segmentation has
been addressed extensively in the computer vision litera-
ture, including thresholding techniques, edge-based meth-
ods, connectivity-preserving relaxation methods (such as
active contours and level set techniques) and region-based
techniques. In this study we are only concerned with region-
based segmentation which involves partitioning an image
into connected regions by grouping neighboring pixels of
similar feature values (or cues). These include intensity,
color, texture, motion, etc. Many of the advancements in
region-based image segmentation are therefore either im-
provements in cue selection (also referred to as model order
selection) such as (Ren, Fowlkes, and Malik 2005), and im-
provements in optimal cue combination (Alpert et al. 2007),
(Shi and Malik 2000), (Comaniciu and Meer 2002). A study
by (Rabinovich et al. 2006) proposed a framework that com-
bined both techniques and as an output presented the user
with a continuum of stable segmentations, rather than just
one solution. A stable clustering is one that is repeatable
over several perturbations.

Multi-class image labeling, the next facet we review,
has been successfully addressed by a number of research
works; (Gould, Fulton, and Koller 2009) present an exten-
sive overview of region-based segmentation and labeling
techniques in the “background and related work” section of
their paper. The goal here in image labeling is to assign ev-
ery image pixel a single class label. Usually the technique
involves constructing a Conditional Random Field (CRF)
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over either pixels or small coherent regions, superpixels. An
appearance based unary potential and a pairwise smoothing
potential is defined to encourage neighboring pixels to take
the same class label. (Gould, Fulton, and Koller 2009) pro-
pose a labeling technique using multiple stable segmenta-
tions as input and define an energy minimization technique
over several aspects of the scene, including geometric and
depth estimations. Other works such as by (Li, Socher, and
Li 2009), (Tu et al. 2005) have developed unified methods
to simultaneously segment, label and/or categorize images.

Lastly, in the area of sentence generation from general im-
age data (not domain specific images such as sports) there is
little reported research. (Farhadi et al. 2010) generated sen-
tences from images, using a model that assumed a space of
Meanings. A score is obtained by comparing an estimate of
meaning obtained from an image to one obtained from a sen-
tence. Each estimate of meaning comes from a discrimina-
tive procedure that is learned from training data. Although
this model is very flexible in its design and yielded visu-
ally pleasing results, it is not obvious how well their de-
fined meanings space corresponds to human understanding,
the ultimate goal in our proposed technique. As the authors
stated in the paper, their “underlying estimate of meaning
is impoverished”. The technique though, shows tremendous
promise for text-based, query-driven image retrieval and
high-level object detection from images, the other side of
our human-to-computer communication goal, unaddressed
in this paper.

Another example of research in sentence generation from
images was reported by (Gupta et al. 2009) who gener-
ated narrations relating to a sports event in videos, using
a compositional model of AND-OR graphs. Their research
showed very encouraging results in the specific domain and
the structures of expected events were known beforehand,
which greatly enhanced their sentence generation as well
as the evaluation of results. (Yao et al. 2010) also gener-
ated sentences from temporal sequences in pre-specified do-
mains (surveillance in an urban traffic scene and in a mar-
itime scene), also using an AND-OR graph over a visual
knowledge representation. Although they demonstrated their
algorithms within these specific domains in their paper, no
evaluation for sentence correctness was provided.

3 Visual Content Extraction

Image segmentation Our image segmentation paradigm is
initiated with the generation of superpixels j = 1, . . . N . Im-
age gradient magnitudes were used as inputs to the water-
shed algorithm (as implemented in Matlab image process-
ing toolkit) and the resulting superpixels are highly regular
in shape and size. Our segmentation algorithm first sorts the
resulting superpixels in increasing order of f(·), where f
in our case is a single value computed by bit-shifting the
average color in a superpixel. The order is traversed once
and sorting, the most expensive computation runs in order
of O(n log n) Each region in the sorting order will be com-
bined with its neighbors based on a merging predicate given

by:

P (Ri, RN (i)) =

{
true iff |R̄i − R̄N(i)| ≥ T̄ ,
false otherwise

where Ri is a region (containing one or more already
merged superpixels) and RN (i) is an unmerged neighbor of
Ri; R̄i is a vector representing the aggregated cues in region
Ri. The aggregation in each cue is described in the list be-
low. T̄ is a vector of threshold values, where each dimension
of T̄ is a cue threshold value, learned from training data. The
operator | · | represents the χ2 distance.

