
Online Graph Pruning for Pathfinding on Grid Maps

Daniel Harabor and Alban Grastien
NICTA and The Australian National University

Email: firstname.lastname@nicta.com.au

Abstract

Pathfinding in uniform-cost grid environments is a problem
commonly found in application areas such as robotics and
video games. The state-of-the-art is dominated by hierar-
chical pathfinding algorithms which are fast and have small
memory overheads but usually return suboptimal paths. In
this paper we present a novel search strategy, specific to grids,
which is fast, optimal and requires no memory overhead. Our
algorithm can be described as a macro operator which iden-
tifies and selectively expands only certain nodes in a grid
map which we call jump points. Intermediate nodes on a
path connecting two jump points are never expanded. We
prove that this approach always computes optimal solutions
and then undertake a thorough empirical analysis, comparing
our method with related works from the literature. We find
that searching with jump points can speed up A* by an order
of magnitude and more and report significant improvement
over the current state of the art.

Introduction

Widely employed in areas such as robotics (Lee and Yu
2009), artificial intelligence (Wang and Botea 2009) and
video games (Davis 2000; Sturtevant 2007), the ubiqui-
tous undirected uniform-cost grid map is a highly popular
method for representing pathfinding environments. Regu-
lar in nature, this domain typically features a high degree
of path symmetry (Harabor and Botea 2010; Pochter et al.
2010). Symmetry in this case manifests itself as paths (or
path segments) which share the same start and end point,
have the same length and are otherwise identical save for the
order in which moves occur. Unless handled properly, sym-
metry can force search algorithms to evaluate many equiva-
lent states and prevents real progress toward the goal.

In this paper we deal with such path symmetries by devel-
oping a macro operator that selectively expands only certain
nodes from the grid, which we call jump points. Moving
from one jump point to the next involves travelling in a fixed
direction while repeatedly applying a set of simple neigh-
bour pruning rules until either a dead-end or a jump point is
reached. Because we do not expand any intermediate nodes
between jump points our strategy can have a dramatic pos-
itive effect on search performance. Furthermore, computed

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

solutions are guaranteed to be optimal. Jump point pruning
is fast, requires no preprocessing and introduces no mem-
ory overheads. It is also largely orthogonal to many existing
speedup techniques applicable to grid maps.

We make the following contributions: (i) a detailed de-
scription of the jump points algorithm; (ii) a theoretical re-
sult which shows that searching with jump points preserves
optimality; (iii) an empirical analysis comparing our method
with two state-of-the-art search space reduction algorithms.
We run experiments on a range of synthetic and real-world
benchmarks from the literature and find that jump points
improve the search time performance of standard A* by
an order of magnitude and more. We also report signifi-
cant improvement over Swamps (Pochter et al. 2010), a re-
cent optimality preserving pruning technique, and perfor-
mance that is competitive with, and in many cases domi-
nates, HPA* (Botea, Müller, and Schaeffer 2004); a well
known sub-optimal pathfinding algorithm.

Related Work

Approaches for identifying and eliminating search-space
symmetry have been proposed in areas including planning
(Fox and Long 1999), constraint programming (Gent and
Smith 2000), and combinatorial optimization (Fukunaga
2008). Very few works however explicitly identify and deal
with symmetry in pathfinding domains such as grid maps.

Empty Rectangular Rooms (Harabor and Botea 2010) is
an offline symmetry breaking technique which attempts to
redress this oversight. It decomposes grid maps into a se-
ries of obstacle-free rectangles and replaces all nodes from
the interior of each rectangle with a set of macro edges that
facilitate optimal travel. Specific to 4-connected maps, this
approach is less general than jump point pruning. It also re-
quires offline pre-processing whereas our method is online.

The dead-end heuristic (Björnsson and Halldórsson 2006)
and Swamps (Pochter et al. 2010) are two similar pruning
techniques related to our work. Both decompose grid maps
into a series of adjacent areas. Later, this decomposition
is used to identify areas not relevant to optimally solving a
particular pathfinding instance. This objective is similar yet
orthogonal to our work where the aim is to reduce the effort
required to explore any given area in the search space.

