
Learning Dimensional Descent for Optimal
Motion Planning in High- imensional Spaces

Paul Vernaza
GRASP Laboratory

University of Pennsylvania
Philadelphia, PA 19104

Daniel D. Lee
GRASP Laboratory

University of Pennsylvania
Philadelphia, PA 19104

Abstract

We present a novel learning-based method for generating
optimal motion plans for high-dimensional motion planning
problems. In order to cope with the curse of dimensional-
ity, our method proceeds in a fashion similar to block co-
ordinate descent in finite-dimensional optimization: at each
iteration, the motion is optimized over a lower dimensional
subspace while leaving the path fixed along the other dimen-
sions. Naive implementations of such an idea can produce
vastly suboptimal results. In this work, we show how a prof-
itable set of directions in which to perform this dimensional
descent procedure can be learned efficiently. We provide suf-
ficient conditions for global optimality of dimensional de-
scent in this learned basis, based upon the low-dimensional
structure of the planning cost function. We also show how
this dimensional descent procedure can easily be used for
problems that do not exhibit such structure with monotonic
convergence. We illustrate the application of our method to
high dimensional shape planning and arm trajectory planning
problems.
Keywords: motion and path planning, robotics, robot arm
planning, holonomic motion planning, optimal control, sub-
space representations

1 Introduction

In this work, we consider the problem of optimal motion
planning for high-dimensional holonomic systems. Example
instances of such problems include numerous problems in
robotics and control, including planning for mobile manip-
ulation, teams of robots, modular robots, and various other
highly articulated systems.

Recent years have witnessed great strides in our ability
to solve such problems in complex spaces, largely due to
the rise of sampling-based motion planning in such variants
as RRT (Kuffner and LaValle 2000), PRM (Kavraki et al.
1996), SBL (Sánchez and Latombe 2001), and EST (Hsu,
Latombe, and Motwani 1999). Meanwhile, progress has also
been made in deterministic planning algorithms, most of
which are descended from the classic A* algorithm. Vari-
ants such as ARA* (Likhachev, Gordon, and Thrun 2004)
and R* (Likhachev and Stentz 2008) have also been suc-
cessfully applied to complex motion planning problems.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Illustration of one step of dimensional descent al-
gorithm. Given initial path x̄k, the next path x̄i+1 is the opti-
mal path constrained to lie on a manifold obtained by sweep-
ing x̄k along the learned direction W k.

We present here a novel approach based upon a differ-
ent way of thinking about such problems. Rather than devis-
ing more clever ways to efficiently sample high-dimensional
spaces, as with the sampling-based planning methods; or ex-
ploring more efficient combinatorial algorithms, as with the
deterministic planning methods; our approach focuses on
automatically learning as much as possible about the struc-
ture of a specific planning problem, and subsequently ex-
ploiting that structure to solve the problem efficiently.

In particular, we show how to implement this idea to find
optimal trajectories in high dimensional motion planning
problems, via a method we refer to as Learning Dimensional
Descent (LDD) At a high level, LDD is quite simple: we
merely optimize the trajectory one dimension at a time, af-
ter transforming the problem into a set of coordinates that
are learned automatically from the structure of the problem.

This procedure is illustrated in Fig. 1 for a block size
d = 1; i.e., in each iteration, we optimize the path in only
one of the learned directions W k, while holding fixed the
projection of the current path onto the other directions. Each
iteration of LDD in this case therefore only requires the so-
lution of a simple two-dimensional dynamic programming

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1126

D



Figure 2: Illustration of Theorem 2.1. Shown is an optimal
path in three dimensions of a cost function varying only in
one dimension. Vertical blocks represent high-cost regions
assumed to extend ad infinitum in directions orthogonal to
the cost variation direction. The optimal path lies in a two-
dimensional subspace: the smallest subspace that contains
both the direction of cost variation and the endpoints.

problem. Crucially, we will show that it is possible to learn
the basis directions W k to ensure that LDD terminates with
an optimal solution in one iteration, if the cost function
varies only in a low-dimensional space. This is because the
first iteration of LDD searches the subspace guaranteed to
contain the optimal path for such problems, as illustrated in
Fig. 2.

