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Abstract

One of the most ubiquitous AI applications is vehicle
route planning. While state-of-the-art systems take into
account current traffic conditions or historic traffic data,
current planning approaches ignore the impact of their
own plans on the future traffic conditions. We present a
novel algorithm for self-aware route planning that uses
the routes it plans for current vehicle traffic to more ac-
curately predict future traffic conditions for subsequent
cars. Our planner uses a roadmap with stochastic, time-
varying traffic densities that are defined by a combina-
tion of historical data and the densities predicted by the
planned routes for the cars ahead of the current traf-
fic. We have applied our algorithm to large-scale traf-
fic route planning, and demonstrated that our self-aware
route planner can more accurately predict future traf-
fic conditions, which results in a reduction of the travel
time for those vehicles that use our algorithm.

Introduction

One of the most ubiquitous applications of AI is vehicle
route planning. State-of-the-art route planners consider pos-
sible delays due to traffic congestion based on current traf-
fic conditions and/or historical traffic data. Live traffic data
can be collected by loop-detectors, cameras, toll port data,
and cell phone localization. These systems provide the traf-
fic velocity at certain locations at a fixed frequency (Brakat-
soulas et al. 2005), which can then be used for vehicles to
plan around congested areas. Live data alone does not en-
able predicting future traffic conditions. For example, if a
route is planned to let a car arrive at a certain road in half
an hour, the current conditions may no longer be an accurate
estimate for that road 30 minutes later. This problem can be
addressed by using a prediction scheme of the future traf-
fic conditions based on historical probabilistic data of traf-
fic conditions at similar times of the day under the similar
weather (Horvitz et al. 2005), (Nikolova, Brand, and Karger
2006), (Min, Wynter, and Amemiya 2007).

However, given a large-scale system view of the entire
road network and the traffic in the system, such an approach
still has a problem: a route planner can affect future traffic
conditions by planning for a large portion of the vehicles,
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thus making prediction based on current and historical data
insufficient. Instead, the route planner must also take into
account its own previous actions. For example, if a route
planner controlled every car in the system, historically con-
gested areas would be unduly avoided, causing congestion to
appear at the routes that the planning system has provided.
This is clearly the worst-case scenario, but the underlying
problem is that the historical prediction assumes that cars
tend to act the same way as they have historically, which may
no longer be the case if a route planner is controlling the tra-
jectories of all vehicles. We propose a novel self-aware traf-
fic route planner that uses the routes of vehicles that it has
planned so far to more accurately predict future traffic con-
ditions for vehicles whose routes are subsequently planned
(see Fig. 1). As a result, our approach overcomes the oscil-
lation issue in case of large-scale adoption of traffic route
planners.

Our self-aware approach accounts for the fact that a route
planned for a car will cause a little extra traffic density at the
roads it will traverse. We use the predicted paths of the route
planner itself in addition to historical data to estimate future
traffic conditions. Assuming that a large percentage of the
cars use the route planning system, the collection of all their
planned routes can be used to accurately estimate the future
traffic conditions. Every car that queries the route planner
can then use this information to plan a route for itself. Its
planned route is then used to update the estimate of future
traffic conditions for vehicles come in later in the road net-
work. Our experimental results suggest that our self-aware
route planner can more accurately predict future traffic con-
ditions, resulting in a reduction of the travel time for those
vehicles that use our algorithm.

The rest of the paper is organized as follows. In Section
2, we discuss background work related to our approach. In
Section 3, we detail the method used to update the historical
probabilistic prediction and the overall planning system. In
Section 4, we discuss the implementation and validation of
our method.

Prior Work and Background

Our work is perhaps most similar to that of (Nikolova et
al. 2006) and (Lim et al. 2009). In fact, our work directly
extends these methods to perform ‘self-aware’ routing. In
(Nikolova et al. 2006), the authors propose a method to op-
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timally route cars given uncertain information about travel
times within a network. (Lim et al. 2009) provides an opti-
mization to the procedure that allows fewer paths to be ex-
plored, while optimizing for a specific arrival deadline, and
additional extensions were carried out in (Nikolova 2010)
and (Hua and Pei 2010).

