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Abstract 
This paper presents an acoustic sound recognizer to 
recognize what people are writing on a table or wall by 
utilizing the sound signal information generated from a key, 
pen, or fingernail moving along a textured surface. 
Sketching provides a natural modality to interact with text, 
and sound is an effective modality for distinguishing text. 
However, limited research has been conducted in this area. 
Our system uses a dynamic time- warping approach to 
recognize 26 hand-sketched characters (A-Z) solely through 
their acoustic signal. Our initial prototype system is user-
dependent and relies on fixed stroke ordering. Our 
algorithm relied mainly on two features: mean amplitude 
and MFCCs (Mel-frequency cepstral coefficients). Our 
results showed over 80% recognition accuracy. 

 Introduction 

HCI is a fast growing field in computer science that affords 
a more natural form of interaction. Many of today’s 
systems support innovative interfaces for people to interact 
with, such as touch screen tablets and multi-touch surfaces. 
These devices typically require users to use their stylus or 
fingers to draw on the screen. Then the system can 
automatically recognize drawn shapes or gesture 
commands in an interactive way. While these devices are 
easy to use and become popular, they are still quite costly 
and need more time to be integrated into existing systems.  
Handwriting recognition systems, while gaining in 
accuracy, rely on users using tablet-PCs to sketch on.  As 
computers get smaller, and smart-phones become more 
common, our vision is to allow people to sketch on normal 
pencil and paper and to provide a simple microphone, such 
as one from their smart-phone to interpret their writings. 
 In this paper, we propose our novel algorithm to 
recognize hand-drawn alphabet characters solely through 
sketch. The intuition from this algorithm is from two 
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separate spaces. First, there is an informal but often played 
game without a name that friends often play where person 
A uses a finger or key to sketch certain shapes or word on 
a table without allowing person B to look at it. Then person 
B tries to guess what person A has drawn by carefully 
listening to the sound that A has made. The more accurate 
guesses made, the higher the score that person B gets. The 
game illustrates the whole process, from people sketching 
to final recognition. 
 The second intuition for this algorithm is from the field 
of sketch recognition. Specifically, speed has been 
identified as an important factor for recognizing corners in 
strokes (Herot 1976; Sezgin, Stahovich, and Davis 2001). 
To give you an example, look at the square in Figure 1. 
Figure 2 shows the direction curve, and Figure 3 shows the 
curvature data, which is the second derivative of the 
direction curve. Notice the three spikes representing the 
corners. Figure 4 shows the speed data for this square. 
Notice that users tend to slow down at the corners.  Speed 
equates to sound. Thus, sound gives us an efficient profile 
for recognizing hand-sketched information.  
 The major advantage of interacting through sound is that 
we no longer need additional costly devices such as multi-
touch screens but rather only need one cheap, built-in 
microphone, such as one you would find in an iPhone or 
Android, and built-in recognition software, such as 
described in this paper. As long as users draw shapes on a 
nearby table, the built-in microphone can capture the shape 
information and record it as a sound wave signal within the 
system. Then the signal is recognized and the system gives 

appropriate feedback to the 
end users according to the 
recognition result. Another 
important advantage is that 
this encourages users to fully 
interact directly with the 
physical environment.  
Figure 1: A square. 
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Figure 2: The direction change of a square over time. 

Figure 3: The change of curvature of a change over time. 
Notice the spikes at the corners  

Figure 4: The speed graph of a square. Notice that people slow 
down at the corners. 

 In order to demonstrate our idea, we have built a 
lightweight novel sound recognizer to recognize a limited 
set of shapes. We use only the built-in microphone of a 
MacAir to detect and record the sound waves, and have 
tested our system also with standard iPhone and Android 
phones. We limited the distance range to 0.5m from our 
Mac computer in order to sufficiently capture the sound 
signal. Multi-sensor or multiple microphones could 
possibly be used to increase the distance or range and 
improve the system performance. For our initial algorithm, 
we restricted the stroke ordering to be fixed, although 
future implementations might allow various stroke 
orderings. Different stroke orderings will produce different 
sound waves that require additional training to account for 
the variations. For our initial implementation we noticed 
that users tend to draw each character in a similar style and 
stroke order each time. 