1.1 Related work

Our work can be motivated by the desire to break down
a complex motion planning problem into simpler sub-
problems. In this sense, it is preceded by methods such
as (Brock and Kavraki 2001), which generate a plan in
high-dimensional configuration space given a plan in a low-
dimensional workspace. Instead of performing a strict de-
composition, many recent randomized planning methods
have employed a hybrid approach, using low-dimensional
auxiliary spaces to aid in creating a sort of sampling bias to-
wards the most important degrees of freedom (Shkolnik and
Tedrake 2009; Diankov et al. 2008; Berenson et al. 2009;
Sucan and Kavraki 2008). Exemplary among these are
BiSpace Planning (Diankov et al. 2008) and Task-space
RRT (Shkolnik and Tedrake 2009), which both grow trees
in a low-dimensional, user-defined workspace or task space.

To our knowledge, however, comparatively little work has
been devoted to automatically identifying these interesting
low-dimensional subspaces, which is the key idea of LDD.
One notable exception is (Dalibard and Laumond 2009),
which uses PCA to determine directions in which to expand
an RRT. LDD, however, applies to the more general optimal
motion planning problem.

LDD is comparable in this sense to RRT* (Karaman
and Frazzoli 2010), which is asymptotically optimal. Un-
like RRT*, LDD has a concrete computational complexity
bound—i.e., exponential in the sampling resolution and the
dimension of the cost function (a term defined loosely for

now). If this dimension is low, (e.g., less than 5) and the
sampling resolution reasonable, LDD can be used in prac-
tice to find globally optimal solutions, independent of the
dimension of the configuration space. If the dimension of the
cost function is only approximately low, LDD is still an ap-
proximation algorithm with provable suboptimality bound,
as shown in Sec. 4.1.

We will see that LDD searches over a sequence of low-
dimensional submanifolds of the configuration space; it is
similar in this respect to variational dynamic programming
(VDP (Barraquand and Ferbach 1994)). VDP, however, gen-
erates these submanifolds randomly, whereas LDD gener-
ates these using a learned basis, which leads to significant
practical and theoretical benefits. VDP is also not guaran-
teed to produce monotonic improvement in the continuum
limit, in contrast to LDD, because it does not account for
important metric transformations between iterations, as de-
scribed in Section 2.4.

An in-depth description of our method follows, in which
we will describe some of the finer points of LDD. We
then present results applying LDD to two challenging, high-
dimensional, optimal motion planning problems and and
give some theoretical justification as to why and when it
might work well.

2 Method

We consider the problem of optimal holonomic motion plan-
ning in high-dimensional spaces. Let x(t) : I → R

N de-
note a trajectory of some entity as a differentiable func-
tion from time (spanning the unit interval I) to configura-
tion space of said entity, which is assumed to be R

N for
the time being. Our goal will be to find a trajectory x∗(t)
such that x∗(0) = xa and x∗(1) = xb, for some specified
xa, xb ∈ R

N , that minimizes a certain cost functional cor-
responding to the intuitive notion of a least-cost path under
a given cost function C(x) : RN → R. Given these defini-
tions, we formally define the problem of finding an optimal
trajectory x∗(t) as follows.

Definition 2.1 (Holonomic optimal motion planning).

J{x(t)} =

∫ 1

0

‖ẋ(t)‖C(x(t))dt (1)

x∗(t) = argmin
x(t)

J{x(t)} (2)

subject to x(0) = xa

x(1) = xb

We solve this problem via dynamic programming (DP);
specifically, the Fast Marching Method (FMM (Sethian
1996)), which is very similar to Dijkstra’s algorithm, but ap-
proximately solves (2.1) on a sampled lattice, rather than
solving a discrete approximation to (2.1), as would be re-
quired to apply Dijkstra.

The computational complexity of DP is nearly linear in
the number of points at which we sample our domain. Un-
fortunately, in order to obtain a good sampling of most do-
mains, we must sample a number of points that grows ex-
ponentially with the dimension of the domain, making this a

1127



computationally intractable approach for high-dimensional
problems.