Another area of similar work is the study of Dynamic
Traffic Assignment (DTA) done primarily in Civil Engineer-
ing. This problem involves flows of traffic from known ori-
gins to destinations (OD flows). The solution approaches at-
tempt to optimally route all the flows in order to maximize
aggregate or individual statistics. A summary of approaches
can be found in (Peeta and Ziliaskopoulos 2001). The most
relevant of these approaches are the simulation methods,
such as (Florian, Mahut, and Tremblay 2008). In these ap-
proaches, cars are iteratively routed and simulated. The sim-
ulation provides the estimate of the network state that is used
for the next iteration of routing. Over a number of iterations,
the routes settle into an equilibrium.

Our work is inspired by (Lim et al. 2009), which presents
an planning algorithm using graphs with stochastic (time-
invariant) edge costs. Their planner assumes a cost func-
tion that invalidates the “optimal substructure” property
of paths, which prevents using a straightforward A* algo-
rithm, and present an efficient approach to compute opti-
mal paths for such cost functions. In contrast, our algo-
rithm uses a simpler cost function that still makes it possi-
ble to use an A* search algorithm, but assumes time-varying
stochastic edge costs. We use insights from (Chabini and
Lan 2010) regarding the first-in-first-out property of traf-
fic that allows us to use A* even if the edge-costs are
time-dependent (in general, time-dependent edge costs pro-
hibit the use of A*). Typical traffic related planning ap-
proaches assume the edge cost to be given as travel times
(potentially time-varying and stochastic) (Lim et al. 2009;
Chabini and Lan 2010).

Our approach assumes the input data to be traffic densi-
ties of the road segments in the network, and we use the
fundamental diagram of traffic to translate these densities to
velocities and travel times. Maintaining densities allows us
to update the data with the routes that our system generate
to create a self-aware routing system. The observation that
the flow (and velocity) of traffic was dependent on the traf-
fic density was made in early traffic studies (Greenshields
and others 1935). Since then, the concept has been used as a
basis for continuum traffic simulation formulations (Siebel
and Mauser 2005) as well as in schemes to estimate the state
of traffic given sparse data, such as cell phone localization
signals(Work et al. 2010).

Approach
We assume the road network to be given as a directed graph
G = (V,E) consisting of a set of vertices V that model
road intersections and edges E ⊂ V × V that model road
segments between intersections. Associated with each edge
e is the capacity Ce, maximum speed vmax

e , and length �e
of the corresponding road segment. In addition, a stochas-
tic function ρe(t) ∼ N (ρ̄e(t), ρ̃e(t)) is maintained for all
road segments e that gives a normal distribution with mean

Figure 1: A schematic picture illustrating the idea of our ap-
proach. A road network is shown with edge costs. (a) If a
route from s to g is requested, the optimal path is computed
(shown with thick arrows). If the car follows this route, the
densities and hence the edge costs along its path increases
(in this case with 1). In (b), the network with the updated
edge costs are shown. If a same query (s, g) comes in from
a subsequent car, it takes a different route (shown with thick
arrows) to avoid the increased traffic densities. Note that this
schematic picture does not illustrate the stochastic and time-
varying aspects of our approach.

ρ̄e(t) and variance ρ̃e(t) of the traffic density of e at time t.
We assume this distribution is independent from the density
distributions at other road segments or at other times (sim-
ilar assumptions were made in (Lim et al. 2009)). Further,
we assume that the time-axis is cyclical (e.g. with a daily
or weekly period) and discretized into small steps, such that
only a finite amount of data is stored with each edge e. The
stochasticity of the density function models the uncertainty
about future traffic conditions as well as the variability of
conditions from day to day.

Our approach can be summarized as follows. We assume
that over time, different queries for optimal routes come in
from cars that use our self-aware planning system. If a query
comes in from a car i at a given time t0, we plan a route for
car i between its start node s and goal node g that optimizes a
cost function based on its expected travel time given the cur-
rent density functions ρe(t) for each edge e. Subsequently,
assuming this car will actually follow the route it was given,
we update the density functions ρe(t) along its route such
that its presence is accounted for when a route is planned for
a subsequent car i+1. This cycle continues indefinitely with
each query coming in for an optimal route computation. As
such, the planner is aware of the routes it has suggested ear-
lier, in order to optimally estimate future traffic conditions.