A different method for pruning the search space is to
identify dead and redundant cells (Sturtevant, Bulitko, and

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1114

Björnsson 2010). Developed in the context of learning-
based heuristic search, this method speeds up search only
after running multiple iterations of an iterative deepening al-
gorithm. Further, the identification of redundant cells re-
quires additional memory overheads which jump points do
not have.

Fast expansion (Sun et al. 2009) is another related work
that speeds up optimal A* search. It avoids unnecessary
open list operations when it finds a successor node just as
good (or better) than the best node in the open list. Jump
points are a similar yet fundamentally different idea: they
allow us to identify large sets of nodes that would be ordi-
narily expanded but which can be skipped entirely.

In cases where optimality is not required, hierarchical
pathfinding methods are pervasive. They improve perfor-
mance by decomposing the search space, usually offline,
into a much smaller approximation. Algorithms of this type,
such as HPA* (Botea, Müller, and Schaeffer 2004), are fast
and memory-efficient but also suboptimal.

Notation and Terminology

We work with undirected uniform-cost grid maps. Each
node has ≤ 8 neighbours and is either traversable or not.
Each straight (i.e. horizontal or vertical) move, from a
traversable node to one of its neighbours, has a cost of 1;
diagonal moves cost

√
2. Moves involving non-traversable

(obstacle) nodes are disallowed. The notation �d refers to one
of the eight allowable movement directions (up, down, left,
right etc.). We write y = x+k�d when node y can be reached
by taking k unit moves from node x in direction �d. When �d is
a diagonal move, we denote the two straight moves at 45 deg
to �d as �d1 and �d2.

A path π = 〈n0, n1, . . . , nk〉 is a cycle-free ordered walk
starting at node n0 and ending at nk. We will sometimes use
the setminus operator in the context of a path: for example
π \x. This means that the subtracted node x does not appear
on (i.e. is not mentioned by) the path. We will also use the
function len to refer the length (or cost) of a path and the
function dist to refer to the distance between two nodes on
the grid: e.g. len(π) or dist(n0, nk) respectively.

Jump Points

In this section we introduce a search strategy for speeding up
optimal search by selectively expanding only certain nodes
on a grid map which we term jump points. We give an ex-
ample of the basic idea in Figure 1(a).

Here the search is expanding a node x which has as its par-
ent p(x); the direction of travel from p(x) to x is a straight
move to the right. When expanding x we may notice that
there is little point to evaluating any neighbour highlighted
grey as the path induced by such a move is always domi-
nated by (i.e. no better than) an alternative path which men-
tions p(x) but not x. We will make this idea more precise
in the next section but for now it is sufficient to observe
that the only non-dominated neighbour of x lies immedi-
ately to the right. Rather than generating this neighbour and
adding it to the open list, as in the classical A* algorithm,

Figure 1: Examples of straight (a) and diagonal (b) jump
points. Dashed lines indicate a sequence of interim node
evaluations that reached a dead end. Strong lines indicate
eventual successor nodes.

Figure 2: We show several cases where a node x is reached
from its parent p(x) by either a straight or diagonal move.
When x is expanded we can prune from consideration all
nodes marked grey.

we propose to simply step to the right and continue mov-
ing in this direction until we encounter a node such as y;
which has at least one other non-dominated neighbour (here
z). If we find a node such as y (a jump point) we generate
it as a successor of x and assign it a g-value (or cost-so-far)
of g(y) = g(x) + dist(x, y). Alternatively, if we reach an
obstacle we conclude that further search in this direction is
fruitless and generate nothing.

In the remainder of this section we will develop a macro-
step operator which speeds up node expansion by identify-
ing jump point successors in the case of both straight and
diagonal moves. First it will be necessary to define a series
of pruning rules to determine whether a node should be gen-
erated or skipped. This will allow us to make precise the
notion of a jump point and give a detailed description of the
jump points algorithm. Then, we prove that the process of
“jumping” nodes, such as x in Figure 1(a), has no effect on
the optimality of search.

Neighbour Pruning Rules

In this section we develop rules for pruning the set of nodes
immediately adjacent to some node x from the grid. The ob-
jective is to identify from each set of such neighbours, i.e.
neighbours(x), any nodes n that do not need to be evalu-
ated in order to reach the goal optimally. We achieve this
by comparing the length of two paths: π, which begins with
node p(x) visits x and ends with n and another path π′ which
also begins at node p(x) and ends with n but does not men-
tion x. Additionally, each node mentioned by either π or π′
must belong to neighbours(x).

