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Abstract

With the recent inclusion of inter-league games to pro-
fessional sports leagues, a natural question is to deter-
mine the “best possible” inter-league schedule that re-
tains all of the league’s scheduling constraints to ensure
competitive balance and fairness, while minimizing the
total travel distance for both economic and environmen-
tal efficiency. To answer that question, this paper in-
troduces the Bipartite Traveling Tournament Problem
(BTTP), the inter-league extension of the well-studied
Traveling Tournament Problem.

We prove that the 2n-team BTTP is NP-complete, but
for small values of n, a distance-optimal inter-league
schedule can be generated from an algorithm based
on minimum-weight 4-cycle-covers. We apply our al-
gorithm to the 12-team Nippon Professional Baseball
(NPB) league in Japan, creating an inter-league tourna-
ment that reduces total team travel by 16% compared to
the actual schedule played by these teams during the
2010 NPB season. We also analyze the problem of
inter-league scheduling for the 30-team National Bas-
ketball Association (NBA), and develop a tournament
schedule whose total inter-league travel distance is just
3.8% higher than the trivial theoretical lower bound.

Introduction

In many professional sports leagues, the teams are divided
into “conferences” based on historical rivalry or geographic
proximity. During the season, each team plays intra-league
games against teams from their own conference, as well as
inter-league games against teams from the other conference.
Many professional sports leagues adopt a two-conference
structure, including the “Big Four” leagues of North Amer-
ica: the National Basketball Association (NBA), the Na-
tional Football League (NFL), the National Hockey League
(NHL), and Major League Baseball (MLB).

As teams must travel long distances to play their games
during the course of a season, finding a schedule that re-
duces travel distance is important, for both economic and
environmental reasons. Since the majority of regular season
games occur within one’s conference, much of the research
in sports scheduling has focused on intra-league play, with
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the goal of minimizing the sum total of distances traveled by
all teams. The challenge of creating a distance-optimal intra-
league schedule motivated the Traveling Tournament Prob-
lem (TTP), in which every pair of teams plays twice, with
one game at each team’s home stadium. The output is an
optimal schedule that minimizes the sum total of distances
traveled by the teams as they move from city to city, subject
to several constraints that ensure competitive balance.

Since its introduction (Easton, Nemhauser, and Trick
2001), the TTP has emerged as a popular area of study
(Kendall et al. 2010) within the operations research commu-
nity due to its complexity and depth. Research on the TTP
has led to the development of powerful techniques in integer
programming, constraint programming, as well as heuris-
tics such as simulated annealing and hill-climbing (Lim, Ro-
drigues, and Zhang 2006). The TTP has direct applications
to scheduling optimization, and can aid professional sports
leagues as they make their regular season schedules more
efficient, saving time and money, as well as reducing green-
house gas emissions.

In this paper, we extend the TTP to inter-league play, con-
necting the techniques and methods of the Traveling Tourna-
ment Problem to the theory of bipartite tournaments, thus
producing new directions for research in scheduling opti-
mization. Determining distance-optimal inter-league sched-
ules is a natural next step in the field of sports scheduling, es-
pecially given the recent introduction of inter-league play to
pro leagues. For example, in Major League Baseball, inter-
league play began only in 1997, despite having first been
proposed in the 1930s.

We introduce the Bipartite Traveling Tournament Prob-
lem (BTTP), the inter-league analogue of the TTP. We prove
that BTTP on 2n teams is NP-complete by obtaining a reduc-
tion from 3-SAT, the well-known NP-complete problem on
boolean satisfiability (Garey and Johnson 1979). Despite its
computational intractability for general n, we present a pow-
erful heuristic based on minimum-weight 4-cycle-covers
and apply it to the 12-team Nippon Professional Baseball
(NPB) league in Japan, as well as the 30-team National Bas-
ketball Association (NBA). We solve BTTP for the NPB,
producing a distance-optimal schedule that represents a 16%
reduction compared to the actual distance traveled by the
teams during the 2010 NPB season. We conclude the paper
by finding a nearly-optimal solution to BTTP for the NBA.
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Definitions of BTTP and BTTP*
Let there be 2n teams, with n teams in each league. Let
X and Y be the two leagues, with X = {x1, x2, . . . , xn}
and Y = {y1, y2, . . . , yn}. Let D be the 2n × 2n distance
matrix, where entry Dp,q is the distance between the home
stadiums of teams p and q. By definition, Dp,q = Dq,p for
all p, q ∈ X ∪ Y , and all diagonal entries Dp,p are zero.

Similar to the original TTP, we require the following con-
ditions: that each team play one game per day; that no team
has a home stand or road trip lasting more than three games;
that no team play against the same opponent in two consec-
utive games; and that for all 1 ≤ i, j ≤ n, teams xi and yj
play twice, once in each other’s home venue.

To illustrate, Table 1 provides two examples of a feasible
tournament satisfying all of the above conditions for the case
n = 3. In this table, as in all other schedules that will be
subsequently presented, home games are marked in bold.