We will first describe how an optimal route is planned for
a car given the stochastic density functions ρe(t). Next, we
will discuss how this plan is used to update the stochastic
density functions such that the presence of the car is ac-
counted for in future plans for other cars. Finally, we will
discuss how the problem of ”double-counting” cars can be
avoided, which would occur when a car being routed also
appears in the historical data.

Route Planning

Density and Travel Time Given a query (s, g, t0) for a
car between a start node s ∈ V and a goal node g ∈ V
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Figure 2: The fundamental diagram relating traffic density
to travel speed.

leaving s at time t0, we want to compute a route that mini-
mizes the travel time to g given the stochastic density func-
tions ρe(t). To relate density to travel time, we use the fun-
damental diagram, which is a well-known empirical concept
in traffic simulation research (Greenshields and others 1935;
Siebel and Mauser 2005; Work et al. 2010) that gives a map-
ping from the traffic density ρ to the average speed v on a
road segment e, given the maximum speed vmax

e and capac-
ity Ce of the road segment e. Let the function described by
the fundamental diagram be given by v = fe(ρ) (see Fig. 2).

Now, if a car arrives at the beginning of a road segment e
at time t, we assume the speed with which it can traverse the
road segment is given by fe(ρe(t)). The travel time τe(t) to
traverse e starting at time t is then given by:

τe(t) =
�e

fe(ρe(t))
. (1)

Since, the density function ρe(t) is stochastic, the travel time
is stochastic too. We approximate it with a normal distribu-
tion as N (τ̄e(t), τ̃e(t)), with mean τ̄e(t) and variance τ̃e(t)
given by the first-order Taylor expansion of τe(t):

τ̄e(t) =
�e

fe(ρ̄e(t))
(2)

τ̃e(t) =
(dτe(t)

dρ
[ρ̄e(t)]

)2
ρ̃e(t). (3)

For a path π = {e1, . . . , en} consisting of a series of
road segments when travel is commenced at time t0, the total
travel time τπ(t0) is given recursively by:

τ{e1}(t0) = τe1(t0) (4)

τ{e1,...,ek}(t0) = τ{e1,...,ek−1}(t0) + (5)

τek (t0 + τ{e1,...,ek−1}(t0))

Its mean τ̄π(t0) and variance τ̃π(t0) are hence given by:

τ̄{e1}(t0) = τ̄e1(t0) (6)

τ̃{e1}(t0) = τ̃e1(t0) (7)

τ̄{e1,...,ek}(t0) = τ̄{e1,...,ek−1}(t0) + (8)

τ̄ek(t0 + τ̄{e1,...,ek−1}(t0))

τ̃{e1,...,ek}(t0) = τ̃{e1,...,ek−1}(t0) + (9)

τ̃ek(t0 + τ̄{e1,...,ek−1}(t0)).

Cost Function Our objective is to find a route π that min-
imizes the expectation E[c(τπ(t0))], given a cost function
c(τ) on the travel time τ . We consider two cases here:

• Linear cost: The cost increases linearly with the travel
time: c(τ) = τ . Let pdfA(t) denote the probability density
function of normal distributionA. Then, the expected cost
is given by

E[c(τπ(t0))] =

∫ ∞

−∞

pdfτπ(t0)(t) · t dt = τ̄π(t0),

which is the mean of the travel time of route π when travel
is commenced at time t0.

• Exponential cost: The cost increases exponentially with
the travel time to more heavily penalize late arrivals:
c(τ) = exp(2wτ) for some weight parameter w. The ex-
pected cost in this case is given by

E[c(τπ(t0))] =

∫ ∞

−∞

pdfτπ(t0)(t) exp(2wt) dt

= exp(τ̄π(t0) + wτ̃π(t0)).

The result of minimizing for E[c(τ)] in equivalent to min-
imizing for logE[c(τ)]. Following this, the cost then be-
comes τ̄π(t0) + wτ̃π(t0), and is hence a linear combina-
tion of the mean and the variance of the travel time (Lim
et al. 2009).