2.1 The virtue of low-dimensional cost structure

Our solution to this problem of intractability is ultimately
based on finding and exploiting the low-dimensional struc-
ture that lies latent in many motion planning problems. The
following theorem is the core result that enables us to do so.
Theorem 2.1. Consider a holonomic motion planning prob-
lem (2.1) with a cost function C(x), and suppose that there
exists an N × d matrix W such that d ≤ N and

C(x) = C(WWTx), ∀x.
Then there exist an optimal path x∗(t) of this planning prob-
lem and a function a(t) : I → R

d such that
x∗(t) = Wa(t) + xa + (xb − xa)s(t) (3)

This is illustrated in Fig. 2. Intuitively, this result means
that cost functions that have a sort of low-dimensional struc-
ture, are associated with optimal paths that are also low-
dimensional, in the sense that they are contained within low-
dimensional spaces. A proof is given in the appendix.

2.2 Learning low-dimensional cost structure

A variation of this result, focusing more on the concomi-
tant symmetry of the associated value function (not dis-
cussed here), was recently stated without proof in our
previous work, which describes an algorithm known as
SLASHDP (Vernaza and Lee 2011). SLASHDP, given an
N -dimensional planning problem with cost function C, first
learns an N × d matrix W such that C(x) ≈ C(WWTx).
Theorem 2.1 is then applied to find an optimal path of the
approximate cost function C(W (·)), by searching over the
d + 1-dimensional set of optimal paths described by (3).
More precisely, SLASHDP (up to some minor details) finds
an approximate solution x∗(t) defined by
x∗(t) = argmin

a(t),s(t)

J{Wa(t) + xa + (xb − xa)s(t)}. (4)

For most intents and purposes, LDD can be considered a
generalization of SLASHDP. However, we will use the same
subroutine to identify the basis in which to plan, and so we
describe it here. This subroutine estimates the first basis vec-
tor as

w1 = argmax
‖u‖=1

Exu
T∇C(x)∇C(x)Tu (5)

and subsequent basis vectors are chosen to optimize the
same objective, but constrained to be orthogonal to previous
basis vectors. In other words, w1 is the direction that max-
imizes the expected squared directional derivative of C(·).
We can therefore consider w1 to be a direction on which the
cost function depends strongly, and we can consider subse-
quent wi to be ordered by the extent to which the cost func-
tion depends on them.

Computationally, solving the above optimization problem
involves estimating the expectation Ex∇C(x)∇C(x)T . The
tall matrix W is then formed from the eigenvectors of this
matrix, sorted in order of decreasing eigenvalue. Simple ran-
dom sampling in a finite search volume can be employed to
estimate this expectation.

2.3 Learning dimensional descent

Our generalization of SLASHDP is fairly simple. Given the
learned basis W , instead of searching once over the set of
paths described by (3), we find a sequence of paths x̄k de-
fined by

x̄k+1(t) = argmin
ak(t),s(t)

J{W kak(t) + x̄k(s(t))}, (6)

where each W k is a matrix comprised of a strict subset of
the columns of W . Assuming that W k is an N × d matrix,
each step involves solving a d+1-dimensional DP problem.
The algorithm begins by setting W 0 to the first d columns
of W , and by setting x̄0(s) = xa + (xb − xa)s. Subsequent
steps set W k equal to the next d columns of W , and so on.
After all the columns of W are exhausted in this way (or we
reach a predefined limit), we again set W k equal to the first d
columns of W . LDD proceeds in this way until convergence
or some other termination condition is met.

Choosing the W k in this way ensures that we choose di-
rections to optimize in order of their relative importance.
This intuitively minimizes the chance that LDD will get
stuck in some poor local minimum early on. Furthermore,
by Theorem 2.1, it ensures that LDD will terminate with a
globally optimal solution in one step provided that the condi-
tions of that theorem are met and we choose a large enough
d (rigorous proof omitted for lack of space). We note also
that whether or not a global optimum is achieved, LDD has
the important property of monotonic convergence towards a
local optimum. This is a simple consequence of the fact that
the solution in one iteration is contained within the feasible
set of the next iteration.

The geometry of the LDD optimization is illustrated in
Fig. 1. The set of paths considered by LDD at each iteration
is the (generally non-linear) submanifold of RN obtained by
sweeping x̄k in the directions spanned by the column space
of W k. When W k is a single column, this submanifold is
simple ruled surface, as illustrated.

