
Recognizing Text Through Sound Alone

Wenzhe Li and Tracy Hammond
Sketch Recognition Lab, Department of Computer Science & Engineering, Texas A&M University, USA

3112 TAMU, College Station, TX, 77839
{liwenzhe, Hammond}@cse.tamu.edu

Abstract
This paper presents an acoustic sound recognizer to
recognize what people are writing on a table or wall by
utilizing the sound signal information generated from a key,
pen, or fingernail moving along a textured surface.
Sketching provides a natural modality to interact with text,
and sound is an effective modality for distinguishing text.
However, limited research has been conducted in this area.
Our system uses a dynamic time- warping approach to
recognize 26 hand-sketched characters (A-Z) solely through
their acoustic signal. Our initial prototype system is user-
dependent and relies on fixed stroke ordering. Our
algorithm relied mainly on two features: mean amplitude
and MFCCs (Mel-frequency cepstral coefficients). Our
results showed over 80% recognition accuracy.

 Introduction

HCI is a fast growing field in computer science that affords
a more natural form of interaction. Many of today’s
systems support innovative interfaces for people to interact
with, such as touch screen tablets and multi-touch surfaces.
These devices typically require users to use their stylus or
fingers to draw on the screen. Then the system can
automatically recognize drawn shapes or gesture
commands in an interactive way. While these devices are
easy to use and become popular, they are still quite costly
and need more time to be integrated into existing systems.
Handwriting recognition systems, while gaining in
accuracy, rely on users using tablet-PCs to sketch on. As
computers get smaller, and smart-phones become more
common, our vision is to allow people to sketch on normal
pencil and paper and to provide a simple microphone, such
as one from their smart-phone to interpret their writings.
 In this paper, we propose our novel algorithm to
recognize hand-drawn alphabet characters solely through
sketch. The intuition from this algorithm is from two

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

separate spaces. First, there is an informal but often played
game without a name that friends often play where person
A uses a finger or key to sketch certain shapes or word on
a table without allowing person B to look at it. Then person
B tries to guess what person A has drawn by carefully
listening to the sound that A has made. The more accurate
guesses made, the higher the score that person B gets. The
game illustrates the whole process, from people sketching
to final recognition.
 The second intuition for this algorithm is from the field
of sketch recognition. Specifically, speed has been
identified as an important factor for recognizing corners in
strokes (Herot 1976; Sezgin, Stahovich, and Davis 2001).
To give you an example, look at the square in Figure 1.
Figure 2 shows the direction curve, and Figure 3 shows the
curvature data, which is the second derivative of the
direction curve. Notice the three spikes representing the
corners. Figure 4 shows the speed data for this square.
Notice that users tend to slow down at the corners. Speed
equates to sound. Thus, sound gives us an efficient profile
for recognizing hand-sketched information.
 The major advantage of interacting through sound is that
we no longer need additional costly devices such as multi-
touch screens but rather only need one cheap, built-in
microphone, such as one you would find in an iPhone or
Android, and built-in recognition software, such as
described in this paper. As long as users draw shapes on a
nearby table, the built-in microphone can capture the shape
information and record it as a sound wave signal within the
system. Then the signal is recognized and the system gives

appropriate feedback to the
end users according to the
recognition result. Another
important advantage is that
this encourages users to fully
interact directly with the
physical environment.
Figure 1: A square.

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1481

Figure 2: The direction change of a square over time.

Figure 3: The change of curvature of a change over time.
Notice the spikes at the corners

Figure 4: The speed graph of a square. Notice that people slow
down at the corners.

 In order to demonstrate our idea, we have built a
lightweight novel sound recognizer to recognize a limited
set of shapes. We use only the built-in microphone of a
MacAir to detect and record the sound waves, and have
tested our system also with standard iPhone and Android
phones. We limited the distance range to 0.5m from our
Mac computer in order to sufficiently capture the sound
signal. Multi-sensor or multiple microphones could
possibly be used to increase the distance or range and
improve the system performance. For our initial algorithm,
we restricted the stroke ordering to be fixed, although
future implementations might allow various stroke
orderings. Different stroke orderings will produce different
sound waves that require additional training to account for
the variations. For our initial implementation we noticed
that users tend to draw each character in a similar style and
stroke order each time.