Our approach works for either of these cost functions. In our
implementation we used the exponential cost function, for it
attempts to minimize both the mean and the variance of the
travel time.

Planning Algorithm To find a path in the graph G be-
tween start node s and goal node g, we are confronted with
a shortest path problem in a graph with time-varying and
stochastic edge costs. In general, such problems are hard
(Lim et al. 2009; Chabini and Lan 2010), but in our case
we can exploit properties of the cost function that allow us
to a standard A* algorithm, which we will slightly adapt to
handle the stochastic travel times.

Firstly, both of the cost functions as defined above are ad-
ditive given the way the mean and variance of the travel time
are computed (see Equations (8) and (9)). That is,

E[c(τ{e1,...,ek}(t0))] = E[c(τ{e1,...,ek−1}(t0))] + x, (10)

where x is a linear combination of the second terms of Equa-
tions (8) and (9). Second, traffic observes the so-called first-
in-first-out property (Chabini and Lan 2010). This means
that arriving earlier at a node u in the graph will never pro-
duce a costlier route than a route that arrives later at u.
Note that this is not the case for graphs with general time-
dependent edge costs.

These two properties allow us to use the standard A* algo-
rithm, which is adapted to handle the stochastic travel times
along a route. The algorithm is given in Fig. 3. Instead of
maintaining a single cost value of each nodeu in the graph as
in standard A*, we maintain both the mean τ̄u and variance
τ̃u of the travel time of the current-best route from s to u. Ini-
tially, these are infinity for all nodes u, except the start node
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TRAFFICA*(s, g, t0)

1: ∀u ∈ V : τ̄u ← ∞, τ̃u ← ∞; τ̄s ← 0; τ̃s ← 0
2: OPEN ← {s}
3: while OPEN �= ∅ do

4: u ← argmaxu∈OPEN {τ̄u + h̄(u) + w(τ̃u + h̃(u))}
5: OPEN ← OPEN \ {u}
6: if u = g then
7: return
8: for each edge e = (u, v) in G do
9: μ ← τ̄e(t0 + τ̄u)

10: σ ← τ̃e(t0 + τ̄u)
11: if τ̄u + μ+ w(τ̃u + σ) < τ̄v + wτ̃v then
12: τ̄v = τ̄u + μ
13: τ̃v = τ̃u + σ
14: pred(v) ← u
15: OPEN ← OPEN ∪ {v}

Figure 3: The modified A* algorithm to compute an optimal
route with respect to the exponential cost metric between
start node s and goal node g when traffic is commenced at
time t0. When planning has finished, the optimal route is
inferred by following the backpointers from the goal g.

s, for which they are zero. The heuristic value h̄(u) pro-
vides a lower-bound estimate of the mean travel time to the
goal g from a given node u, for which we use the Euclidean
distance between u and g divided by the largest maximum

speed in the road network. The heursitic value h̃(u) provides
a lower-bound estimate of the variance of the travel time be-
tween u and g, for which we use h̃(u) = 0. The functions
τ̄e(t) and τ̃e(t) which we refer to in lines 9 and 10 are given
by Equations (2) and (3).

Maintaining Density Functions

Once a route has been planned for a car, we wish to take its
presence into account when subsequent routes are planned
for other cars. Based on the route that has been suggested,
we can assume the car will follow it and add to the traffic
densities at the road segments along its route at the times
it is expected to traverse these road segments. At the same
time, not all cars on the road use our self-aware planning
system, and the system is not aware of the future plans of
the cars that do use our system but have not entered the road
network (yet). So, previously planned routes alone do not
provide an accurate estimate of future traffic data.

Blending Historical and System Data In order to predict
future traffic conditions, we let the density functions ρe(t)
used in the above algorithm be a combination of historical
traffic density data ρhiste (t), and density data ρsyste (t) gener-
ated by route plans provided by our self-aware system. How-
ever, care needs to be taken that the historical data is partly
phased out when actual data of planned routes is included
in the densities, as to avoid cars being double counted. We
proceed as follows. Let α ∈ [0, 1] be the proportion of cars
that use our system to compute their routes. Further, let there
be a function β(Δt) ∈ [0, 1] that provides the proportion of
cars that will be on the road at Δt time into the future which

are already on the road currently. We assume β(Δt) is time-
independent, and can be inferred from historical traffic data
on average travel times.