2.4 Technical details

The rest of this section is devoted to the subtle technical is-
sue of solving the LDD optimization (6) via DP. A naive
attempt to solve (6) might involve sampling ak and s on a
finite lattice, evaluating the cost function at these points as
C(ak, s) = C(W kak + x̄k(s)), and applying the Euclidean
FMM to the resulting problem. However, this will not yield
the correct result, due to the aforementioned non-Euclidean
geometry of the problem (Fig. 1). If we wish to optimize
paths under the original objective, which specifies the Eu-
clidean metric in R

N , we must therefore take into account
how this metric transforms under a change to the coordinates
(ak, s) of the submanifold that is the set of feasible paths.

To derive the correct procedure, we must therefore sub-
stitute the expression for the path in manifold coordinates
x(t) = W kak(t)+ x̄k(s(t)) into the Euclidean metric to de-
rive its expression in terms of manifold coordinates. Doing

1128



so yields

ẋT ẋ = ȧk(t)T ȧk(t) + ȧk(t)T (W k)T
d

dt
[x̄k(s(t))]

+
d

dt
[x̄k(s(t))]T

d

dt
[x̄k(s(t))]. (7)

To render optimization with respect to this metric a prob-
lem amenable to optimization by standard methods, which
generally assume the Euclidean metric, we note that we can
make some helpful simplifying assumptions. First, note that
we can equivalently parameterize the manifold by replacing
x̄k with x̄k −W k(W k)T x̄k, yielding

x(t) = W kak(t) + (I −W k(W k)T )x̄k(s(t)). (8)

(Note that this choice of manifold coordinates is also il-
lustrated in Fig. 1.) Substitution of this expression into the
metric causes the cross-term to cancel, resulting in the fol-
lowing diagonal metric, after simplification. Let P = I −
W k(W k)T . Then

ẋT ẋ = ȧk(t)T ȧk(t) + ṡ2
dx̄k

ds

T

PTP
dx̄k

ds
. (9)

At this point, we wish to make the coefficient of ṡ2 equal
to one. Note that we can achieve this simply by assuming
that x̄k(s) has the arc-length parameterization after projec-
tion onto the subspace orthogonal to W k. We must therefore
take care to make this assumption in all expressions involv-
ing x̄i—specifically when applying (8) and when calculat-
ing the cost function in terms of manifold coordinates, ak
and s. Doing so ensures that we can safely apply an efficient
Euclidean FMM solver to optimize the correct objective.

3 Experiments

We applied LDD to two high-dimensional motion planning
problems—first, the problem of planning for a deformable
robot; and second, the problem of planning for a planar arm
in the presence of obstacles. For all of the experiments de-
scribed below, we set d = 1.

3.1 Deformable robot planning

For this experiment, we simulated a robot that can translate
freely in the plane as well as deform its shape. The deforma-
tion is controlled by a set of 16 parameters corresponding to
Fourier series coefficients of the radius of the boundary of
the robot, as a function of angle. To make the problem more
challenging, we then applied a random rotation to these co-
ordinates, randomly mixing together all the degrees of free-
dom, and applied LDD to the problem in these new coordi-
nates.

Results are shown in Fig. 3. We compared dimensional
descent in the original, randomized coordinates (denoted
DD), to LDD in the learned coordinates; that is, we applied
LDD to the problem in random coordinates, which then
transformed the problem into learned coordinates. Dimen-
sional descent in the random coordinates produced a very
poor solution in which the robot did not correctly deform or
translate to fit the maze, whereas LDD correctly translated

Figure 3: Results of experiment in 18-dimensional shape
planning (see text for details). Consecutive shapes shown as
overlapping, translucent objects. Insets show log cost as a
function of iteration number.

the robot through the maze, while deforming the shape of
the robot to fit the corridors of the maze.

We also compared the convergence properties of LDD
versus DD in the random coordinates, shown as insets in
Fig. 3. DD in random coordinates yielded a significant im-
provement in cost in the first iteration, but no noticeable
improvement in subsequent iterations, indicating that DD
quickly fell into a poor local minimum. LDD also made the
bulk of its progress in its first iteration, but its solution af-
ter the first iteration was several orders of magnitude less
costly than that of DD. After the first iteration, it continued
to make steady improvement, especially up until the 10th it-
eration. After this iteration, LDD seemed to slowly approach
a locally optimal solution.