Team 1 2 3 4 5 6
x1 y1 y2 y3 y1 y2 y3

x2 y2 y3 y1 y2 y3 y1

x3 y3 y1 y2 y3 y1 y2

y1 x1 x3 x2 x1 x3 x2

y2 x2 x1 x3 x2 x1 x3

y3 x3 x2 x1 x3 x2 x1

Team 1 2 3 4 5 6
x1 y1 y2 y3 y2 y3 y1
x2 y3 y1 y2 y1 y2 y3

x3 y2 y3 y1 y3 y1 y2

y1 x1 x2 x3 x2 x3 x1

y2 x3 x1 x2 x1 x2 x3

y3 x2 x3 x1 x3 x1 x2

Table 1: Two feasible inter-league tournaments for n = 3.

Following the convention of the TTP, whenever a team is
scheduled for a road trip consisting of multiple away games,
the team doesn’t return to their home city but rather pro-
ceeds directly to their next away venue. Furthermore, we
assume that every team begins the tournament at home, and
returns home after its last away game. For example, in Ta-
ble 1, team x1 would travel a distance of Dx1,y1

+Dy1,y2
+

Dy2,y3
+ Dy3,x1

when playing the top schedule and a dis-
tance of Dx1,y3

+Dy3,y2
+Dy2,x1

+Dx1,y1
+Dy1,x1

when
playing the bottom schedule. The desired solution to BTTP
is the tournament schedule that minimizes the total distance
traveled by all 2n teams subject to the given conditions.

Let BTTP* be the restriction of BTTP to the set of tourna-
ment schedules where on any given day, the teams in each
league either all play at home, or all play on the road. For
example, the top schedule in Table 1 is a feasible solution
of both BTTP* and BTTP. We say that such schedules are
uniform. While this uniformity constraint significantly re-
duces the number of potential tournaments, it allows us to
quickly generate an approximate solution to BTTP from an
algorithm based on minimum-weight 4-cycle-covers. We
now prove that both BTTP and BTTP* are NP-complete, by
obtaining a reduction from 3-SAT.

NP-completeness of BTTP and BTTP*

Let S = C1∧C2∧ . . .∧Cm be the conjunction of m clauses
with three literals on the variables u1, u2, . . . , ul. From S,
we will define the sets XS and YS representing the teams
in leagues X and Y . From this set of |XS | + |YS | vertices,
we will construct a complete graph and assign edge weights
to produce the distance matrix DS . We then prove the ex-
istence of an integer T = T (m) for which the solutions to
BTTP and BTTP* have total travel distance ≤ T iff S is sat-
isfiable. This will establish the desired results.

We can assume that literals ui and ui occur equally often
in S for each 1 ≤ i ≤ l. To see why, assume without loss
that ui occurs less frequently than ui. By repeated addition
of the tautological clause (ui∨ui+1∨ui+1), which does not
affect the satisfiability of S, we can ensure that the number
of occurrences of ui in S matches that of ui.

Let r(i) denote the number of occurrences of ui in S. In
Figure 1, we present a “gadget” for each variable ui, where
the vertices ui,r and ui,r correspond respectively to the rth

occurrence of ui and ui in S, vertex ai,r is adjacent to ui,r−1

and ui,r, and vertex bi,r is adjacent to ui,r and ui,r. (Note:
we set ui,0 := ui,r(i) for all i.)

Figure 1: Gadget for 3-SAT reduction.

This gadget was used to establish the NP-completeness
of deciding whether an undirected graph contains a given
number of vertex-disjoint s-t paths of a specified length (Itai,
Perl, and Shiloach 1982) and to prove that the original TTP
is NP-complete (Thielen and Westphal 2010).

There are l gadgets, one for each ui, i = 1, 2, . . . , l. Now
we define the gadget graph GS . We create vertices cj and
dj for 1 ≤ j ≤ m, one pair for each clause in S. Join cj
to dj . Now connect cj to vertex ui,r iff clause Cj contains
the rth occurrence of ui in S. Similarly, connect cj to vertex
ui,r iff clause Cj contains the rth occurrence of ui in S.

To illustrate, let S = C1∧C2∧C3∧C4∧C5∧C6∧C7∧C8,
where C1 = (u1 ∨ u2 ∨ u3), C2 = (u1 ∨ u2 ∨ u3), C3 =
(u1 ∨ u2 ∨ u4), C4 = (u2 ∨ u3 ∨ u4), C5 = (u1 ∨ u3 ∨ u4),
C6 = (u1 ∨ u2 ∨ u4), C7 = (u2 ∨ u3 ∨ u4), and C8 =
(u1∨u3∨u4). By definition, S is an instance of 3-SAT. The
gadget graph GS is given in Figure 2.

Since each literal occurs as often as its negation, and each
clause has three literals, the number of clauses in S must be
even. Hence, m = 2k for some integer k ≥ 1. From the
instance S, we will define a set XS with 18k vertices cor-
responding to the teams in league X . We will then define
another set YS , with just 3 vertices (labeled p, q, and r), and
place 6k teams at each of these three vertices. This will cre-
ate a 36k-team league, with 18k teams in both X and Y . The
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Figure 2: The gadget graph GS for the instance S.

weight of each edge will just correspond to the distance be-
tween the teams located at those vertices. Using the gadget
graph GS , we will define the edge weights in such a way that
S is satisfiable iff the solutions to BTTP and BTTP* have to-
tal distance at most T = T (k) = 96k2(2900k2+375k+11).
This will establish the desired reduction from 3-SAT.