There are two cases to consider, depending on whether the
transition to x from its parent p(x) involves a straight move

1115

or a diagonal move. Note that if x is the start node p(x) is
null and nothing is pruned.
Straight Moves: We prune any node n ∈ neighbours(x)
which satisfies the following dominance constraint:

len(〈p(x), . . . , n〉 \ x) ≤ len(〈p(x), x, n〉) (1)

Figure 2(a) shows an example. Here p(x) = 4 and we prune
all neighbours except n = 5.
Diagonal Moves: This case is similar to the pruning rules
we developed for straight moves; the only difference is that
the path which excludes x must be strictly dominant:

len(〈p(x), . . . , n〉 \ x) < len(〈p(x), x, n〉) (2)

Figure 2(c) shows an example. Here p(x) = 6 and we prune
all neighbours except n = 2, n = 3 and n = 5.

Assuming neighbours(x) contains no obstacles, we will
refer to the nodes that remain after the application of straight
or diagonal pruning (as appropriate) as the natural neigh-
bours of x. These correspond to the non-gray nodes in Fig-
ures 2(a) and 2(c). When neighbours(x) contains an obsta-
cle, we may not be able to prune all non-natural neighbours.
If this occurs we say that the evaluation of each such neigh-
bour is forced.
Definition 1. A node n ∈ neighbours(x) is forced if:

1. n is not a natural neighbour of x
2. len(〈p(x), x, n〉) < len(〈p(x), . . . , n〉 \ x)

In Figure 2(b) we show an example of a straight move where
the evaluation of n = 3 is forced. Figure 2(d) shows an sim-
ilar example involving a diagonal move; here the evaluation
of n = 1 is forced.

Algorithmic Description

We begin by making precise the concept of a jump point.
Definition 2. Node y is the jump point from node x, heading
in direction �d, if y minimizes the value k such that y = x+k�d
and one of the following conditions holds:

1. Node y is the goal node.
2. Node y has at least one neighbour whose evaluation is

forced according to Definition 1.
3. �d is a diagonal move and there exists a node z = y+ki�di

which lies ki ∈ N steps in direction �di ∈ { �d1, �d2} such
that z is a jump point from y by condition 1 or condition 2.

Figure 1(b) shows an example of a jump point which is
identified by way of condition 3. Here we start at x and
travel diagonally until encountering node y. From y, node z

Algorithm 1 Identify Successors
Require: x: current node, s: start, g: goal

1: successors(x) ← ∅
2: neighbours(x) ← prune(x, neighbours(x))
3: for all n ∈ neighbours(x) do
4: n ← jump(x, direction(x, n), s, g)
5: add n to successors(x)
6: return successors(x)

can be reached with ki = 2 horizontal moves. Thus z is a
jump point successor of y (by condition 2) and this in turn
identifies y as a jump point successor of x

The process by which individual jump point successors
are identified is given in Algorithm 1. We start with the
pruned set of neighbours immediately adjacent to the cur-
rent node x (line 2). Then, instead of adding each neighbour
n to the set of successors for x, we try to “jump” to a node
that is further away but which lies in the same relative di-
rection to x as n (lines 3:5). For example, if the edge (x, n)
constitutes a straight move travelling right from x, we look
for a jump point among the nodes immediately to the right
of x. If we find such a node, we add it to the set of succes-
sors instead of n. If we fail to find a jump point, we add
nothing. The process continues until the set of neighbours is
exhausted and we return the set of successors for x (line 6).

In order to identify individual jump point successors we
will apply Algorithm 2. It requires an initial node x, a direc-
tion of travel �d, and the identities of the start node s and the
goal node g. In rough overview, the algorithm attempts to
establish whether x has any jump point successors by step-
ping in the direction �d (line 1) and testing if the node n at
that location satisfies Definition 2. When this is the case, n
is designated a jump point and returned (lines 5, 7 and 11).
When n is not a jump point the algorithm recurses and steps
again in direction �d but this time n is the new initial node
(line 12). The recursion terminates when an obstacle is en-
countered and no further steps can be taken (line 3). Note
that before each diagonal step the algorithm must first fail
to detect any straight jump points (lines 9:11). This check
corresponds to the third condition of Definition 2 and is es-
sential for preserving optimality.