The feature list used in our merging predicate are:

• HSV colors: represented by histogram distributions. The
aggregate value is the histogram re-distribution of the
merged region.

• Texture: represented by the mean absolute responses and
histogram responses of 4-scale, 6-orientation LM fil-
ters. To compute aggregate values, the unnormalized his-
tograms are summed. After the merge is completed, the
texture histograms are normalized.

Multiple segmentations can be encouraged by varying the
threshold values so that stable segmentations can be ex-
tracted. But in our experiments, by using multiple segmen-
tations, our pixelwise accuracy dropped from about 79% to
70%, hence we opted to use only a single segmentation.

Scene categorization For scene categorization, we clas-
sify the GIST description (Oliva and Torralba 2001) of the
image, performing a one-versus-all test with the rbf kernel
on a support vector machine. A 64-dimensional feature vec-
tor is computed over the image is used for classification, re-
sulting in a class C, where C ∈ {Mountain, Woods, Beach,
Street, Highway, Neighborhood-suburb, Neighborhood-city,
Garden, Tall buildings, Plains}.

These categories match well to those defined in (Oliva and
Torralba 2001), with the exception of the additional classes.
Also, we greatly modified their scene categorization dataset
by removing much of the “pure scene” images and included
images with mixed scenes (such as a highway by the ocean,
or tall buildings surrounded by open plains), for training and
testing. In updating the scene training data to more realistic
images, the accuracy rate dropped from 82% as reported by
the authors to 68%.

Scene illumination using location probability maps
The scene illumination is computed by training location
probability maps over images belonging to the different illu-
mination classes. A location probability map divides every
image in our training set into a fixed number of horizontal
slices to coarsely capture its location properties. Each slice
is converted to the Red-Green, Blue-Yellow color space and
16-bin color histograms are computed for each channel in
each slice. The total image feature is therefore a concate-
nation of the histogram data in a fixed order. Auto-logistic
regression is used for classification, resulting in a class L,
where L ∈ natural light, Sunset, Nighttime, Foggy. The R-G
and B-Y conversion is given by:
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(
O1

O2

O3

)
=

(
5.2 −4.9 1.7

−1.3 −1.9 3.0
1.0 0.0 1.0

)(
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1.1G
1.0B

)

O1 is the R-G channel while O2 is the B-Y channel. After
testing several other color spaces, we found this to be the
most discriminant of scene illumination, with its sensitivity
to red-green and blue-yellow separately.

Spatial geometry recovery and object detections We
use the model by (Hoiem, Efros, and Hebert 2007) for es-
timating surface layouts and the object detectors by (Felzen-
szwalb et al. 2010) to detect foreground objects. The objects-
of-interest in DISCOare people, cars, trains, motorbikes,
buses, cows and boats

3.1 Fusing scene categories, multi-class region
labels and geometric locations

Our region labeling aims to assign a label to each segments
in the image. We assume that the segment resolution is suf-
ficient to capture all regions of interest in the image. Each
segment is labeled by initially assigning a class to it, based
solely on its appearance. Node potentials are based on the
pre-computed appearance features, and they include the ab-
solute differences of the mean RGB, L*a*b*, HSV, texture
filter responses and x-y location values of the segment cen-
troid, the symmetrized Kullback-Leibler divergence of the
color and texture histograms and perspective differences.
The ensuing region labels are assigned at the segment level
as Rj .

Our fusion model seeks to improve the overall estimated
scene class, region and geometry labels and object detection.
We accomplish this by incorporating both scene-based and
object based context into our final inference.

Figure 3 shows the simplified graphical model of our fu-
sion technique, where the graph consists of two segments
Sm and Sn with feature vectors with features Xm and Xn

respectively. The joint distribution of the model can be writ-
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Figure 3: The simplified fusion graphical model showing the
factorization for an image with only two segments

ten as:

P (C,R1...N , G1...N |X1...N ) =
N∏
i=1

ψi

N∏
j=1

φj (1)

where ψi = ψ(Ri, Gi, Xi) is a clique potential, and
φj = φ(Rj , C).

The 3-clique is factorized into pairwise potentials for ease
of computations.