Previous Work
Sratch Input (Harrison and Hudson 2007) is an acoustic
based input technique that relies on the unique sound
produced when a fingernail is dragged over the surface of a
textured material and employs a digital stethoscope for
sound recording. They conducted a study that shows users
can perform six different gestures at about 90% accuracy.
They employed a shallow decision tree primarily based on
peak count and amplitude variation.
 Another system has been developed to detect gestures
drawn on non-electronic surfaces and focuses on the use of
a textured pad and a wrist-mounted microphone to
recognize different gestures drawn with a user’s finger
(Kim et al. 2007). The system is designed for small input
surfaces, such as the back of an mp3 player. Their system
is able to detect single-stroke representations of Arabic
numbers, triangles, rectangles, and bent lines. The authors
also outline ways to create wearable input surfaces such as
wrist-mounted textured pads.
 While the previous work listed focuses on developing
novel user interfaces using only a few gestures, our
research focuses on recognizing a larger set of 26 gestures.
Our algorithm combines traditional gesture research with
geometrical sketch recognition research that recognizes
shapes by composing higher-level shapes from their
primitive parts (Hammond 2005) through stroke
segmentation, segment identification, and dynamic time
warping. Sound analysis was performed from multiple
features extracted from the input sound signal.
Additionally, we use only one built-in microphone instead
of using additional sensors or multiple microphones.

1482

Implementation
We choose to recognize the 26 English characters listed in
Figure 5 along with how each individual character is
drawn. We collected samples using an ordinary wooden
desk (1-2m width and 1-1.5m height) and a standard house
key, pen and fingernail. The sound was collected by a
built-in MacAir microphone. Figure 6 shows the overall
system architecture.

Figure 5. English characters and their drawing orders

Figure 6. System Architecture

Noise Reduction
Although we expect our environment to be relatively quiet,
there is undoubtedly noise in our sample data. We
employed two different types of noise reduction methods,
and the comparative results will be given in the result
section.
Endpoint Noise Removal
Just as removing tails is important for recognizing strokes
on a tablet PC (Paulson 2008), removing start and end
noise is just as important in sound recognition. Endpoint
noise removal provides a valid sound wave between the

start point and end point of each sketching character. In
order to detect the start and end points, we calculate the
signal energy for the first 150ms using equation (1). We
assume that this value represents the general environmental
noise Ee. We then scan each frame 45ms at a time and
calculate the mean energy for this frame, Ef. If Ef > Ee * T,
for a fixed threshold, T1, we set the current frame as start
point. The same process applies to the end point detection.

(1)

The simple process assumes that the environmental
background noise is relatively constant. Figure 7 shows the
original sound wave and final one for character ‘A’.

Figure 7. a) is original sound wave and (b) is the result wave
after endpoint noise is removed.

Endpoint Noise Removal
A second noise reduction algorithm we use in our
algorithm is similar to that proposed by (Saha,
Chakroborty, and Senapati 2005). The algorithm assumes
that the start of a signal input is environmental noise or
silence. The algorithm calculates a Gaussian probability
function for the first 20ms and obtains the mean µ and
variance for this segment. Each subsequent 10ms
segment is then examined and marked as either valid or
silence if it is with in the Gaussian threshold, 3, using the
formula |x- µ|/ < 3. If at least half of all segments within
this frame are valid, then the entire frame is marked as
“valid”, else it is marked as “silence”. The algorithm then
concatenates all valid frames together to form the resulting
sound wave. We modified the algorithm to add an
additional step before deleting and concatenating the
frames. Specifically, for sketch (and not speech), we

1 Empirical evidence shows 9 to be a good threshold.

(a)

(b)

1483

consider each stroke to be a single block, and the silence
frame within a sketch block shouldn’t be removed, but
rather kept in its entirety. For this purpose, we calculate the
number of frames within sufficiently large window size (50
fragments) using a similar process to the second phase
mentioned above, and require the entire window to be
marked as silence for it to be removed

Normalization
Just as in sketch recognition, normalization is crucial to
recognition. Due to the different sketching materials used
as well as individual sketching habits, the input sound can
have a wide variety of different amplitude values while the
wave form remains the same. Thus, we need to normalize
the input signal before extracting the features. We choose
mean amplitude value as the normalization factor.

Feature Extraction
Feature extraction follows the normalization. Here, we use
two different kinds of features, namely, the mean
amplitude feature and MFCCs feature, which represent
different aspects of sound.
Mean Amplitude
We calculate the mean amplitude value for each time
frame. We set each frame size at 45ms, with an
overlapping and size of 30ms, shown in Figure 8. The
purpose of overlapping two consecutive frames is to make
the features more consistent.

Figure 8 shows the mean amplitude used for feature extraction.
Each frame size is specified at 45ms, whereas each overlapping
size is specified as 30ms.