Optimality

In this section we prove that for each optimal length path
in a grid map there exists an equivalent length path which
can be found by only expanding jump point nodes during
search (Theorem 1). Our result is derived by identifying for
each optimal path a symmetric alternative which we split
into contiguous segments. We then prove that each turning
point along this path is also a jump point.

Algorithm 2 Function jump

Require: x: initial node, �d: direction, s: start, g: goal
1: n ← step(x, �d)
2: if n is an obstacle or is outside the grid then
3: return null
4: if n = g then
5: return n
6: if ∃ n′ ∈ neighbours(n) s.t. n′ is forced then
7: return n
8: if �d is diagonal then
9: for all i ∈ {1, 2} do

10: if jump(n, �di, s, g) is not null then
11: return n
12: return jump(n, �d, s, g)

1116

Definition 3. A turning point is any node ni along a path
where the direction of travel from the previous node ni−1

to ni is different to the direction of travel from ni to the
subsequent node ni+1.

Figure 3 depicts the three possible kinds of turning points
which we may encounter on an optimal path. A diagonal-
to-diagonal turning point at node nk (Figure 3(a)) involves
a diagonal step from its parent nk−1 followed by a second
diagonal step, this time in a different direction, from nk

to its successor nk+1. Similarly, a straight-to-diagonal (or
diagonal-to-straight) turning point involves a straight (diag-
onal) step from nk−1 to reach nk followed by a diagonal
(straight) step to reach its successor nk+1 (Figure 3(b) and
3(c) respectively). Other types of turning points, such as
straight-to-straight, are trivially suboptimal and not consid-
ered here (they are pruned by the rules we developed earlier;
see again Figure 2).

We are now ready to develop an equivalence relation
between jump points and the turning points that appear
along certain optimal length symmetric paths which we term
diagonal-first.
Definition 4. A path π is diagonal-first if it contains no
straight-to-diagonal turning point 〈nk−1, nk, nk+1〉 which
could be replaced by a diagonal-to-straight turning point
〈nk−1, n

′
k, nk+1〉 s.t. the length of π remains unchanged.

Given an arbitrary optimal length path π, we can always
derive a symmetric diagonal-first path π′ by applying Algo-
rithm 3 to π. Note that this is merely as a conceptual device.
Lemma 1. Each turning point along an optimal diagonal-
first path π′ is also a jump point.

Proof. Let nk be an arbitrary turning point node along π′.
We will consider three cases, each one corresponding to one
of the three possible kinds of optimal turning points illus-
trated in Figure 3.

Diagonal-to-Diagonal: Since π′ is optimal, there must
be an obstacle adjacent to both nk and nk−1 which is forc-
ing a detour. We know this because if there were no obsta-
cle we would have dist(nk−1, nk+1) < dist(nk−1, nk) +
dist(nk, nk+1) which contradicts the fact that π′ is optimal.
We conclude that nk+1 is a forced neighbour of nk. This
is sufficient to satisfy the second condition of Definition 1,
making nk a jump point.

Algorithm 3 Compute Diagonal First Path
Require: π: an arbitrary optimal length path

1: select an adjacent pair of edges appearing along π where
(nk−1, nk) is a straight move and (nk, nk+1) is a diag-
onal move.

2: replace (nn−1, nk) and (nk, nk+1) with two new edges:
(nk−1, n

′
k), which is a diagonal move and (n′

k, nk+1)
which is a straight move. The operation is successful
if (nk−1, n

′
k) and (n′

k, nk+1) are both valid moves; i.e.
node n′

k is not an obstacle.
3: repeat lines 1 and 2, selecting and replacing adjacent

edges, until no further changes can be made to π.
4: return π

Figure 3: Types of optimal turning points. (a) Diagonal-to-
Diagonal (b) Straight-to-Diagonal (c) Diagonal-to-Straight.