Previous Work 
Sratch Input (Harrison and Hudson 2007) is an acoustic 
based input technique that relies on the unique sound 
produced when a fingernail is dragged over the surface of a 
textured material and employs a digital stethoscope for 
sound recording. They conducted a study that shows users 
can perform six different gestures at about 90% accuracy. 
They employed a shallow decision tree primarily based on 
peak count and amplitude variation.  
 Another system has been developed to detect gestures 
drawn on non-electronic surfaces and focuses on the use of 
a textured pad and a wrist-mounted microphone to 
recognize different gestures drawn with a user’s finger 
(Kim et al. 2007). The system is designed for small input 
surfaces, such as the back of an mp3 player. Their system 
is able to detect single-stroke representations of Arabic 
numbers, triangles, rectangles, and bent lines. The authors 
also outline ways to create wearable input surfaces such as 
wrist-mounted textured pads.  
 While the previous work listed focuses on developing 
novel user interfaces using only a few gestures, our 
research focuses on recognizing a larger set of 26 gestures. 
Our algorithm combines traditional gesture research with 
geometrical sketch recognition research that recognizes 
shapes by composing higher-level shapes from their 
primitive parts (Hammond 2005) through stroke 
segmentation, segment identification, and dynamic time 
warping. Sound analysis was performed from multiple 
features extracted from the input sound signal. 
Additionally, we use only one built-in microphone instead 
of using additional sensors or multiple microphones. 
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Implementation 
We choose to recognize the 26 English characters listed in 
Figure 5 along with how each individual character is 
drawn. We collected samples using an ordinary wooden 
desk (1-2m width and 1-1.5m height) and a standard house 
key, pen and fingernail. The sound was collected by a 
built-in MacAir microphone. Figure 6 shows the overall 
system architecture. 

Figure 5. English characters and their drawing orders 

Figure 6. System Architecture 

Noise Reduction 
Although we expect our environment to be relatively quiet, 
there is undoubtedly noise in our sample data. We 
employed two different types of noise reduction methods, 
and the comparative results will be given in the result 
section.  
Endpoint Noise Removal 
Just as removing tails is important for recognizing strokes 
on a tablet PC (Paulson 2008), removing start and end 
noise is just as important in sound recognition. Endpoint 
noise removal provides a valid sound wave between the 

start point and end point of each sketching character. In 
order to detect the start and end points, we calculate the 
signal energy for the first 150ms using equation (1). We 
assume that this value represents the general environmental 
noise Ee. We then scan each frame 45ms at a time and 
calculate the mean energy for this frame, Ef. If Ef > Ee * T, 
for a fixed threshold, T1, we set the current frame as start 
point. The same process applies to the end point detection.  
 
(1)  
 
 
The simple process assumes that the environmental 
background noise is relatively constant. Figure 7 shows the 
original sound wave and final one for character ‘A’. 
 

Figure 7. a) is original sound wave and (b) is the result wave 
after endpoint noise is removed. 
 
Endpoint Noise Removal 
A second noise reduction algorithm we use in our 
algorithm is similar to that proposed by (Saha, 
Chakroborty, and Senapati 2005). The algorithm assumes 
that the start of a signal input is environmental noise or 
silence. The algorithm calculates a Gaussian probability 
function for the first 20ms and obtains the mean µ and 
variance  for this segment. Each subsequent 10ms 
segment is then examined and marked as either valid or 
silence if it is with in the Gaussian threshold, 3, using the 
formula |x- µ|/ < 3. If at least half of all segments within 
this frame are valid, then the entire frame is marked as 
“valid”, else it is marked as “silence”. The algorithm then 
concatenates all valid frames together to form the resulting 
sound wave. We modified the algorithm to add an 
additional step before deleting and concatenating the 
frames. Specifically, for sketch (and not speech), we 

                                                
1 Empirical evidence shows 9 to be a good threshold. 

(a) 

(b) 
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consider each stroke to be a single block, and the silence 
frame within a sketch block shouldn’t be removed, but 
rather kept in its entirety. For this purpose, we calculate the 
number of frames within sufficiently large window size (50 
fragments) using a similar process to the second phase 
mentioned above, and require the entire window to be 
marked as silence for it to be removed 

Normalization 
Just as in sketch recognition, normalization is crucial to 
recognition. Due to the different sketching materials used 
as well as individual sketching habits, the input sound can 
have a wide variety of different amplitude values while the 
wave form remains the same. Thus, we need to normalize 
the input signal before extracting the features. We choose 
mean amplitude value as the normalization factor.  

Feature Extraction 
Feature extraction follows the normalization. Here, we use 
two different kinds of features, namely, the mean 
amplitude feature and MFCCs feature, which represent 
different aspects of sound.  
Mean Amplitude 
We calculate the mean amplitude value for each time 
frame. We set each frame size at 45ms, with an 
overlapping and size of 30ms, shown in Figure 8. The 
purpose of overlapping two consecutive frames is to make 
the features more consistent. 