We first define XS . Let C = {c1, c2, . . . , c2k} and D =
{d1, d2, . . . , d2k}, which are the same set of vertices from
the corresponding gadget graph GS . Let U be the set of 6k
vertices of the form ui,r or ui,r that appear in GS , and let A
and B be respectively the set of vertices of the form ai,r and
bi,r that appear in GS . Finally, we present two additional
sets, E = {e1, e2, . . . , ek} and F = {f1, f2, . . . , fk}, which
will be matched up to the vertices of U in our cycle cover.

We define XS = A ∪ B ∪ C ∪D ∪ E ∪ F ∪ U . Hence,
|XS | = |A| + |B| + |C| + |D| + |E| + |F | + |U | = 3k +
3k + 2k + 2k + k + k + 6k = 18k.

Having defined XS , we now define the edge weights con-
necting each pair of vertices in XS , thus producing a com-
plete graph on 18k vertices. The weight of each edge will
be a function of k. For readability, we will express each
weight as a function of z, where z := 20k + 1. To each
edge in this complete graph, we assign a weight from the set
{z2, z2 + z, 2z2 − 1} as follows:

(1) A weight of z2 is given to every edge that appears in the
gadget graph GS , the 6k2 edges from U to E, and the k
edges connecting ei to fi (for each 1 ≤ i ≤ k).

(2) A weight of z2+ z is given to the 6k2 edges from U to F ,
the 6k edges connecting A to B through a common neigh-
bour in U , and the 6k edges connecting D to U through a
common neighbour in C.

(3) A weight of 2z2 − 1 is given to every other edge.
We now create an inter-league tournament with 36k total

teams. First, we assign the 18k teams in league X to be the
18k vertices of graph XS , where the distance between the
home venues of two teams is just the edge weight between
the corresponding two vertices in the complete graph.

Now let YS = {p, q, r}. Now define the 18k teams in
league Y as follows: place 6k teams at point p, 6k teams at
point q, and 6k teams at point r.

Therefore, |XS ∪ YS | = 18k + 3. We now extend our
complete graph on 18k vertices to include these three addi-
tional vertices. To assign an edge weight connecting each
pair of “inter-league” vertices, we apply Table 2.

p ∈ YS q ∈ YS r ∈ YS

a ∈ A z2 z2 + z 2z2 − 1
b ∈ B z2 2z2 − 1 z2 + z
c ∈ C 2z2 − 1 z2 z2 + z
d ∈ D z2 2z2 − 1 z2

e ∈ E 2z2 − 1 z2 + z z2

f ∈ F z2 z2 2z2 − 1
u ∈ U z2 + z z2 + 2z z2 + 2z

Table 2: Weights of all edges connecting XS to YS .

For example, the edge from ci to p is given a weight of
2z2−1, for all i = 1, 2, . . . , 2k. We repeat the same process
for each of the 7 × 3 = 21 pairs connecting a vertex in
XS = A∪B∪C∪D∪E∪F∪U to a vertex in YS = {p, q, r}.

Finally, let the weights of edges pq, pr, and qr all be
2z2 − 1. As a result, we have now created a complete graph
on the vertex set XS ∪ YS , and assigned a weight to each
edge. Moreover, the weight of each edge appears in the set
{z2, z2 + z, z2 + 2z, 2z2 − 1}, where z = 20k + 1. As
most versions of the TTP require the teams to be located at
points satisfying the Triangle Inequality, we have chosen the
weights in our inter-league variant to ensure that the Trian-
gle Inequality holds for any triplet of points in XS ∪ YS .

We now partition the 18k vertices of XS into groups
of cardinality at most three and attach them to each y ∈
{p, q, r} = YS to produce a union of cycles of length at
most 4. More formally, we define the following:

Definition 1 For each y ∈ YS , a y-rooted 4-cycle-cover is
a union of cycles of length at most 4, where every cycle con-
tains y, no cycle contains a vertex from YS\{y}, and every
vertex of XS appears in exactly one cycle.

Figure 3 gives a p-rooted 4-cycle-cover with |XS | = 18.

Figure 3: A p-rooted 4-cycle-cover with 18 vertices in set XS .

This definition is motivated by our tournament construc-
tion, where we will show that the total travel distance is
minimized by creating a uniform schedule where each team
takes the maximum number of three-game road trips to play
their 18k away games. In the case of the 6k teams of YS

located at vertex p, their 6k three-game road trips will corre-
spond to the 6k 4-cycles in the minimum weight p-rooted 4-
cycle-cover. For example, if p-u1,1-c5-d5-p appears as one
of the 6k cycles, then each team in YS located at vertex p
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will play three consecutive road games during the tourna-
ment against the teams of XS located at u1,1, c5, and d5.