MFCCs
MFCCs (Mel-frequency cepstral coefficients) is one of the
most widely used features in signal processing, and
characterizes the dynamic change of the digital signal (Min
2004). We apply this to our sketching sound signal. The
calculation process of MFCCs is out of this paper’s scope,
but the overall algorithm is as follows: 1.) Take the Fourier
transform of (a windowed excerpt of) a signal. 2.) Map the
powers of the spectrum obtained above onto the mel scale,

using triangular overlapping windows. 3.) Take the logs of
the powers at each of the mel frequencies. 4.) Take the
discrete cosine transform of the list of mel log powers, as if
it were a signal. 5.) The MFCCs are the amplitudes of the
resulting spectrum (WP 2011). In our implementation,
there are two major issues we should consider: a) We set
the window size to 256. b) We chose the number of
coefficient values to be the first 12 values excluding the
first one, which proves to be harmful to the result. After
applying this feature extraction process, the input signal is
represented as vector V = (v1, v2, …, vn), where each vi is
an MFCC feature which consists of 12 values.
 Note that this feature extraction is essentially corner
finding, and searches for periods of slow movement in the
stroke. The output of feature extraction is a number of
partial strokes that are segmented based on silence/slow
movement that likely represents strong corners.

Template Matching
We then use dynamic time warping to calculate the
distance between query A = a1, a2, … ai, … an and each
template B = b1, b2, … bi, … bn using equation (2) where
c(k) is the actual mapping between candidate and template
at time index k, w(k) is the weighting function, and N is
the normalized value. Dynamic time warping will find the
optimal path F to minimize D(A,B) (Myers, Rabiner, and
Rosenberg 1980). Additionally, for the DTW constraints,
we define the following:

(2)

• Endpoint constraint: The endpoint constraint decides
where the mapping starts and ends. We start mapping at
(1,1) and end at (N,M).
• Local continuity constraint: In order to avoid excessive
compression or expansion of the time scales, neither the
query nor the template can skip more than two frames at a
time when matching. The five possible movements to get
to (m, n) are (m-1, n), (m, n-1), (m-1, n-1), (m-2, n-1), (m-
1, n02) as shown in Figure 9.
• Global path constraint: Because the signal is time-
dependent, we set the boundary to control for each
mapping range at time index k such that |A(k)-B(k)|<= R.
we choose R equals to 20.
 • Axis orientation. There are two variations. We can either
put a candidate on the X-axis and the template on the Y-
axis or put a template on the X-axis and a template on the
Y-axis. However, (Myers, Rabiner and Rosenberg 2005)
show that putting the query on the X-axis generally gives
better result, thus we adopted that technique for this paper.
• Weighting function: We choose a symmetric weighting
function, w(k) = A(k) – A(k-1) + B(k) – B(k-1), so that the

1484

weighting value characterizes how many steps are from the
current point to the previous one.
• Distance Measure. We use Euclidean distance for our
distance measurement. One tricky part is to properly
calculate the distance between two MFCCs features, which
are multi-dimensional values. There are 12 dimensions for
each feature value in MFCCs. In order to provide different
scaling factors for each dimension within each feature, we
define a normalization factor as the variance of each
dimension.

In summary, our DTW algorithm can be written as follows:
D(n,m) = MIN(
 D(n-1,m-1) + 2d(n,m),
 D(n,m-1) + d(n,m),
 D(n-1,m) + d(n,m),
 D(n-2, n-1) + 3d(n,m),
 D(n-1,m-2) + 3d(n,m))

Figure 9. Local path constraint and five possible movements.

Results
We collected a total of 2340 samples from six persons.
Each person produced five samples of each character using
their fingernail, pen, and then key, totaling 390 samples per
person (26*5*3 = 390).

Experiment 1
Our algorithm is user dependent, thus for each user we has
a separate group of templates. For experiment 1, we had
three example templates of each character; one template
drawn through key scratch, one through pen, and the third
with the fingernail. This provided a total total of 26 * 3 =
78 candidate templates. The remaining four samples were
used for for testing. We repeat the same process five times
for each user, each time using a different sample set as the
templates. We tested our recognizer accuracy by using
different noise reduction methods as well as different

features. Because our recognizer is user-dependent, for the
recognizer accuracy, we average through all six persons,
and the results are shown in Table 1. From Table 1, we can
see that MFCCs feature gives higher accurate result than
pure mean amplitude feature.

Table 1. Recognition accuracy for different noise reduction
algorithms and different features.

Experiment 2
We performed a second test. In this case, rather than
grouping templates of different input types, we separated
them out. Rather than each query having 78 templates to
compare against as in the earlier scenario, in this case, each
query only had 26 templates to match against. The
recognition is still user dependent, and query/templates
from different users were kept completely separate, and as
mentioned above, in this scenario only, the different input
types were also kept completely separate. Again our
templates included one sample of each character, and the
other four were used for testing. We repeated this five
times for each user, and then again for each user. The
averaged results for all six users are shown in Table 2. For
this experiment, we chose MFCCs for our default feature
and endpoint noise removal for our default noise reduction
method. The result shows that writing by fingernail gives a
lower accuracy rate compared to using a pen or key.

Table 2. Recognition accuracy for each input tool

Discussion
In this paper, we described our novel sound recognizer and
have performed successful preliminary experimental
studies. One interesting result is that the simpler endpoint
noise removal approach yields more accurate results than
the more complicated Gaussian noise removal approach.