The traffic density ρe(t) as used in our algorithm for a car
starting travel at time t0 is then computed as follows:

ρe(t) = (1− αβ(t − t0))ρ
hist
e (t) + ρsyste (t). (11)

This can be explained by the fact that a fraction αβ(t − t0)
of all cars that will be on the road at time t have already
been accounted for at time t0 in the densities generated by
our system.

Updating Traffic Densities When a route has been
planned for a car by our algorithm, we wish to take its pres-
ence into account when subsequent routes are planned for
other cars. To this end, we update the density data ρsyste (t)
that only counts cars for which routes have been planned us-
ing our self-aware system. We update these traffic densities
as follows.

The algorithm above will give us a route π = (e1, . . . , en)
and distributions τu ∼ N (τ̄u, τ̃u) of the travel times from
the start node s to each node u along path π. Let edge e =
(u, v) be part of π. The car for which a path is planned will
be on e = (u, v) at time t with probability:

q(u,v)(t) =

∫ t−t0

−∞

pdfτu(t
′) dt′ ·

∫ ∞

t−t0

pdfτv(t
′) dt′, (12)

where t0 is the time at which the car commences its route π.
The above equation computes the probability that the car

both arrives at e before time t and leaves e after time t. The
density on e at time t is defined by the number of cars on e at
time t divided by the length �e of e. Hence, the distribution
of the density ρsyste (t) at time t is updated as follows:

ρ̄syste (t) ← ρ̄syste (t) + qe(t)/�e (13)

ρ̃syste (t) ← ρ̃syste (t) + qe(t)(1 − qe(t))/�
2
e, (14)

which follows from treating the distribution ρe(t) for each
edge e and for each time t as an independent Poisson bi-
nomial distribution consisting of a number of cars each
with a different probability of contributing to the density.
When the number of cars gets large, the Poisson binomial
distribution is well approximated by a normal distribution
N (ρ̄e(t), ρ̃e(t)). This justifies the assumption in the plan-
ning algorithm of Fig. 3 that ρe(t) is a normal distribution.

As the time axis is discrete, we only need to update a finite
set of density distributions along the route planned for the
car. We use the same discretization to compute the integrals
in Equation (12). We use the updated mean and variances for
the densities to route subsequent cars. This cycle of routing
cars and updating densities continues indefinitely.

Empirical Results

In this section, we present our empirical study of the perfor-
mance of our approach. Our hypothesis is that our system
plans routes that have, on average, lower travel times than
routes planned using the shortest path metric or stochastic-
historical prediction method, increasingly so when the pro-
portion of users of our system increases. This reinforces
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Figure 4: We highlight the performance of our algorithm
compared with routing cars along a single path. The flow
of cars quickly leads to congestion and long travel times for
the single path. Our approach distributes the cars and settles
to a constant travel time.

the essential claim of our paper: by taking into account the
routes planned by the system itself, a planning system can
find routes with substantially shorter travel time.

We have validated our approach by calculating plans for
a fixed population of cars and queries using varying route
planning methods. The validation was done in four parts.
First, we compare our method with using a single path in
a network. Next, we compare the performance of our self-
aware algorithm to using shortest path A* searching. Next,
we compare our algorithm to using stochastic-historical pre-
diction. Finally, we investigate the performance of our al-
gorithm as the percentage of total number of cars that are
controlled varies.

Traffic Simulation

To simulate the travel times of the cars in these experiments,
we use the same derivation as above. We calculate the esti-
mated travel times using the fundamental diagram and the
time-varying density data. This density data is then updated
for every car that travels the network. For these experiments,
we have added a cutoff-capacity to our road network edges.
This is the maximum density value the edge will be as-
signed, regardless of how many cars are routed on it. This
ensures that the planners we compare against do not plan
routes with infinite time duration.