Figure 8 shows the mean amplitude used for feature extraction. 
Each frame size is specified at 45ms, whereas each overlapping 
size is specified as 30ms. 
 
MFCCs 
MFCCs (Mel-frequency cepstral coefficients) is one of the 
most widely used features in signal processing, and 
characterizes the dynamic change of the digital signal (Min 
2004). We apply this to our sketching sound signal. The 
calculation process of MFCCs is out of this paper’s scope, 
but the overall algorithm is as follows: 1.) Take the Fourier 
transform of (a windowed excerpt of) a signal. 2.) Map the 
powers of the spectrum obtained above onto the mel scale, 

using triangular overlapping windows. 3.) Take the logs of 
the powers at each of the mel frequencies. 4.) Take the 
discrete cosine transform of the list of mel log powers, as if 
it were a signal. 5.) The MFCCs are the amplitudes of the 
resulting spectrum (WP 2011).  In our implementation, 
there are two major issues we should consider: a) We set 
the window size to 256. b) We chose the number of 
coefficient values to be the first 12 values excluding the 
first one, which proves to be harmful to the result. After 
applying this feature extraction process, the input signal is 
represented as vector V = (v1, v2, …, vn), where each vi  is 
an MFCC feature which consists of 12 values. 
 Note that this feature extraction is essentially corner 
finding, and searches for periods of slow movement in the 
stroke. The output of feature extraction is a number of 
partial strokes that are segmented based on silence/slow 
movement that likely represents strong corners. 

Template Matching 
We then use dynamic time warping to calculate the 
distance between query A = a1, a2, … ai, … an  and each 
template B = b1, b2, … bi, … bn using equation (2) where 
c(k) is the actual mapping between candidate and template 
at time index k, w(k) is the weighting function, and N is 
the normalized value. Dynamic time warping will find the 
optimal path F to minimize D(A,B) (Myers, Rabiner, and 
Rosenberg 1980). Additionally, for the DTW constraints, 
we define the following: 
 
(2)  
 
 
• Endpoint constraint: The endpoint constraint decides 
where the mapping starts and ends. We start mapping at 
(1,1) and end at (N,M). 
• Local continuity constraint: In order to avoid excessive 
compression or expansion of the time scales, neither the 
query nor the template can skip more than two frames at a 
time when matching. The five possible movements to get 
to (m, n) are (m-1, n), (m, n-1), (m-1, n-1), (m-2, n-1), (m-
1, n02) as shown in Figure 9. 
• Global path constraint: Because the signal is time- 
dependent, we set the boundary to control for each 
mapping range at time index k such that |A(k)-B(k)|<= R. 
we choose R equals to 20. 
 • Axis orientation. There are two variations. We can either 
put a candidate on the X-axis and the template on the Y-
axis or put a template on the X-axis and a template on the 
Y-axis. However, (Myers, Rabiner and Rosenberg 2005) 
show that putting the query on the X-axis generally gives 
better result, thus we adopted that technique for this paper. 
• Weighting function: We choose a symmetric weighting 
function, w(k) = A(k) – A(k-1) + B(k) – B(k-1), so that the 
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weighting value characterizes how many steps are from the 
current point to the previous one.  
• Distance Measure. We use Euclidean distance for our 
distance measurement. One tricky part is to properly 
calculate the distance between two MFCCs features, which 
are multi-dimensional values. There are 12 dimensions for 
each feature value in MFCCs. In order to provide different 
scaling factors for each dimension within each feature, we 
define a normalization factor as the variance of each 
dimension. 
 
In summary, our DTW algorithm can be written as follows:  
D(n,m) = MIN(                            
                D(n-1,m-1) + 2d(n,m),  
                D(n,m-1) + d(n,m),  
                D(n-1,m) + d(n,m),  
                D(n-2, n-1) + 3d(n,m),  
                D(n-1,m-2) + 3d(n,m) )   
 

Figure 9. Local path constraint and five possible movements. 
                               

Results 
We collected a total of 2340 samples from six persons. 
Each person produced five samples of each character using 
their fingernail, pen, and then key, totaling 390 samples per 
person (26*5*3 = 390).  