ψ(Ri, Gi, Xi) ∝ p(Ri|Xi)ṗ(Gi|Xi)ṗ(Ri, Gi) (2)

The first two elements on the RHS of Equation 2 were pre-
computed during the independent label classification.
p(Ri, Gi) is represented by a Region-Location matrix com-
puted during training where the number of co-occurrences of
regions and geometrical labels were counted, recorded and
normalized. Similarly, φ(Rj , C) is derived by computing the
co-occurrences of regions and scene categories.

4 Sentence Generation

Given the visual content extracted from an image, it is pos-
sible to generate sentences about the image using forward
chaining production rules. The system consists of the pre-
defined set of rules, a working memory to store the tempo-
rary data and the forward chaining inference.

Input: original image, empty string-finalstr, C, L, {R}, {G},
{bboxes}

Output: Populated string-finalstr
Generate a static color palette of 26 colors;
Randomly select from a list of scene lighting sentences
Populate the scene lighting sentence with token L;
Append new sentence to finalstr
Randomly select from a list of scene category sentences
Populate the scene category sentence with token C;
Append new sentence to finalstr
foreach object category j do

foreach bboxes i do
if Score(i,j) ≥ threshold then

if L = ’Natural lighting’ or ’Foggy’ then
Compute foreground object color;
Populate object sentence with number and
colors of objects j;

end
else

Populate object sentence with number of
objects j;

end
Append new sentence to finalstr;

end

end

end
if L = ’Natural lighting’ or ’Foggy’ then

Populate templates with region information in the ground,
vertical and sky planes from {R} and {G};
Compute background region colors;
Append new sentences to finalstr;

end

Algorithm 1: Sentence generation from image content

The output of the visual content extraction process for
an image include: (i) the most likely scene category C se-
lected from the set of nine category labels; (ii) the scene
lighting category L selected from the set of four labels; (iii)
the set of background regions, {R}; (iv) the set of geometric
regions{G}; and (v) the set of foreground object bounding
boxes bboxes, for seven object categories. Color estimations
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for objects or regions are performed in the L*a*b* space us-
ing Euclidean distances between the object/region median
value and the pre-defined 26-color palette.

The sentence generation is summarized in Algorithm 1

5 Experiments and Results

Due to the multi-faceted nature of our work, we conducted
multiple experiments to evaluate the performance of the
intermediary computer vision sub-processes, and one final
human-in-the-loop experiment to evaluate the meaningful-
ness of the generated sentences.

Scene Categorization The scene categorization algo-
rithm was initially presented by Torralba et. al. (Oliva and
Torralba 2001), and the “pure scene” dataset presented has
since been extended by several other researchers including
(Li, Socher, and Li 2009). We discarded the indoor labels
and used only the outdoor ones. We extended the train-
ing/validation dataset by introducing several real-life images
containing multiple scenes and objects. Figure 4 shows the
results of running the algorithm both on the “pure scene”
dataset, and on the more realistic diverse dataset that we
extended. Although the cross-validation accuracy dropped
from about 80% to 68% after the dataset was extended, its
performance on our final more realistic testing dataset im-
proved.

Figure 4: The confusion matrix on the left shows our algo-
rithm using the pure scene data, while the right is the same
algorithm on the more realistic dataset.

Image illumination: Image illumination training was
performed on a dataset containing 324 training images. Of
these, 20% were images taken at night, 20% were images
taken at dusk or sunset, 10% were images taken in snowy or
foggy conditions and the remaining 50% were images taken
under natural lighting conditions. Our illumination classi-
fying algorithm was tested via 5-fold cross validation test-
ing, and resulted in an accuracy of 78%. Since there is cur-
rently no publicly available illumination benchmark dataset
to compare against, we will make our training dataset pub-
licly available for testing.

Image segmentation and labeling: Our image
segmentation-labeling algorithm was tested on the Stanford
dataset containing 715 images of outdoor scenes compiled
by (Gould, Fulton, and Koller 2009); we performed the
same tests in the paper, a 5-fold cross-validation, with the
dataset randomly split into 572 training and 143 test images
for each fold. Our pixel-level accuracy was 79.84% (0.77)

- standard deviation are given in parenthesis. A baseline
standard pixelwise CRF model gave a mean pixel accuracy
of 74.30% (0.80) and the region-based energy model by
(Gould, Fulton, and Koller 2009) had an accuracy of 76.40%
(1.22). It is worth noting that their energy minimization
technique can take as long as ten minutes to segment one
image, while our algorithm runs in only a few seconds for
the same image. Table 1 shows the confusion matrix for the
labeling on the same dataset.