So the total distance traveled by each team at y ∈ YS is
bounded below by the sum of the edge weights of the mini-
mum weight y-rooted 4-cycle-cover.

Definition 2 We define three special types of cycles that may
appear in a p-rooted 4-cycle-cover.

(1) A (p, a, u, b, p)-cycle is a 4-cycle with vertices p, a, u, b
in that order, where p ∈ YS , a ∈ A, u ∈ U , b ∈ B, where
au and ub are both edges in the gadget graph GS .

(2) A (p, u, c, d, p)-cycle is a 4-cycle with vertices p, u, c, d
in that order, where p ∈ YS , u ∈ U , c ∈ C, d ∈ D, where
uc and cd are both edges in the gadget graph GS .

(3) A (p, u, e, f, p)-cycle is a 4-cycle with vertices p, u, e, f
in that order, where p ∈ YS , u ∈ U , e ∈ E, f ∈ F ,
where e and f have the same index (i.e., ei and fi for
some 1 ≤ i ≤ k.)

For example, for our instance S whose gadget graph was
illustrated in Figure 2, p-a1,2-u1,1-b1,1-p is a (p, a, u, b, p)-
cycle, but p-a1,2-u1,1-b4,2-p is not. Similarly, p-u4,3-c8-d8-p
is a (p, u, c, d, p)-cycle, but p-u4,3-c7-d7-p is not.

Following the convention of the TTP (Easton, Nemhauser,
and Trick 2001), we define ILBt to be the individual lower
bound for team t. This value represents the minimum possi-
ble distance that can be traveled by team t in order to com-
plete all of their games under the constraints of BTTP, in-
dependent of the other teams’ schedules. By definition, for
each team t located at y ∈ YS , the value of ILBt is the
minimum weight of a y-rooted 4-cycle-cover.

Similarly, we define the league lower bound LLBT to be
the minimum possible distance traveled by all of the teams
t in league T , and the tournament lower bound TLB to be
the minimum possible distance traveled by all the teams in
both leagues. We note the following trivial inequalities:

TLB ≥ LLBX + LLBY

LLBX ≥
∑
t∈X

ILBt , LLBY ≥
∑
t∈Y

ILBt .

By definition, the solution to BTTP is a tournament sched-
ule whose total travel distance is TLB.

We now have all of the definitions we need to complete
the proof of the NP-completeness of BTTP and BTTP*.
We will create an inter-league tournament between the 18k
teams of XS and the 18k teams of YS (with one-third of
the teams at each vertex of YS), and show that there exists
a distance-optimal (uniform) tournament with total distance
T (k) = 96k2(2900k2 + 375k + 11) iff S is satisfiable. The
desired result will follow from the next four lemmas.

In each lemma, we let KS be the complete graph on the
18k+3 vertices of XS ∪YS , with edge weights as described
in our construction.

Lemma 1 The following statements are equivalent:
(i) S = C1 ∧ C2 ∧ . . . ∧ C2k is satisfiable.

(ii) There exists a p-rooted 4-cycle-cover of KS with exactly
3k (p, a, u, b, p)-cycles, 2k (p, u, c, d, p)-cycles, and k
(p, u, e, f, p)-cycles.

Proof First, we prove (i) → (ii). If S is satisfiable, then
there exists a valid truth assignment, i.e., a function φ for
which φ(ui) ∈ {TRUE,FALSE} for every 1 ≤ i ≤ l
that ensures that each clause Cj evaluates to TRUE for all
1 ≤ j ≤ 2k. From φ, we build a p-rooted 4-cycle-cover of
KS with exactly 3k (p, a, u, b, p)-cycles, 2k (p, u, c, d, p)-
cycles, and k (p, u, e, f, p)-cycles.

We first identify the 3k (p, a, u, b, p)-cycles. For each 1 ≤
i ≤ l, if φ(ui) is FALSE, then select all 4-cycles of the
form p-ai,r-ui,r-bi,r-p for r = 1, 2, . . . , r(i). And if φ(ui)
is TRUE, then select all 4-cycles of the form p-ai,r+1-ui,r-
bi,r-p, where ai,r(i)+1 := ai,1. Repeating this construction
for each i, we produce 3k (p, a, u, b, p)-cycles, covering the
6k vertices of A ∪B, as well as 3k vertices of U .

Now consider any clause Cj . Since φ is a valid truth as-
signment, at least one of the three literals in Cj evaluates to
TRUE. Thus, there exists some index i for which ui ∈ Cj

and φ(ui) is TRUE, or ui ∈ Cj and φ(ui) is FALSE.
In the former case, where ui ∈ Cj and φ(ui) is TRUE,

there exists some index r for which ui,r-cj is an edge of
the gadget graph GS . Then p-ui,r-cj-dj-p is a (p, u, c, d, p)-
cycle. Note that ui,r has not been previously selected in
a (p, a, u, b, p)-cycle since φ(ui) is TRUE (and so only the
vertices ui,1, ui,2, . . . , ui,r(i) were covered earlier.)