Avoiding Congestion on a Single Path

We designed this benchmark to showcase the basic premise
of our approach. The road network is a rectangular grid of 5
× 5 intersections, connected by a road segments with equal
maximum speeds, 22.35 m/s, capacities, 0.09 cars per meter,
and cut-off capacities, 0.085 cars per meter. Each road seg-
ment is approximately 1000m. We assume the road network
is initially empty (i.e. there is no traffic). Then, we begin
routing a set S of cars, each defined by a tuple (s, g, t) of
a starting vertex s, an ending vertex g, and a starting time
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Figure 5: This figure shows the speedup factor that our
method achieves over a shortest path planner for a series of
cars. Each car has a random start and goal position.

t, enter the road network and traverse the route given by a
route planner. We assign the starting vertex for each car to
be the bottom left corner of the grid and the goal to be the
top right corner. Each car is given a starting time t = 2 ∗ i
seconds, where i is the car index in S.

We ran this experiment for both planners, the route plan-
ner that simply returns the shortest path between the start
and goal vertex, independent of traffic conditions, and our
self-aware system.

The result of this can be seen in Figure 4. Obviously,
since all cars have the same start and goal vertices, they
are all assigned the same route by the shortest-path plan-
ner, quickly causing growing congestion on this route. The
incoming flow is enough to cause significant congestion, but
not to cause a complete traffic jam. Our method distributes
the cars along multiple paths to the goal based on densities
predicted by earlier planned routes. By doing so, it can han-
dle the flow of vehicles at a relatively constant travel time.

Comparison with Shortest Path Planner

In the second benchmark, we compare the behavior of our
algorithm to the shortest path planner while routing a set
of cars S with random initial and goal intersections. This
scenario takes place on a grid road network with 15 × 15
intersections and a road length of 100m. The road network
is initially empty. As above, we perform the experiment for
both planners: first, we route each car in S using a shortest
path planner and calculate the resulting travel times. Sec-
ond, we do the same assuming all cars are routed using our
self-aware route planner. To best illustrate the effect of net-
work load in this scenario, each car has a starting time of
zero. The parameters used for the experiment were capacity
= 0.09 cars per meter, maximum velocity = 22.35 m/s, and
cut-off capacity = 0.085. For storing the density information
for each edge, a time discretization of 15s was used.

Figure 5 shows the result of this experiment. The result is
given in terms of the speedup of our method over the short-
est path planner, i.e. the ratio of the travel time planned by
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the shortest path planner over the travel time planned by our
method. The speedup for every car routed is displayed as the
cyan scatter plot, and the average speedup factor for each co-
hort of 100 cars is displayed as the blue line. As can be seen,
initially the speedup factor is negligible, since the road net-
work has low traffic densities that do not significantly slow
down traffic. Hence, in these cases the shortest path is indeed
also the time-optimal path. However, as more an more cars
have entered the road network, the average speedup in travel
time by using our self-aware planner rather than a shortest
path planner increases, peaking at a factor of approximately
4 after 6,000 cars have been planned. Eventually, the average
speedup decreases again, since the road network has become
so congested that alternative routes do not provide any ben-
efit in terms of travel time.

Comparison with Stochastic Planner Using
Historical Data

In this experiment, we compare the behavior of our algo-
rithm to a stochastic planner using historical data (SPUHD)
when routing a population of cars S. This experiment takes
place on the same grid road network as above, with 15 ×
15 intersections. We generate historic traffic data by defin-
ing a set of cars S with random start and goal intersections,
routing each car in S using a shortest path planner, and cal-
culating the resulting densities. The cars are created in 40
batches of 200, with each batch having a starting time of 5
seconds later than the preceding batch. This creates a maxi-
mum average network density, using the shortest path rout-
ing, of 0.054 cars per meter, and areas of full congestion,
i.e. 0.085 cars per meter. These time-varying, edge specific
stochastic densities are the history for the scenario. We as-
sume that S represents the typical traffic flow. We compare
our method and the SPUHD by planning for all of S, given
the calculated stochastic history. In our self-aware routing

algorithm, the planned routes are used to update the traffic
densities for plans of future cars, but our planner is unaware
of the history. In the SPUHD, each car in S is planned for as-
suming the history is a valid prediction, and these predicted
densities are not updated based on the SPUHD’s planned
routes.

