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Introduction

Robot Learning from Demonstration (LfD) research deals
with the challenges of enabling humans to teach robots novel
skills and tasks (Argall et al. 2009). The practical importance
of LfD is due to the fact that it is impossible to pre-program
all the necessary skills and task knowledge that a robot might
need during its life-cycle. This poses many interesting appli-
cation areas for LfD ranging from houses to factory floors.

An important motivation for our research agenda is that
in many of the practical LfD applications, the teacher will
be an everyday end-user, not an expert in Machine Learn-
ing or robotics. Thus, our research explores the ways in
which Machine Learning can exploit human social learning
interactions—Socially Guided Machine Learning (SG-ML).
We claim computational learning systems should make use
of social learning principles because:

1. It is better for the human: A working hypothesis of
this approach is that using characteristic aspects of hu-
man learning will be the most natural interface for every-
day people. Several studies show that humans inherently
and dynamically provide social scaffolding for learners.
Greenfield describes studies of children learning language
and girls learning to weave (Greenfield 1984), where the
teachers engage in a complex process of dynamically ad-
justing their support of the learner based on skill level and
success. The teachers are unconscious of the process or
the method by which they are teaching. Thus, the part-
nership of social learning is an interaction that people fall
into intuitively.

2. It is better for the machine: This point is generally
less intuitive, but one way to think of it is that social
interaction provides biases and constraints that simplify
the problem for the machine. Social learning leads to
a more efficient and robust machine learning process.
We have several examples of this in our prior work
(Thomaz and Breazeal 2008; Thomaz and Cakmak 2009;
Cakmak et al. 2010; Zang et al. 2010).
We are interested both in novel algorithms and systems

for LfD and in using everyday people as our benchmark for
evaluation. As part of the AAAI 2011 LfD Challenge, we
will be exhibiting our SG-ML approach to LfD.
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Figure 1: Interacting with the PR2 using kinesthetic demon-
strations.

The domain of the AAAI 2011 LfD Challenge is food
preparation tasks. Skills such as picking up, placing down,
whisking, scooping, pouring and shaking are relevant to
food preparation. Specific tasks could range from preparing
cereal to making scrambled eggs.

We will be using the PR2 from Willow Garage as our
robotic platform. The PR2 is a two arm mobile-manipulator
with a variety of sensors. The arms have passive gravity
compensation which we find desirable in human interaction
scenarios. It uses the Robot Operating System (ROS) and
has a developed codebase for various action and sensory ca-
pabilities.

Approach

We identify three parts of the LfD problem, low-level skill
learning, high-level task learning and the interaction during
demonstrations. The large body of literature have been con-
centrated on algorithms and representations related with ei-
ther of the first two problems, while mostly neglecting the
third. In our research we recognize that these problems are
interrelated and tackle them together.

Task Learning

In prior work we have focused on the problem of task learn-
ing given a set of known primitive actions (Lockerd-Thomaz
and Breazeal 2004; Breazeal and Thomaz 2008). In our task
learning approach, the human instructs the robot on how to
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build a new task, through its components, from the set of
known actions and tasks with speech and gesture. During
task learning, the actions that the robot is asked to perform
are monitored and the goals for each action as well as the
overall task are inferred.

To infer a goal state for an action or task, the robot com-
pares the world state before and after its execution. If this
execution causes a change of state, this change is taken to
be the goal. The learning problem for the robot is to iden-
tify what exactly about the state change was important for
the task (was it the change to some particular object, a class
of objects, etc.) To so do we expand a version space of all
goal representations consistent with the current action/task
example (Buchanan and Mitchell 1978). In a version space
approach, there is a lattice of hypotheses consistent with
the positive examples ordered from most specific to most
general. Learning happens through a hypothesis elimination
process as more examples of the concept are seen.

Skill Learning

In more recent work we have begun to also focus on the
problem of skill learning. Skills can be regarded as low-level
action primitives or policies that take the robot from one-
state to another in a particular way. The low-level robot state
can incorporate all or a subset of joint angles, end-effector
(eef) pose, object-eef relations, basic sensory features (eef
image position) and more. The two most common ways of
representing skills are dynamic systems or mixture models.

We chose kinesthetic teaching as our skill demonstration
method. In kinesthetic teaching, the human teacher guides
the robot physically through the skill. Figure 1 provides an
example of the kinesthetic interaction where the human is
manually controlling the arm of the PR2 to demonstrate
the required skill. We find that this method of interaction
has significant advantages. It overcomes the correspondence
problem often encountered in most LfD systems (Argall et
al. 2009). The direct control of the robot’s end-effectors
eliminates the need for record mapping and embodiment
mapping. Thus we can utilize the robot data directly and re-
move the effects of mapping errors. Furthermore, some of
our recent work shows that humans are more comfortable
using kinesthetic means when interacting with a robot than
other methods (e.g. teleoperation). It provides them fine con-
trol over the demonstrated behavior that is not always avail-
able in other modes of interaction. We believe this aspect is
essential for learning behaviors that are relevant in a kitchen
environment.

Leveraging an Iterative Human Interaction

Finally, our approach recognizes that in a natural social
learning interaction, both task and skill learning happen in-
teractively within an ongoing social dialog.

In prior work, we have specifically shown the benefits of
interactively collecting LfD examples as opposed to batch
processing (Zang et al. 2010). This allows the human teach-
ers to iteratively see the learned task model, and results in
them having a better understanding of what kinds of exam-
ples or trajectories are most needed by the learner. We find
that interaction helps people build the appropriate mental

models of the learning process, and we see that they change
their teaching strategies to improve learning.

In addition to the benefits of interaction, we will also be
exploring the benefits of co-mingling task and skill learn-
ing within a single interaction. For example, the human can
teach several low-level skills that they think will be neces-
sary for a particular high-level food preparation task. Then,
they begin teaching the high-level task by instructing the
robot with a verbal dialog as to which skills to perform. In
doing so, they may realize that one of the skills they taught
needs modification, so they can switch to skill teaching and
provide an additional demonstration of the skill, in the con-
text of this high-level task. Afterwards, the high-level task
instruction dialog continues.

Conclusion

We are interested in developing LfD systems that are tailored
to be used by everyday people. As part of the AAAI 2011
LfD Challenge, we will demonstrate some of our most re-
cent SG-ML work, in which the PR2 robot learns both low-
level skills and high-level tasks through an ongoing social
dialog with a human partner.
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