In the latter case, where ui ∈ Cj and φ(ui) is FALSE,
there exists some index r for which ui,r-cj is an edge of
the gadget graph GS . Then p-ui,r-cj-dj-p is a (p, u, c, d, p)-
cycle. Note that ui,r has not been previously selected in a
(p, a, u, b, p)-cycle since φ(ui) is FALSE (and so only the
vertices ui,1, ui,2, . . . , ui,r(i) were covered earlier.)

Repeating this construction for each j, we produce 2k
(p, u, c, d, p)-cycles, covering the 4k vertices of C∪D. Note
that no u ∈ U can be chosen twice since each vertex in U
is adjacent to only one vertex in C. Thus, these 2k cycles
cover a set of 6k vertices in XS , completely disjoint from
the 9k vertices covered by the previously-constructed 3k
(p, a, u, b, p)-cycles. As a result, we are left with 3k vertices
in XS still to be covered, specifically k vertices in each of
U , E, and F . These vertices can be trivially partitioned into
k (p, u, e, f, p)-cycles by just ensuring that ei and fi belong
to the same cycle for each 1 ≤ i ≤ k. When this process
is complete, our p-rooted 4-cycle-cover of KS will contain
exactly 3k (p, a, u, b, p)-cycles, 2k (p, u, c, d, p)-cycles, and
k (p, u, e, f, p)-cycles.

We now prove (ii) → (i). Consider a p-rooted 4-cycle-
cover of KS containing exactly 3k (p, a, u, b, p)-cycles, 2k
(p, u, c, d, p)-cycles, and k (p, u, e, f, p)-cycles. We prove
there exists a function φ that is a satisfying truth assignment
for S, where φ(ui) ∈ {TRUE,FALSE} for each 1 ≤ i ≤ l.

Define an a-b path to be any path on three vertices whose
endpoints are ai,j and bi,k, for some indices i, j, k. Consider
the problem of maximizing the number of vertex-disjoint a-
b paths in the ith gadget. A maximum packing of a-b paths
occurs iff the r(i) paths are chosen by taking all paths of the
form ai,r, ui,r, bi,r for each 1 ≤ r ≤ r(i), or all paths of the
form ai,r+1, ui,r, bi,r for each 1 ≤ r ≤ r(i).

The former case corresponds to selecting our a-b paths
vertically; the latter, diagonally. These are the only two
ways to achieve a maximum packing. Thus, in our p-rooted
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4-cycle-cover containing 3k (p, a, u, b, p)-cycles, one of the
following scenarios must hold true in the ith gadget:

(1) For each r = 1, 2, . . . , r(i), vertex ui,r appears in some
(p, a, u, b, p)-cycle, while no vertex ui,r appears in any
(p, a, u, b, p)-cycle.

(2) For each r = 1, 2, . . . , r(i), vertex ui,r appears in some
(p, a, u, b, p)-cycle, while no vertex ui,r appears in any
(p, a, u, b, p)-cycle.

In our given p-rooted 4-cycle-cover of KS , for each i de-
fine φ(ui) = FALSE in scenario (1) and define φ(ui) =
TRUE in scenario (2). We claim that this is our desired func-
tion φ. To prove this, consider the 2k (p, u, c, d, p)-cycles in
our 4-cycle-cover. For each 1 ≤ j ≤ 2k, the (p, u, c, d, p)-
cycle containing cj also contains some other vertex in U .
This vertex is either ui,r or ui,r, for some indices i and r.

In the former case, ui,r and cj appear in the same
(p, u, c, d, p)-cycle, implying that ui,r-cj is an edge of the
gadget graph GS , and that ui is a literal in clause Cj . Since
ui,r appears in this (p, u, c, d, p)-cycle and therefore not
in any (p, a, u, b, p)-cycle, this implies scenario (2). Since
φ(ui) = TRUE and ui ∈ Cj , clause Cj evaluates to TRUE.

In the latter case, ui,r and cj appear in the same
(p, u, c, d, p)-cycle, implying that ui,r-cj is an edge of the
gadget graph GS , and that ui is a literal in clause Cj . Since
ui,r appears in this (p, u, c, d, p)-cycle and therefore not
in any (p, a, u, b, p)-cycle, this implies scenario (1). Since
φ(ui) = FALSE and ui ∈ Cj , clause Cj evaluates to TRUE.

Since Cj evaluates to TRUE for all 1 ≤ j ≤ 2k, this
implies that φ is a valid truth assignment. We conclude that
S = C1 ∧ C2 ∧ . . . ∧ C2k is satisfiable.

We illustrate Lemma 1 with an example. We can show
that the instance S, whose gadget graph was illustrated
in Figure 2, is not satisfiable. Therefore, there is no p-
rooted 4-cycle-cover of KS with 12 (p, a, u, b, p)-cycles, 8
(p, u, c, d, p)-cycles, and 4 (p, u, e, f, p)-cycles.

Lemma 2 The following statements are equivalent:

(i) A p-rooted 4-cycle-cover of KS has exactly 3k
(p, a, u, b, p)-cycles, 2k (p, u, c, d, p)-cycles, and k
(p, u, e, f, p)-cycles.

