
A Robotics Environment for Software Engineering Courses

Stephan Göbel, Ruben Jubeh, Simon-Lennert Raesch
[sgoe|ruben|lra]@cs.uni-kassel.de

University of Kassel, Software Engineering
Wilhelmshöher Allee 73
34121 Kassel, Germany

Abstract

The initial idea of using Lego Mindstorms Robots for
student courses had soon to be expanded to a simula-
tion environment as the user base in students grew larger
and the need for parallel development and testing arose.
An easy to use and easy to set up means of providing
positioning data led to the creation of an indoor posi-
tioning system so that new users can adapt quickly and
successfully, as sensors on the actual robots are diffi-
cult to configure and hard to interpret in an environmen-
tal context. A global positioning system shared among
robots can make local sensors obsolete and still deliver
more precise information than currently available sen-
sors, also providing the base necessary for the robots
to effectively work on shared tasks as a group. Further
more, a simulator for robots programmed with Fujaba
and Java which was developed along the way can be
used by many developers simultaneously and lets them
evaluate their code in a simple way, while close to real-
world results.

Introduction

Figure 1: Robot vehicle

To use robotics within our lectures and courses aimed to
visualize and physically represent object oriented software
algorithms, which is even more intuitive than just looking
at in-memory object structures, as shown in (I. Diethelm, L.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Geiger, A. Zündorf 2002). A basic framework was devel-
oped in 2008 (Jubeh 2008), based upon the LeJOS frame-
work1. The first robot solved the Towers-of-Hanoi-Game,
see (I. Diethelm, L. Geiger, A. Zündorf 2003). Since the last
four student terms, we realized more application scenarios,
see (Van Gorp et al. 2009).

Using robotics in Software Engineering courses and
projects is very attractive for students, as programs and al-
gorithms physically manifest and interact with real-world
objects. But using robotics also has it’s drawbacks: simple
actions like moving the robot to certain places is an ad-
vanced task, since one needs to control the actuators (mo-
tors) and also verify through sensors, that the action suc-
ceeded. For example, using light sensors for orientation, as
the Hanoi Robot did, is unreliable. Generally, interpreting
the real world state by various sensors is complex and of-
ten error-prone. Low level hardware interfacing software is
difficult to develop and test. Mainly because the ”Software
Engineering with Robots”-Course at Kassel University was
so popular that more students enrolled to that course than we
had robotic kits, we decided to also build a simulator around
our framework. This simulator allows to develop and test the
actual robot control code independently of the hardware at a
higher level of abstraction.

Figure 2: Webcam tracking

The robot vehicles currently used are depicted in figure 1.

1http://lejos.sourceforge.net/

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1874

Two big main wheels allow differential steering and turning
on the spot. On top of the robot, there’s a marker, which is
used to track the robot optically. The robot doesn’t use any
directly attached sensors, which simplifies programming it
a lot. A webcam is tracking the markers, recognizing po-
sitions and forwarding the information via network broad-
cast to the robot control software instances. By using this
optical global-view tracking approach, each robot individu-
ally sees it’s own position and the position of other marked
objects. The framework also supports a view distance, ob-
jects tracked too far away are artificially hidden. The track-
ing is the only sensory input source used in the programming
model. This approach simplifies the simulator a lot, because
we don’t have to simulate any distance metering sensors like
ultrasonic or laser/light sensors. Only position data has to be
generated out of the movement simulation component.

Positioning
Our positioning component, called FIPS (Fiducial Indoor
Positioning System), is based on the reacTIVision2 frame-
work, which uses image recognition techniques to detect
predefined optical markers via webcam. These markers are
called fiducials. Each symbol has an ID which can be de-
tected along with the rotation and, of course, the absolute
position. Especially having the exact rotation of the robot
helps a lot for precisely navigating it, a feature that other
in- or outdoor position systems can only achieve by utilizing
a magnetic field sensor, which is unreliable even in indoor
scenarios.

Simulator
The main motivation for the simulator is to allow transpar-
ent development of scenarios and control software without
the need for actual robot hardware. It features a simple 3D
graphical viewer and simulates navigational movements and
rotation in 2D space. Robot movements are translated in
x, y coordinates and a heading value. The navigator is the
only used actuator in all scenarios presented here, which ab-
stracts the underlying two wheel driving motors. Addition-
ally, there’s an integration of a simple 2D geometric/physics
engine for collision handling between robots and other geo-
metric shapes. To close the simulation loop, the 2D positions
of all objects have to be fed back to the FIPS, which is the
only sensory interface the robot control software uses. Some
fuzzing transformations identified in real-world tests are ap-
plied to the coordinates to mimic realistic behavior.

Scenarios
During a term project, students have to implement the au-
tonomous robot vehicle control software and parts of the ap-
plication scenario as software for the simulator. At the be-
ginning of each project the scenario was a textual descrip-
tion of what the robot vehicles had to achieve under given
rules. Later on, the scenario was implemented in actual code
setting up the robots etc. In case of a simulation, all the en-
vironment has to be simulated as well. So, a scenario offers

2http://www.reactivision.org/

basically two operation modes, controlling real robots in a
real environment, or simulating robots within a virtual envi-
ronment.

The most popular application scenario, Cat-and-Mouse,
consists of two robots, one playing the role of a cat (the
hunter), the other playing a mouse (the prey). The cat period-
ically scans for the mouse and tries to catch it by driving to
it’s position. The mouse moves randomly around, until there
is a cheese object (simply a box with a fiducial marker) being
placed in the field, which instantly attracts the mouse’s atten-
tion. What makes the scenario so attractive is that people can
interact with both robots by placing the cheese somewhere,
which enforces a reaction of the mouse and might help to
escape or being trapped.

Workshop Proposal
We would like to organize a hands-on programming event,
extending the Cat-and-Mouse scenario with more interac-
tivity and adding a third robot/role, e.g. a Dog. The FIPS
system and a robot for each team member is provided. We
would like to discuss the desired robot behavior first, and
then implement it using Java programming in Eclipse. Team
members should be familiar with general Java programming,
no advanced skills are required. The tutors, who are also
framework developers, can quickly help with programming
questions and pitfalls.

Summary
Our system requires nothing more than a webcam and some
printed sheets of fiducials. This makes this system very ap-
plicable for our department, as we are software- but not
hardware experts. Furthermore, installation costs are ex-
tremely low. The highly reduced complexity compared to
other indoor positioning systems allows a quick and easy
setup of the system on other sites. Students can even rebuild
it at home. Therefore, we would like to present our project
and discuss further ideas with the participants of the work-
shop, introduce our development framework and ideally or-
ganize a hands-on programming session.

References
I. Diethelm, L. Geiger, A. Zündorf. 2002. UML im Un-
terricht: Systematische objektorientierte Problemlösung mit
Hilfe von Szenarien am Beispiel der Türme von Hanoi. Er-
ster Workshop der GI-Fachgruppe Didaktik der Informatik,
Bommerholz, Germany.
I. Diethelm, L. Geiger, A. Zündorf. 2003. Fujaba goes
Mindstorms. Objektorientierte Modellierung zum Anfassen;
in Informatik und Schule (INFOS) 2003, München, Ger-
many.
Jubeh, R. 2008. Simple robotics with Fujaba. In Fujaba
Days. Technische Universität Dresden.
Van Gorp, P.; Jubeh, R.; Grusie, B.; and Keller, A. 2009. Fu-
jaba hits the Wall(-e) – Beta working paper 294, Eindhoven
University of Technology. http://beta.ieis.tue.nl/node/1487.

1875