The results are shown in Figure 6. We can see that only
using the stochastic history is not an effective strategy when
all cars are being navigated by the planner. This is an ex-
treme example, but it illustrates a basic motivating problem
with using stochastic prediction. If the planner were rout-
ing one car in S, then the history would be almost perfect;
as the planner is routing all of S, the predictions based on
the history are not valid. As the SPUHD believes a certain
congestion pattern will occur, due to the history, it routes
cars around that congestion pattern. However, as the SPUHD
is controlling all the cars, the predicted congestion pattern
does not occur, but instead the planner creates congestion
in other areas. The SPUHD assigns cars sub-optimal routes
due to its belief that the typical, historical traffic flows will
remain constant. Our method, on the other hand, distributes
car routes and achieves a 100-car mean speedup of up to a
factor of 20.

The high speedup factors here illustrate how unsuitable
pure historical prediction is when the entire set of cars is
being routed. In attempting to avoid predicted densities, the
stochastic planner using historical data irrationally prefers
domains of the road network, which then causes congestion
and traffic jams in those areas. Even at low network densi-
ties, approximately 0.014 cars per meter, the SPUHD causes
traffic jams, with some roads being saturated to their cutoff
capacity, 0.085 cars per meter.

Effect of Adoption Rate

In our final benchmark, we analyze the effect of the adop-
tion rate of our system in scenarios in which part of the cars
use our self-aware system, and the other part of the cars use
a shortest path planner. We let a set S of cars with random
start and goal intersections enter the (initially empty) road
network at a rate such that over time heavy congestion is
likely to be created on the road network. We use the same
road network as above. A percentageα of the cars (randomly
sampled from S) use our self-aware traffic route planner to
plan their routes, whereas 1−α of the cars use a shortest path
planner. For the sake of the simplicity, our self-aware route
planner ignores the portion of cars it does not control; in re-
ality this data can be estimated from historical data (see Sec-
tion Blending Historical and System Data). We repeat this
experiment for various values of α. The proportion of cars,
α, that are routed by our method are chosen using a consis-
tent random number seed: this implies that a car routed for
a low α will also be routed for a high α, preserving features
of the graphs for each value of α. The cars enter the road
network at a rate of 50 per second.

Figure 7 shows the results, a graph depicting the 100-
car mean speedup for various adoption values from 50% to
100%. We see a peek speedup of over 10 when 100% of the
cars are controlled: our system avoids the creation of heavy
congestion and large scale traffic jams. However, the maxi-
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Figure 7: The 100-car mean speedup of our method over the
simple planner for varying adoption percentages.

mum speedup and the integral of the speedup curve decrease
rapidly with α, showing a strong sensitivity to uncontrolled
cars creating traffic jams. At the 50%, a maximum speedup
of 2 is observed, and for smaller α values, a similarly small
speedup is observed. These results clearly show that the ben-
efit of our system increases with the adoption rate.

Conclusion and Future Work

State of the art approaches can handle stochastic planning
and can make use of traffic predictions, but they ignore a use-
ful source of information, i.e. the previously planned routes.
As routing systems become more pervasive, the routes they
plan will begin to significantly influence the future state of
traffic. Prior plans then become relevant to future plans. Our
approach addresses this issue. We provide a method to up-
date stochastic traffic predictions with previously planned
routes. Given stochastic predictions of future traffic states,
we plan for cars within this space. For each path planned, we
update the stochastic predictions based on the routes planned
for each car. The density of each edge is updated according
to the estimated arrival and departure times for the car. The
velocity of each edge is then updated according to the fun-
damental diagram, an empirical relationship between den-
sity and velocity. In our simulations, the improved routing
algorithm results in better utilization of the road network,
reduces congestion and the travel time for each car.

There are many avenues for future work. We would like
to perform more analysis and validate the performance of
our algorithm on actual traffic data. It would be useful to
relax some of our assumptions in terms of normal distribu-
tions along each edge of the road network. Finally, it may be
useful to develop a decentralized version of our self-aware
traffic planning algorithm.
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