(ii) A p-rooted 4-cycle-cover of KS has total edge weight
k(24z2 + 3z).

Proof First, we prove (i) → (ii). In a (p, a, u, b, p)-
cycle, the edges au and ub appear in the gadget graph
GS . Therefore, the edge weights of au and ub are both
z2. From Table 2, a (p, a, u, b, p)-cycle has edge weight
z2 + z2 + z2 + z2 = 4z2. Similarly, a (p, u, c, d, p)-cycle
has edge weight (z2 + z) + z2 + z2 + z2 = 4z2 + z, and a
(p, u, e, f, p)-cycle has edge weight (z2+z)+z2+z2+z2 =
4z2 + z. So if a p-rooted 4-cycle-cover of KS has ex-
actly 3k (p, a, u, b, p)-cycles, 2k (p, u, c, d, p)-cycles, and
k (p, u, e, f, p)-cycles, then its total edge weight is exactly
3k(4z2) + 2k(4z2 + z) + k(4z2 + z) = k(24z2 + 3z).

We now prove (ii) → (i). Let R be a p-rooted 4-cycle-
cover of KS which is the union of r cycles, with total edge
weight k(24z2 + 3z). Since each of the 18k vertices of XS

is covered by exactly one cycle of R, the number of edges in

R is |XS |+ r = 18k + r. Since no cycle has length greater
than 4, we have r ≥ 18k

3 = 6k. Now suppose r ≥ 6k + 1.
Then there are at least 24k+1 edges in R, all of which have
weight at least z2 given the construction of our complete
graph KS . Hence, the total edge weight of R is at least
(24k + 1)z2 = 24kz2 + z2 = 24kz2 + z(20k + 1) >
24kz2 + 3zk = k(24z2 + 3z), a contradiction.

It follows that r = 6k, and that R must be the union of
6k cycles of length 4. Recall that the weight of each edge
appears in the set {z2, z2 + z, z2 + 2z, 2z2 − 1}. Suppose
that one of these 24k edges has weight 2z2 − 1. Then the
total edge weight of R is at least (24k− 1)z2+(2z2− 1) >
k(24z2 + 3z), a contradiction. Hence, all edges of R must
have weight z2, z2 + z, or z2 + 2z.

From Table 2, we see that no edges p-c and p-e can appear
in our 4-cycle-cover R, since all edges from p to C ∪ E
have weight 2z2 − 1. Thus, there must exist 2k 4-cycles
of the form p-?-ci-?-p and k 4-cycles of the form p-?-ei-?-
p, with each of these 2k + k = 3k 4-cycles containing a
unique element from C ∪ E. Each blank space (denoted by
a question mark) can only be filled with a vertex from D, F ,
or U , as the weights of edges ca, cb, ea, eb are all 2z2 − 1
for all a ∈ A, b ∈ B, c ∈ C, and e ∈ E.

Since edge p-u has weight z2 + z, if some vertex u ∈ U
is chosen to appear in one of these 3k 4-cycles, then this
adds edge weight z2 + z, producing a 4-cycle of weight at
least 4z2+ z. But if no vertices u ∈ U are chosen to replace
these blank spaces, then the cycles must be of the form p-dj-
ci-dk-p or p-fj-ei-fk-p, both of which lead to the addition
of at least one edge of weight 2z2 − 1 (since we cannot si-
multaneously have i = j, i = k, and j 	= k). It follows that
these 2k+k = 3k 4-cycles containing the vertices of C ∪E
must each have weight at least 4z2 + z, thus contributing at
least k(12z2 + 3z) to the total distance of R.

Since the given 4-cycle-cover R has weight k(24z2+3z),
this implies that the rest of the 3k 4-cycles must each have
weight exactly 4z2, and that in each of the 2k cycles of the
form p-?-ci-?-p and k cycles of the form p-?-ei-?-p, the total
edge weight must be exactly 4z2 + z to ensure that the total
edge weight of R does not exceed k(24z2 + 3z). This im-
plies that in these two scenarios, we cannot replace the two
blank spaces with two distinct vertices from U , as that would
create a cycle of weight 4z2+2z. It follows that R must have
2k (p, u, c, d, p)-cycles and k (p, u, e, f, p)-cycles.

We are now left with 3k vertices from each of A, B, and U
to form our remaining 3k 4-cycles. For the total edge weight
of R to not exceed k(24z2 + 3z) = 3k(4z2 + z) + 12kz2,
each of the remaining 12k edges must have weight z2. Since
edge p-u has weight z2 + z for all u ∈ U , the 3k remaining
vertices in U must each appear in a unique 4-cycle, none
adjacent to the root vertex p. Thus, the remaining 3k 4-
cycles of R must all be (p, a, u, b, p)-cycles.

Lemma 3 Let ILBy be the minimum total edge weight of a
y-rooted 4-cycle-cover of KS . Then

ILBy =

⎧⎨
⎩

k(24z2 + 3z) if y = p
k(24z2 + 20z) if y = q
k(24z2 + 19z) if y = r
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Proof From the proof of Lemma 2, we see that ILBp =
k(24z2 + 3z). The other two cases (y = q and y = r)
follow similarly, and so we omit the details.