Experiment 1 
Our algorithm is user dependent, thus for each user we has 
a separate group of templates. For experiment 1, we had 
three example templates of each character; one template 
drawn through key scratch, one through pen, and the third 
with the fingernail. This provided a total total of 26 * 3 = 
78 candidate templates. The remaining four samples were 
used for for testing. We repeat the same process five times 
for each user, each time using a different sample set as the 
templates. We tested our recognizer accuracy by using 
different noise reduction methods as well as different 

features. Because our recognizer is user-dependent, for the 
recognizer accuracy, we average through all six persons, 
and the results are shown in Table 1. From Table 1, we can 
see that MFCCs feature gives higher accurate result than 
pure mean amplitude feature.  

Table 1. Recognition accuracy for different noise reduction 
algorithms and different features. 

Experiment 2 
We performed a second test. In this case, rather than 
grouping templates of different input types, we separated 
them out. Rather than each query having 78 templates to 
compare against as in the earlier scenario, in this case, each 
query only had 26 templates to match against. The 
recognition is still user dependent, and query/templates 
from different users were kept completely separate, and as 
mentioned above, in this scenario only, the different input 
types were also kept completely separate. Again our 
templates included one sample of each character, and the 
other four were used for testing. We repeated this five 
times for each user, and then again for each user. The 
averaged results for all six users are shown in Table 2. For 
this experiment, we chose MFCCs for our default feature 
and endpoint noise removal for our default noise reduction 
method. The result shows that writing by fingernail gives a 
lower accuracy rate compared to using a pen or key. 

Table 2. Recognition accuracy for each input tool 

Discussion 
In this paper, we described our novel sound recognizer and 
have performed successful preliminary experimental 
studies. One interesting result is that the simpler endpoint 
noise removal approach yields more accurate results than 
the more complicated Gaussian noise removal approach. 

 NOISE REDUCTION FEATURE ACCURACY 

CASE ENDPOINT 
NOISE 

REMOVAL 

GUASSIAN 
NOISE 

REMOVAL 

MEAN MFCC  

CASE1 �  �  0.761 

CASE 2 �   � 0.834 

CASE 3  � �  0.779 

CASE 4  �  � 0.812 

 KEY PEN FINGER 

KEY   0.859                    X  X 

PEN               X                0.868  X 

FINGER              X               X  0.783 
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One clue to this result is that it is hard to effectively control 
the Gaussian threshold to ensure that each sample is 
classified accurately. It is not robust enough for noise 
residing within a sound wave. Once such a 
misclassification occurs, the recognition almost always 
fails. Another important reason is that the beginning part of 
a sound wave often does not properly represent the silence 
part within the whole sound wave, which causes the 
sampling process to fail.  
 Another interesting problem that we found during the 
experiments is that the design variations of the DTW 
algorithm, such as choosing different local continuity 
constraints or weighting functions do not affect the result 
significantly. However, the number of coefficient values 
and windows size can greatly affect the recognition result. 
The parameters we chose in this paper are all tend to be 
optimal values that we found during our experiments.    
 An important question is, is 80% accuracy high enough 
for use in a real world system? On a per character basis it 
is hard to get above 90% accuracy simply because the 
sound profile from certain pairs of characters are almost 
the same. Table 3 shows some character pairs that have 
similar sound profiles. However, the ambiguity can be 
relieved by recognizing sequences of characters in context 
through the use of a dictionary. We did a preliminary study 
with a 500+ word dictionary that included the 500 most 
common English words plus others that were added 
manually. We assume each character within word is pre-
segmented correctly using an extremely long space. By 
using Naive Bayes model, we correctly recognized 91% of 
collected words.  

C U 
D P 
A H 
J T 
X Y 

Table 3. Pairs of characters that can be easily misclassified by 
each other 

Future Work 
In our current work we recognize only single characters at 
a time, requiring significant space or a click between 
characters. Future work directions include continuous 
character recognition. Second we would like to build a user 
independent system. One important observation is that 
sound signal variation is affected more by the material than 
by user behaviors. Proper clustering methods could be used 
to categorize all these variations of sketching environment 
and combine the automatic process for learning the 
environment before recognizing the input sound, which is 
similar to speaker identification in speech recognition. 

Third, we would like to use a hybrid feature set to improve 
the recognition accuracy. Fourth, a robust noise removing 
method is needed to make system work in public noisy 
situation.  Future work will allow more fluid interaction. 
Finally, we would like to apply our results to a real and 
applied domain.  

Conclusion 
In this paper, we introduce a novel algorithm to recognize 
26 English hand-sketched characters (A-Z) solely through 
sound with greater than 80% accuracy. 
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