A minor criticism we had of this dataset was its lack of
diversity in scene categories. Out of the 715 images, more
than 50% were street views, while about 10% were images
of a animals in an open field (many of which were obtained
from the MSRC dataset consisting mainly of a foreground
object in the background). This dataset was more object-
centric than general scene-based. Note:out of 715 images,
there were only 14 images with the mountain label, hence
its low diagonal score in Table 1.

Figure 5: Examples of images and our segmentation output.

Human-in-the-loop Evaluation: To test our sentence
generation paradigm, we compiled a new dataset consisting
of 709 images. The dataset included many more different
scene categories and objects than the Stanford dataset, al-
though we “borrowed” several images from their dataset as
well as from Hoeim et al., (Hoiem, Efros, and Hebert 2007).
About 75% of the images in the dataset are taken in daylight
while the remaining images are equally distributed over hav-
ing sunset (or dusk), foggy (or snowy) and night-time illumi-
nation. The images with different scene illumination types
were obtained from the Corel dataset as well as from google
images.

Similarly, the distribution of scene categories is given as
Mountains - less than 5%, Woods - less than 10%, Beach
(or coastal) scenes - about 25%, Street - about 20%, High-
way - about 5%, Suburbs - about 5%, In-city - about 15%,
Garden - less than 10%, Tall buildings about 10%, and Open
plains - less than 10%. It is important to note that many im-
ages strongly possess more than one scene category and are
therefore counted multiple times. Some examples of images
from our dataset are shown in Figure 1 and Table 2. We then
used our DISCO paradigm, described in Sections 3 and 4 to
generate sentences for each image.

Our human-in-the-loop evaluation was conducted as fol-
lows:
• The evaluation begins with the user accessing http://
www.zmldesign.com/SUnProject. This webpage
randomly selects one of the 709 images in the dataset and
presents its generated text to the user.

• The corresponding image along with 19 others (a total of
20 images) are then presented to the user along with the
generated text.
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Sky Tree Road Grass Water Buildings Mountain F object

Sky 90.58 1.37 0.40 0.00 0.09 6.09 0.14 1.32
Tree 1.41 69.00 0.62 2.07 0.02 22.15 0.14 4.58
Road 0.07 0.43 87.58 0.77 1.94 4.64 0.07 4.50
Grass 0.10 7.05 5.24 80.81 0.01 3.93 0.022 2.62
Water 4.74 0.33 24.34 0.18 59.11 4.63 1.28 5.39

Buildings 1.01 3.40 1.52 0.32 0.00 85.42 0.00 8.33
Mountain 6.93 18.99 10.65 4.91 6.08 37.13 6.39 8.90
F object 1.03 3.97 8.76 0.54 0.23 21.78 0.00 63.67

Table 1: Confusion matrix (corresponding to our recorded highest accuracy) from labeling the Stanford dataset

• The user is encouraged to view all 20 images in detail
and select the image most appropriately described by the
given text.

• A survey page is launched and the user is encouraged to
fill the questionnaire. The questions on the survey include:
(i) rating how well the description text explained the ac-
tual image; and (ii) ranking the order of usefulness of
the scene context, background regions, objects and peo-
ple and color or shape in the presented sentences.

We conducted the web-based evaluation test with 25
users. Each user was instructed to test about 10 times and
this was the case on average. We evaluated (i) the number
of times the users correctly selected the same image as was
being described; (ii) the user ratings of the description text
compared to the image and (iii) the rankings of the order of
usefulness of including different visual content information
in the generated sentences.