Just as we defined special 4-cycles rooted at p (e.g.
(p, a, u, b, p)-cycles), we can similarly define 4-cycles
rooted at q and r. In the above lemma, the lower bound
ILBq occurs when the q-rooted 4-cycle-cover consists
of 3k (q, u, b, a, q)-cycles, 2k (q, c, d, u, q)-cycles, and k
(q, f, u, e, q)-cycles, with total edge weight 3k(4z2 +4z) +
2k(4z2 + 3z) + k(4z2 + 2z) = k(24z2 + 20z). The lower
bound ILBr occurs when the r-rooted 4-cycle-cover con-
sists of 3k (r, b, a, u, r)-cycles, 2k (r, d, u, c, r)-cycles, and
k (r, e, f, u, r)-cycles, with total edge weight 3k(4z2+4z)+
2k(4z2 + 2z) + k(4z2 + 3z) = k(24z2 + 19z).

Recall that LLBYS
is the league lower bound for the 18k

teams in YS = {p, q, r}. By Lemma 3, it follows that
LLBYS

≥ 6k(ILBp+ILBq+ILBr) = 6k2(24z2+3z)+
6k2(24z2 + 20z) + 6k2(24z2 + 19z) = 6k2(72z2 + 42z).

We now construct a uniform double round-robin bipartite
tournament so that this value of LLBYS

is achieved when-
ever S is satisfiable. In this schedule, each team in YS plays
three consecutive road games followed by three consecutive
home games and repeats that pattern until the end of the tour-
nament. Thus, each team has 6k three-game road trips.

Let φ be a satisfying truth assignment for S. By the
proof of Lemma 1, φ generates 3k (p, a, u, b, p)-cycles, 2k
(p, u, c, d, p)-cycles and k (p, u, e, f, p)-cycles. These 6k
cycles form a p-rooted 4-cycle-cover of KS with total edge
weight ILBp = k(24z2 + 3z).

We first schedule the 6k three-game road trips for each
team at p ∈ YS according to this minimum weight p-rooted
4-cycle-cover, ensuring that every team p plays a unique op-
ponent in each of the 18k time slots. For each 1 ≤ i ≤ 6k,
we use Table 3 below to generate the schedules for teams qi
and ri, based on the schedule of team pi.

Game 1 2 3 1 2 3 1 2 3
pi a∗ u∗ b∗ u∗ c∗ d∗ u∗ e∗ f∗
qi u∗ b∗ a∗ c∗ d∗ u∗ f∗ u∗ e∗
ri b∗ a∗ u∗ d∗ u∗ c∗ e∗ f∗ u∗

Table 3: Construction of road games for teams in YS .

For example, suppose that some team pi plays against
teams a∗ ∈ A, u∗ ∈ U , and b∗ ∈ B in slots 1, 2, and
3. Then team qi will play against u∗ in slot 1, b∗ in slot
2, and a∗ in slot 3. It is easy to see that this construction
generates one-half of a uniform schedule where each team
y ∈ YS = {p, q, r} has total travel distance ILBy , corre-
sponding to the minimum-weight y-rooted 4-cycle-cover.

We now determine the value of ILBt for each t ∈ XS =
A ∪ B ∪ C ∪ D ∪ E ∪ F ∪ U . Every team t ∈ XS plays
a road game against each of the 18k teams in YS , with 6k
teams located at points p, q, and r. Team t must make
at least 6k

3 = 2k trips to each of p, q, and r, since the
maximum length of a road trip is three games. Therefore,
ILBt ≥ 2k(Dt,p+Dt,q +Dt,r), where Dt,y is the distance
from t ∈ XS to y ∈ YS for all choices of t and y. Note that

equality can occur, specifically when the road trips of team
t are scheduled in the most efficient way, with each trip con-
sisting of three consecutive games against three teams lo-
cated at the same point.

From Table 2, ILBt = 2k(Dt,p + Dt,q + Dt,r) =
4k(4z2 + z − 1) for all t ∈ A ∪ B ∪ C ∪ E. Sim-
ilarly, ILBt = 4k(4z2 − 1) for all t ∈ D ∪ F , and
ILBt = 4k(3z2 + 5z) for all t ∈ U . Thus, LLBXS

≥
4k(4z2+z−1)(|A|+ |B|+ |C|+ |E|)+4k(4z2−1)(|D|+
|F |) + 4k(3z2 + 5z)(|U |) = k2(264z2 + 156z − 48).

Therefore, TLB ≥ LLBXS
+ LLBYS

≥ ∑
ILBt =

k2(264z2 + 156z − 48) + 6k2(72z2 + 42z) = k2(696z2 +
408z − 48) = 96k2(2900k2 + 375k + 11).