Straight-to-Diagonal: In this case there must be an ob-
stacle adjacent to nk. If this were not true nk could be re-
placed by a Diagonal-to-Straight turning point which contra-
dicts the fact that π′ is diagonal-first. Since π′ is guaranteed
to be diagonal-first we derive the fact that nk+1 is a forced
neighbour of nk. This satisfies the second condition of Def-
inition 1 and we conclude nk is a jump point.

Diagonal-to-Straight: There are two possibilities in this
case, depending on whether the goal is reachable by a series
of straight steps from nk or whether π′ has additional turning
points. If the goal is reachable by straight steps then nk has
a jump point successor which satisfies the third condition of
Definition 1 and we conclude nk is also a jump point. If nk

is followed by another turning point, nl, then that turning
point must be Straight-to-Diagonal and, by the argument for
that case, also a jump point. We again conclude that nk has
a jump point successor which satisfies the third condition of
Definition 1. Thus, nk is also a jump point.

Theorem 1. Searching with jump point pruning always re-
turns an optimal solution.

Proof. Let π be an arbitrarily chosen optimal path between
two nodes on a grid and π′ a diagonal-first symmetric equiv-
alent which is derived by applying Algorithm 3 to π. We
will show that every turning point mentioned by π′ is ex-
panded optimally when searching with jump point pruning.
We argue as follows:

Divide π′ into a series of adjacent segments s.t. π′ =
π′
0 + π′

1 + . . . + π′
n. Each π′

i = 〈n0, n1, . . . , nk−1, nk〉 is
a subpath along which all moves involve travelling in the
same direction (e.g. only “up” or “down” etc). Notice that
with the exception of the start and goal, every node at the
beginning and end of a segment is also a turning point.

Since each π′
i consists only of moves in a single direc-

tion (straight or diagonal) we can use Algorithm 2 to jump
from n0 ∈ π′

i, the node at beginning of each segment to
nk ∈ π′

i, the node at the end, without necessarily stopping
to expand every node in between. Intermediate expansions
may occur but the fact that we reach nk optimally from n0

is guaranteed. It remains to show only that both n0 and nk

are identified as jump points and thus necessarily expanded.
By Lemma 1 each turning point along π′ is also a jump
point, so every turning point node must be expanded dur-
ing search. Only the start and goal remain. The start node is
necessarily expanded at the beginning of each search while
the goal node is a jump point by definition. Thus both are
expanded.

1117

Experimental Setup

We evaluate the performance of jump point pruning on
four benchmarks taken from the freely available pathfinding
library Hierarchical Open Graph (HOG, http://www.
googlecode.com/p/hog2):
• Adaptive Depth is a set of 12 maps of size 100×100 in

which approximately 1
3 of each map is divided into rect-

angular rooms of varying size and a large open area inter-
spersed with large randomly placed obstacles. For this
benchmark we randomly generated 100 valid problems
per map for a total of 1200 instances.

• Baldur’s Gate is a set of 120 maps taken from BioWare’s
popular roleplaying game Baldur’s Gate II: Shadows of
Amn; it appears regularly as a standard benchmark in
the literature (Björnsson and Halldórsson 2006; Harabor
and Botea 2010; Pochter et al. 2010). We use the vari-
aton due to Nathan Sturtevant where all maps have been
scaled to size 512×512 to more accurately represent mod-
ern pathfinding environments. Maps and all instances are
available from http://movingai.com

• Dragon Age is another realistic benchmark; this time
taken from BioWare’s recent roleplaying game Dragon
Age: Origins. It consists of 156 maps ranging in size
from 30 × 21 to 1104 × 1260. For this benchmark we
used a large set of randomly generated instances, again
due to Nathan Sturtevant and available from http://
movingai.com.

• Rooms is a set of 300 maps of size 256×256 which
are divided into symmetric rows of small rectangular ar-
eas (7 × 7), connected by randomly placed entrances.
This benchmark has previously appeared in (Pochter et
al. 2010). For this benchmark we randomly generated 100
valid problems per map for a total of 30000 instances.
Our test machine is a 2.93GHz Intel Core 2 Duo processor

with 4GB RAM running OSX 10.6.4.