3.2 Arm planning

We additionally applied LDD to the problem of planning a
collision-free trajectory for an 11-DOF planar arm with no
self-collisions. Our intent was to thoroughly study the ability
of LDD to find high-quality solutions in very cluttered en-
vironments, especially in relation to other commonly used
approaches.

1129



Our main experiment is depicted in Fig. 4a, which also
shows the LDD solution superimposed. We fixed the initial
and final arm configurations and found collision-free paths
between them, varying the number of obstacles in the en-
vironment. The label on each obstacle indicates the trial in
which that obstacle was first introduced; each obstacle was
then kept in the environment for subsequent trials, making
later trials more challenging than earlier ones.

Quantitative results are given in Fig. 4b. We compared
LDD to several other methods, including A* with different
heuristics and RRT-based planners. Fig. 4b shows the cost
of the solution obtained with each method for each trial.
RRT is a standard bidirectional RRT, provided as a baseline
for comparison, though it does not perform any optimiza-
tion. All other methods attempt some optimization. S-RRT
is a bidirectional RRT that has been post-processed with an
elastic band planner to improve the quality of its solution,
as is common practice. S-TSRRT is a bidirectional variant
of Task-Space RRT (Shkolnik and Tedrake 2009), also post-
processed with an elastic band. DD refers to dimensional de-
scent in the original coordinates. A*Proj refers to A* using
the heuristic of the distance of the end-effector to the goal,
while A*Full is A* using the Euclidean distance heuristic in
the configuration space.

Both A* variants and TS-RRT were only able to find so-
lutions for the trials with less than seven obstacles in a rea-
sonable amount of time—these methods ran for more than
eight hours on our 3 GHz Intel Xeon test machine without
finding a solution. By its nature, DD always found some so-
lution, but it was not always feasible, as evidenced by the
fact that the cost of its solutions far exceeded that of the
baseline RRT in many trials. The standard bidirectional RRT
(pre- and post-smoothing) and LDD were therefore the only
methods consistently able to find solutions for the most dif-
ficult problems.

In terms of solution quality, LDD consistently outper-
formed every other method tested. The performance gap be-
tween LDD and S-RRT was as great as a factor of five. For
the most difficult trials, LDD still managed to find a solu-
tion of roughly half the cost of S-RRT. In order to find any
solutions with A* in a reasonable amount of time, we had
to apply a high heuristic weighting factor, which generally
caused the solutions to be very suboptimal.

4 Analysis

In this section, we briefly examine two issues relating to the
performance of LDD. First, we give a simple result illus-
trating how concrete approximation guarantees might be ob-
tained for LDD. We then discuss the issue of local minima,
demonstrating a simple case where a local minimum might
lead to a poor solution.

4.1 Approximation guarantee

As previously mentioned, LDD is guaranteed to find the
globally optimal path in one step provided that C(x) =
C(W 1W 1Tx), ∀x. In practice, this condition will rarely be
met with a basis W 1 containing only a few columns, which
is the only case in which we can practically apply DP to find

a solution. However, we can easily show that this result is
robust in the sense that if the condition still holds approxi-
mately, we obtain a solution of bounded suboptimality.

To do so, we first consider a variant of LDD—denoted
LDD’—that approximates the cost function C by a com-
pressed cost function C ′ such that C(x) ≈ C ′(x) =
C(W 1W 1T ) and C ′(x) ≥ C(x), ∀x (this variant is essen-
tially SLASHDP (Vernaza and Lee 2011)). The following
result then applies.
Theorem 4.1. Suppose LDD’ is applied to a problem with
cost function C, and a compressed cost C ′ is obtained
such that C ′(x) ≥ C(x) and C ′(x) − C(x) ≤ δ, ∀x.
Let J{x;C} =

∫ ‖ẋ‖C(x)dt denote the cost functional
evaluated on path x using cost function C, let x∗ =
argminx J{x;C}, and let x′∗ = argminx J{x;C ′}. Then,
assuming C(x) ≥ 1, ∀x,

J{x′∗;C} − J{x∗;C}
J{x∗;C} ≤ δ. (10)

Proof. We first have that for any path x(t),

J{x;C ′} − J{x;C} =

∫
(C ′(x)− C(x))‖ẋ‖dt

≤ δ

∫
‖ẋ‖dt. (11)

We also observe that

J{x∗;C} ≤ J{x′∗;C} ≤ J{x′∗;C ′} ≤ J{x∗;C ′}. (12)

Therefore,

J{x′∗;C} − J{x∗;C} ≤ J{x∗;C ′} − J{x∗;C}
≤ δJ{x∗;C}, (13)

which is equivalent to the desired result.