 NOISE REDUCTION FEATURE ACCURACY

CASE ENDPOINT
NOISE

REMOVAL

GUASSIAN
NOISE

REMOVAL

MEAN MFCC

CASE1 � � 0.761

CASE 2 � � 0.834

CASE 3 � � 0.779

CASE 4 � � 0.812

 KEY PEN FINGER

KEY 0.859 X X

PEN X 0.868 X

FINGER X X 0.783

1485

One clue to this result is that it is hard to effectively control
the Gaussian threshold to ensure that each sample is
classified accurately. It is not robust enough for noise
residing within a sound wave. Once such a
misclassification occurs, the recognition almost always
fails. Another important reason is that the beginning part of
a sound wave often does not properly represent the silence
part within the whole sound wave, which causes the
sampling process to fail.
 Another interesting problem that we found during the
experiments is that the design variations of the DTW
algorithm, such as choosing different local continuity
constraints or weighting functions do not affect the result
significantly. However, the number of coefficient values
and windows size can greatly affect the recognition result.
The parameters we chose in this paper are all tend to be
optimal values that we found during our experiments.
 An important question is, is 80% accuracy high enough
for use in a real world system? On a per character basis it
is hard to get above 90% accuracy simply because the
sound profile from certain pairs of characters are almost
the same. Table 3 shows some character pairs that have
similar sound profiles. However, the ambiguity can be
relieved by recognizing sequences of characters in context
through the use of a dictionary. We did a preliminary study
with a 500+ word dictionary that included the 500 most
common English words plus others that were added
manually. We assume each character within word is pre-
segmented correctly using an extremely long space. By
using Naive Bayes model, we correctly recognized 91% of
collected words.

C U
D P
A H
J T
X Y

Table 3. Pairs of characters that can be easily misclassified by
each other

Future Work
In our current work we recognize only single characters at
a time, requiring significant space or a click between
characters. Future work directions include continuous
character recognition. Second we would like to build a user
independent system. One important observation is that
sound signal variation is affected more by the material than
by user behaviors. Proper clustering methods could be used
to categorize all these variations of sketching environment
and combine the automatic process for learning the
environment before recognizing the input sound, which is
similar to speaker identification in speech recognition.

Third, we would like to use a hybrid feature set to improve
the recognition accuracy. Fourth, a robust noise removing
method is needed to make system work in public noisy
situation. Future work will allow more fluid interaction.
Finally, we would like to apply our results to a real and
applied domain.

Conclusion
In this paper, we introduce a novel algorithm to recognize
26 English hand-sketched characters (A-Z) solely through
sound with greater than 80% accuracy.

Acknowledgements
This work was supported in part by NSF, DARPA, and
Google. Thanks to members of SRL.

References
Harrison, C. and Hudson, S, E. 2008. Scratch input: creating
large, inexpensive, unpowered and mobile finger input surfaces.
In Proceedings of the 21st annual ACM symposium on User
interface software and technology (UIST’08), New York, NY.
Hammond, T., and Davis, R. 2005. LADDER: A Sketching
Language for User Interface Developers, Computer and Graphics,
Elsevier, pp. 518-532.
Herot, C.F. 1976. Graphical input through machine recognition of
sketches. In Proceedings of the 3rd Annual Conference on
Computer Graphics and interactive Techniques, Philadelphia,
Pennsylvania, ACM, New York, NY, 97-102.
Kim, J. E., Sunwoo, J., Son, Y. K., Lee, D. W. and Cho, I. Y.
2007. A gestural input through finger writing on a textured pad.
In Proceedings of CHI’07 extended abstracts on Human factors
in computing systems (CHI’07), New York, NY.
Logan, B. 2000 Mel frequency cepstral coefficients for music
modeling. International Symposium on Music Information.
Plymouth, MA.
Min Xu et al. 2004. HMM-based audio keyword generation. In
Advances in Multimedia Information Processing - PCM 2004: 5th
Pacific Rim Conference on Multimedia. Springer.
Myers, C., Rabiner, L. and Rosenberg, A. 1980 Performance
tradeoffs in dynamic time warping algorithms for isolated word
recognition. In IEEE Transactions on Acoustics, Speech and
Signal Processing.
Paulson, B. and Hammond, T. 2008. PaleoSketch: Accurate
primitive sketch recognition and beautification. In 13th
International Conference on Intelligent User Interfaces, pp. 1-10.
Saha, G., Chakroborty, I. and Senapati, S. 2005. A new silence
removal and endpoint detection algorithms for speech and
speaker recognition applications. In Proceedings of NCC. 56-61.
Sezgin, T.M., Stahovich, T., and Davis, R. 2001. Sketch based
interfaces: Early processing for sketch understanding. In
Proceedings of PUI ’01, pp. 1-8.

1486