Because multiple images can have very similar text de-
scriptions, the user is asked to rate the appropriateness and
meaningfulness of the sentence compared to expected se-
lection. We provide this option so that even when 2 images
correspond to similar sentences, we are still able to mea-
sure the meaningfulness of the sentences with respect to the
expected image. The user is also presented with a set of
questions to determine which image aspect: scene catego-
rization, background description, object detection or object
color and shape, yields the “best” information in the given
set of sentences. Figure 6 shows the distribution of how users
ranked the sentence descriptions provided. With total scores

1: Sentence completely explains image
2: Sentence satisfactorily explains image
3. Sentence fairly explains the image
4. Sentence poorly explains image
5. Sentence does not explain image

Figure 6: Distribution of meaningfulness scores of generated
sentences

of Fairly explains (3) and higher, the algorithm was 60.34%
meaningful. With scores of Satisfactorily explains (2) and
higher, the algorithm was 32.8% meaningful. 33% of se-
lected images were exactly matched to the expected image,

although this is not conclusive evidence for sentence mean-
ingfulness, since multiple images can have the same descrip-
tions. Chance performance for Fairly explains (3) and higher
would be 15%, for Satisfactorily explains (2) and higher
would be 10%. If the test was run 250 times, chance per-
formance of correctly selecting the right image each time
would be less than 1%.

Table 2 shows sample results from the different types
of image found in DISCO. Images tested include different
scenes at sunset, at night-time, in foggy or snowy weather
and in natural light. Several of the images shown are cor-
rectly labeled and have correct sentences, while others have
incorrect labels, but with the sentences being quite general,
are still descriptive and correct. Others yet have both incor-
rect labels and sentences, and the descriptions are mislead-
ing.

6 Discussion and Future Work

Sentences are extremely rich sources of information, both
for transmitting and receiving information. In this paper,
we have presented a sentence generation paradigm that is
judged by its meaningfulness to humans and 60.34% of the
tests performed indicated that the generated sentences at
least fairly explained the presented images. Going forward,
it will be useful to study what aspects of a scene yields the
most information and under what circumstances. Our eval-
uation test website provides the opportunity for the further
evaluation tests. Also from our survey results, we intend to
study the statistical distributions of the scene aspects that
users found most useful and correlate these with the under-
lying image content.

Also, by encouraging our testers to provide more appro-
priate sentences for different images in the dataset, we are
collecting human annotated data that will be useful going
forward. We will also investigate how top-down models such
as presented by (Farhadi et al. 2010) will integrate with a
bottoms-up approach such as ours.
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Actual image Regions labeled Text generated

The image scenery is set in the suburbs;
There’s quite a large expanse of white sky in
the scenery. There’s quite a large expanse of
trees in the scenery. The wheat colored build-
ings are prominent in the scenery.

The picture shows a scene... in the woods;
The picture has a person in something white.
The trees are quite prominent in the scenery.

The picture shows a scene... with a view of
tall buildings; The picture background con-
sists mainly of bluish-purple sky. The pic-
ture background consists mainly of trees. The
brown buildings are quite prominent in the
scenery.

This scene is at sunset or dusk... with a view
of the water; There are at least 2 people in the
picture.

This scene shows a snowy day... in the woods;

The image scenery is set with a view of the
water; The picture has a person in some-
thing brown. The person is standing on the
water. The green sky are quite prominent in
the scenery. The picture background consists
mainly of dark gray water. The dark gray
buildings are quite prominent in the scenery.

The picture shows a scene... with mountains
in the background; The picture has a person
in something dark gray. There is also a mo-
torbike in the picture. There’s quite a large
expanse of dark gray trees in the scenery

The picture shows a night scene... in a resi-
dential neighborhood outside the city;

The picture shows a scene... in a street in the
city; There are at least 6 people in the pic-
ture. Someone in the picture has on some-
thing wheat colored. The people are standing
on the road. The picture background consists
mainly of light gray buildings.

The image scenery is set in an open plains
landscape; There are at least 2 cars in the pic-
ture including a purplish-pink one. The cars
are on the road. There’s quite a large expanse
of green trees in the scenery.

The image scenery is set with a view of
tall buildings; The picture has a person in
something purplish-pink. The picture back-
ground consists mainly of light gray build-
ings. There’s quite a large expanse of dark
gray trees in the scenery.

The picture shows a scene... in an open plains
landscape; There are at least 2 people in the
picture. Someone in the picture has on some-
thing purplish-red. The people are standing
on the sand. The dark gray buildings are
quite prominent in the scenery. There’s quite
a large expanse of dark gray trees in the
scenery.

Table 2: Examples of images, labeled regions and generated
sentences.
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