Results

To evaluate jump points we use a generic implementation
of A* which we adapted to facilitate online neighbour prun-
ing and jump point identification. We discuss performance
in terms of speedup: i.e. relative improvement to the time
taken to solve a given problem, and the number of nodes
expanded, when searching with and without graph pruning
applied to the grid. Using this metric a search time speedup
of 2.0 is twice as fast while a node expansion speedup of
2.0 indicates half the number of nodes were expanded. In
each case higher is better. Figure 4 shows average search
time speedups across each of our four benchmarks. Table 1
shows average node expansion speedups; the best results for
each column are in bold.

Comparison with Swamps: We begin by comparing
jump points to Swamps (Pochter et al. 2010): an optimal-
ity preserving pruning technique for speeding up pathfind-
ing. We used the authors’ source code, and their imple-
mentation of A*, and ran all experiments using their rec-
ommended running parameters: a swamp seed radius of 6
and “no change limit” of 2.

A. Depth B. Gate D.Age Rooms
Jump Points 20.37 215.36 35.95 13.41
Swamps 1.89 2.44 2.99 4.70
HPA* 4.14 9.37 9.63 5.11

Table 1: Average A* node expansion speedup.

As per Figure 4, jump point pruning shows a convinc-
ing improvement to average search times across all bench-
marks. The largest differences are observed on Baldur’s
Gate and Dragon Age where searching with jump points
reaches the goal between 25-30 times sooner while search-
ing with Swamps attains only a 3-5 times speedup. Similar
trends are observed when looking at Table 1, where the im-
provement to the total number of nodes expanded is even
more pronounced.

Based on these results we conclude that while Swamps
are effective for identifying areas of the map not relevant to
reaching the goal, those areas which remain still require sig-
nificant effort to search. Jump points use a much stronger
yet orthogonal strategy to prove that many nodes expanded
by Swamps can be ignored. As the two ideas appear comple-
mentary we posit that they could be easily combined: first,
apply a Swamps-based decomposition to prune areas not rel-
evant to the current search. Then, use jump points to search
the remaining portions of the map.

Comparison with HPA*: Next, we compare jump
points pruning to the HPA* algorithm (Botea, Müller, and
Schaeffer 2004). Though sub-optimal, HPA* is very fast
and widely applied in video games. To evaluate HPA* we
measure the total cost of insertion and hierarchical search.
We did not refine any abstract paths, assuming instead that a
database of pre-computed intra-cluster paths was available.
Such a configuration represents the fastest generic imple-
mentation of HPA* but requires additional memory over-
heads. While searching we used a single-level abstraction
hierarchy and a fixed cluster size of 10. These settings are
recommended by the original authors who note that larger
clusters and more levels are often of little benefit.

As per Figure 4, jump points pruning is shown to be
highly competitive with HPA*. On Adaptive Depth, Bal-
dur’s Gate and Rooms, jump points have a clear advantage –
improving on HPA* search times by several factors in some
cases. On the Dragon Age benchmark jump points have a
small advantage for problems of length < 500 but for longer
instances there is very little between the two algorithms. Ta-
ble 1 provides further insight: although searching with jump
points expands significantly fewer nodes than HPA*, each
such operation takes longer.

We conclude that jump point pruning is a competitive sub-
stitute for HPA* and, for a wide variety of problems, can
help to find solutions significantly faster. HPA* can still be
advantageous, particularly if a memory overhead is accept-
able and optimality is not important, but only if the cost of
inserting the start and goal nodes into the abstract graph (and
possibly refinement, if a path database is not available), can
be sufficiently amortized over the time required to find an
abstract path. One direction for further work could be to use

1118

50 100 150

0
5

10
15

20
25

30
35

Search Time Speedup: Adaptive Depth

Path Length

A
ve

ra
ge

 S
pe

ed
up

 F
ac

to
r

Jump Points
Swamps
HPA*

0 100 200 300 400 500

0
5

10
15

20
25

30
35

Search Time Speedup: Baldur's Gate (512x512)

Path Length

A
ve

ra
ge

 S
pe

ed
up

 F
ac

to
r

Jump Points
Swamps
HPA*

0 500 1000 1500 2000 2500

0
5

10
15

20
25

30
35

Search Time Speedup: Dragon Age

Path Length

A
ve

ra
ge

 S
pe

ed
up

 F
ac

to
r

Jump Points
Swamps
HPA*

0 100 200 300 400 500

0
5

10
15

20
25

30
35

Search Time Speedup: Rooms

Path Length

A
ve

ra
ge

 S
pe

ed
up

 F
ac

to
r

Jump Points
Swamps
HPA*

Figure 4: Average A* search time speedup on our each of our four benchmarks.

jump point pruning to speed up HPA*: for example during
insertion and refinement.