The δ in the above theorem can be thought of a surrogate
for how well the low-dimensional approximation holds. The
result implies that the solution returned by LDD’ is bound-
edly suboptimal in terms of δ, as expected. It is simple to
show that this result also holds for LDD, since the LDD path
is guaranteed to be no more costly than the LDD’ path.

4.2 Local minima

LDD therefore begins with an approximately optimal solu-
tion and, as previously mentioned, improves upon it mono-
tonically (neglecting discretization effects). However, LDD
is theoretically vulnerable to local minima, a simple exam-
ple of which is given here.

Figure 5a illustrates a local minimum that occurs in a
three-dimensional problem if two-dimensional search sub-
manifolds are employed. The figure illustrates a cage-like
obstacle created by carving cubes out of a large hollow cube
at the corners. The endpoints are illustrated as spheres, and
the initial solution is illustrated as a tube drawn between
them. In the first iteration, the plane illustrated by the grid
is searched for an improved solution; however, no progress
is possible, as no collision-free path exists between the end-
points lying in the plane. The same is true for all subse-
quent iterations, by symmetry. A local minimum is therefore

1130



(a) (b)

Figure 4: Fig. 4a: Visualization of results applying LDD to an arm planning problem. End configurations represented as fully
opaque lines, intermediate configurations by less opaque lines. Fig. 4b: Comparison of several methods applied to the problem
in 4a. Abscissa shows number of obstacles, and ordinate shows cost of found solutions (note log scale). Obstacles were added
in order shown by 4a (obstacle 13 outside area shown). See Sec. 3.2 for details.

immediately encountered. Figure 5b shows how this local
minimum is fairly unstable with respect to changes in the
cost function. In this case, a hole in the cage at the level of
any search plane ensures that LDD is able to find a better,
collision-free local minimum.

In practice, minima of the sort encountered in Fig. 5a
could be escaped by introducing a small amount of random
noise either into the path or the basis selection, which would
likely result in a submanifold containing collision-free
paths. Alternatively, raising the dimension of the searched
submanifolds by one would cure the problem.

5 Conclusions

Motion planning in high-dimensions is a problem that is
obviously computationally intractable in general. We have
described LDD, an algorithm that automatically discovers
simple structure in a motion planning problem in the hopes
of bypassing this general complexity problem. Simple suffi-
cient conditions were given for the global optimality of LDD
based on the structure of the planning cost function. In real-
world problems, LDD becomes an approximation algorithm
that reliably surpasses the abilities of other commonly used
methods to obtain high-quality, low-cost solutions.

We hope that this work will help stimulate discussion as
to how low-dimensional structure might be automatically
found and exploited in other ways, and in other variations
of the motion planning problem.

A Proof of Theorem 2.1

The constructive proof of Theorem 2.1 given here is
a straightforward application of the calculus of varia-
tions (Arnold 1989). First, the assumption of the theorem

implies that in some coordinates, the cost function C only
depends on the first d coordinates. We therefore assume
w.l.o.g. that the coordinates xi are such that C depends
only on the first d of these coordinates; i.e., ∂C/∂xi =
0 ∀i > d, ∀x. We will refer to coordinates on which the cost
function does not depend as cyclic coordinates, to borrow a
physics term.

We then define the Lagrangian

L(x, ẋ) = ‖ẋ‖C(x)

and apply the Euler-Lagrange equations, yielding

d

dt

∂L

∂ẋi
− ∂L

∂xi
=

d

dt

[
ẋi

‖ẋ‖C(x)

]
− ‖ẋ‖ ∂C

∂xi
= 0.