Conclusion

We introduce a new online node pruning strategy for speed-
ing up pathfinding on undirected uniform-cost grid maps.
Our algorithm identifies and selectively expands only certain
nodes from a grid map which we call jump points. Moving
between jump points involves only travelling in a fixed di-
rection, either straight or diagonal. We prove that interme-
diate nodes on a path between two jump points never need
to be expanded and “jumping” over them does not affect the
optimality of search.

Our method is unique in the pathfinding literature in that it
has very few disadvantages: it is simple, yet highly effective;
it preserves optimality, yet requires no extra memory; it is
extremely fast, yet requires no preprocessing. Further, it is
largely orthogonal to and easily combined with competing
speedup techniques from the literature. We are unaware of
any other algorithm which has all these features.

The new algorithm is highly competitive with re-
lated works from the literature. When compared to
Swamps (Pochter et al. 2010), a recent state-of-the-art op-
timality preserving pruning technique, we find that jump
points are up to an order of magnitude faster. We also
show that jump point pruning is competitive with, and in
many instances clearly faster than, HPA*; a popular though
sub-optimal pathfinding technique often employed in perfor-
mance sensitive applications such as video games.

One interesting direction for further work is to extend
jump points to other types of grids, such as hexagons or
texes (Yap 2002). We propose to achieve this by develop-
ing a series of pruning rules analogous to those given for
square grids. As the branching factor on these domains is
lower than square grids, we posit that jump points could
be even more effective than observed in the current paper.
Another interesting direction is combining jump points with
other speedup techniques: e.g. Swamps or HPA*.

Acknowledgements

We would like to thank Adi Botea, Philip Kilby and Patrik
Haslum for their encouragement, support and many helpful
suggestions during the development of this work. We also

thank Nir Pochter for kindly providing us with source code
for the Swamps algorithm.

NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.

References

Björnsson, Y., and Halldórsson, K. 2006. Improved heuris-
tics for optimal path-finding on game maps. In AIIDE, 9–14.
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near optimal
hierarchical path-finding. J. Game Dev. 1(1):7–28.
Davis, I. L. 2000. Warp speed: Path planning for Star Trek
Armada. In AAAI Spring Symposium (AIIDE), 18–21.
Fox, M., and Long, D. 1999. The detection and exploitation
of symmetry in planning problems. In IJCAI, 956–961.
Fukunaga, A. S. 2008. Integrating symmetry, dominance,
and bound-and-bound in a multiple knapsack solver. In
CPAIOR, 82–96.
Gent, I. P., and Smith, B. M. 2000. Symmetry breaking in
constraint programming. In ECAI, 599–603.
Harabor, D., and Botea, A. 2010. Breaking path symmetries
in 4-connected grid maps. In AIIDE, 33–38.
Lee, J.-Y., and Yu, W. 2009. A coarse-to-fine approach for
fast path finding for mobile robots. In IROS, 5414 –5419.
Pochter, N.; Zohar, A.; Rosenschein, J. S.; and Felner, A.
2010. Search space reduction using swamp hierarchies. In
AAAI.
Sturtevant, N. R.; Bulitko, V.; and Björnsson, Y. 2010. On
learning in agent-centered search. In AAMAS, 333–340.
Sturtevant, N. R. 2007. Memory-efficient abstractions for
pathfinding. In AIIDE, 31–36.
Sun, X.; Yeoh, W.; Chen, P.-A.; and Koenig, S. 2009. Sim-
ple optimization techniques for a*-based search. In AAMAS
(2), 931–936.
Wang, K.-H. C., and Botea, A. 2009. Tractable multi-agent
path planning on grid maps. In IJCAI, 1870–1875.
Yap, P. 2002. Grid-based path-finding. In Canadian AI,
44–55.

1119