For any cyclic coordinate, we can substitute ∂C/∂xi = 0,
implying that ∀t, and for some yet-unknown constants ki,

ẋi

‖ẋ‖C(x) = ki. (14)

We note without detailed proof that we can assume that
‖ẋ‖ = α, where α is some irrelevant constant, since (1)
can be shown to be invariant with respect to time-
reparameterizations of x(t) (i.e., moving faster or slower
along some part of the path never yields any change in cost).
(14) then yields N−d independent, separable ODEs for each
cyclic coordinate. Integration of these produces

xi(t) = αki

∫ t

0

1

C(x(t))
dt

= αkiF (t), (15)

defining F (t) in the last step, and where we have assumed
w.l.o.g. that x(0) = 0.

1131



(a) Poor local minimum

(b) Better local minimum

Figure 5: Illustration of LDD local minima with respect to
two-dimensional search submanifolds. Fig. 5a shows a poor
local minimum for a certain problem, while Fig. 5b shows a
much better local minimum obtained in a slightly modified
problem (note hole in wall). Dark arrows show learned basis.

We then write the path as a linear combination of the stan-
dard basis vectors, ei:

x(t) =
∑
i

xi(t)ei

and substitute (15) into this equation, which produces

x(t) =
d∑

i=1

xi(t)ei +

N∑
i=d+1

αkiF (t)ei.

We now solve for the ki in this expression to express the
last basis vector in terms of the problem data. The ki can be
computed from the final conditions; i.e., xi(1) = αkiF (1).
Substitution of this expression and simplification then yields

x(t) =
d∑

i=1

xi(t)ei +
F (t)

F (1)

N∑
i=d+1

xi(1)ei.

By expressing the basis ei in terms of the basis wi, we can
obtain the desired expression, with (x1(t), . . . , xd(t)) be-
coming a(t), and F (t)/F (1) becoming s(t).

References
Arnold, V. I. 1989. Mathematical Methods of Classical Mechanics.
Springer-Verlag.
Barraquand, J., and Ferbach, P. 1994. Path planning through vari-
ational dynamic programming. In IEEE International Conference
on Robotics and Automation, 1839–1846. IEEE.
Berenson, D.; Srinivasa, S.; Ferguson, D.; Collet, A.; and Kuffner,
J. 2009. Manipulation planning with workspace goal regions. In
ICRA, 618–624. IEEE.
Brock, O., and Kavraki, L. 2001. Decomposition-based mo-
tion planning: a framework for real-time motion planning in high-
dimensional configuration spaces. In ICRA.
Dalibard, S., and Laumond, J. 2009. Control of probabilistic diffu-
sion in motion planning. Algorithmic Foundation of Robotics VIII
467–481.
Diankov, R.; Ratliff, N.; Ferguson, D.; Srinivasa, S.; and Kuffner, J.
2008. Bispace planning: Concurrent multi-space exploration. RSS.
Hsu, D.; Latombe, J.-C.; and Motwani, R. 1999. Path planning
in expansive configuration spaces. International Journal Compu-
tational Geometry & Applications 4:495–512.
Karaman, S., and Frazzoli, E. 2010. Incremental sampling-based
algorithms for optimal motion planning. In RSS.
Kavraki, L.; Svestka, P.; Latombe, J.-C.; and Overmars, M. 1996.
Probabilistic roadmaps for path planning in high-dimensional con-
figuration spaces. IEEE Transactions on Robotics and Automation.
Kuffner, J., and LaValle, S. 2000. RRT-connect: An efficient ap-
proach to single-query path planning. In ICRA.
Likhachev, M., and Stentz, A. 2008. R* search. In AAAI.
Likhachev, M.; Gordon, G.; and Thrun, S. 2004. ARA*: Anytime
A* with provable bounds on sub-optimality. In NIPS.
Sánchez, G., and Latombe, J.-C. 2001. A single-query bi-
directional probabilistic roadmap planner with lazy collision
checking. In Proceedings International Symposium on Robotics
Research.
Sethian, J. A. 1996. A fast marching level set method for mono-
tonically advancing fronts. PNAS 93(4):1591–1595.
Shkolnik, A., and Tedrake, R. 2009. Path planning in 1000+ di-
mensions using a task-space Voronoi bias. In ICRA.
Sucan, I. A., and Kavraki, L. E. 2008. Kinodynamic motion plan-
ning by interior-exterior cell exploration. In WAFR.
Vernaza, P., and Lee, D. D. 2011. Efficient dynamic programming
for high-dimensional, optimal motion planning by spectral learning
of approximate value function symmetries. In ICRA.

1132