We can quickly construct the other half of our uniform
schedule, where the teams in XS play on the road, ensuring
that each team t ∈ XS has total travel distance ILBt. All
that is required when putting the schedules together is to en-
sure the no-repeat rule, which is a simple matter given all of
the flexibility we have in constructing this half of the tour-
nament schedule. Therefore, we have proven the following
lemma:

Lemma 4 If S is satisfiable, then there exists a uniform
schedule (i.e., a solution to BTTP and BTTP*) whose total
travel distance is

∑
ILBt = 96k2(2900k2 + 375k + 11).

Having provided all of the lemmas, we can now prove the
main theorem of this paper.

Theorem 1 BTTP and BTTP* are NP-complete.

Proof Let S be an instance of 3-SAT with 2k clauses, and
create sets XS and YS , with edge weights as described in our
construction. Consider an inter-league tournament between
the 18k teams at XS and the 18k teams at YS (with one-third
of the teams at each vertex of YS).

By Lemma 4, if S is satisfiable, then there exists a tourna-
ment with total distance at most 96k2(2900k2+375k+11).
Since this tournament is uniform, it is a feasible solution to
BTTP and BTTP*. We now prove the converse statement.

Let T (k) = 96k2(2900k2+375k+11). Consider an inter-
league tournament between these 36k teams with total travel
distance at most T (k). By Lemma 4, T (k) =

∑
ILBt.

Hence, every team t ∈ XS ∪ YS must travel the shortest
possible distance of ILBt to play all of their games. By
Lemma 3, this implies that every team located at p ∈ YS

must travel a distance of ILBp = k(24z2 + 3z).
By Lemma 2, if each team p ∈ YS travels a distance of

k(24z2+3z), then the graph KS contains a p-rooted 4-cycle-
cover with exactly 3k (p, a, u, b, p)-cycles, 2k (p, u, c, d, p)-
cycles, and k (p, u, e, f, p)-cycles. And by Lemma 1, this
occurs iff S is satisfiable.

Therefore, we have constructed a uniform inter-league
tournament KS on 36k teams with distance matrix DS for
which the solutions to BTTP and BTTP* have total distance
≤ T (k) iff the instance S with 2k clauses is satisfiable. This
establishes the desired reduction from 3-SAT, proving the
NP-hardness of BTTP and BTTP*. Finally, we note that both
problems are clearly in NP, since the distance traveled by the
teams can be calculated in polynomial time. Therefore, we
conclude that BTTP and BTTP* are NP-complete.
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Application 1: Japanese Baseball (n = 6)

Nippon Professional Baseball (NPB) is Japan’s largest pro-
fessional sports league. In the NPB, the teams are split
into two leagues (i.e., conferences) of six teams, with each
team playing 120 intra-league and 24 inter-league games
in the regular season. The intra-league problem was ana-
lyzed recently (Hoshino and Kawarabayashi 2011b), where
the authors developed a multi-round generalization of the
TTP based on Dijkstra’s shortest path algorithm and applied
it to produce a distance-optimal schedule reducing the total
travel distance by over 60000 kilometres (a 25% reduction)
as compared to the 2010 NPB intra-league schedule.

We consider the inter-league problem, where the six
teams in the NPB Pacific League ({pi : 1 ≤ i ≤ 6}) each
play four games against all six teams in the NPB Central
League ({ci : 1 ≤ i ≤ 6}), with one two-game set played
at the home of the Pacific League team, and the other two-
game set played at the home of the Central League team. All
inter-league games take place during a five-week stretch be-
tween mid-May and mid-June, with no intra-league games
occurring during that period. Thus, the NPB inter-league
scheduling problem is precisely BTTP, for the case n = 6.

We determine the 12 × 12 distance matrix, repre-
senting the distances between each pair of teams from
{p1, . . . , p6, c1, . . . , c6}. The locations of each team’s home
stadium is marked in Figure 4. For the actual distance
matrix, we refer the reader to our journal paper (Hoshino
and Kawarabayashi 2011c). In the 2010 NPB inter-league
schedule, the teams traveled a total of 51134 kilometres.

Figure 4: Location of the 12 teams in the NPB.

First, we determine ILBpi
and ILBci for each team in

the two leagues. By the Triangle Inequality, if some team t
plays a single road set sandwiched between two home sets
(e.g. HH-RR-HH-R-HH-RRR), then the time slots can be
re-ordered to reduce the total travel distance. Hence, the
value of ILBt occurs when team t plays its six road sets in
two blocks of three (e.g. HHH-RRR-HHH-RRR) or three
blocks of two (e.g. HH-RR-HH-RR-H-RR-H).

For each of these two scenarios, we consider all 6! = 720
ways of permuting the six road games, from which we can
determine all possible distances that can be traveled by that
team for the given home-road pattern. We check all 2 ×
720 cases and the minimum distance corresponds to ILBt.
We find that in all twelve cases, the value of ILBt occurs

when team t plays its six road sets in two blocks of three,
i.e., the minimum-weight t-rooted 4-cycle-cover consists of
just two cycles. We determine that

∑
ILBt =

∑
ILBpi

+∑
ILBci = 16686 + 26077 = 42763.
Therefore, the optimal solution to BTTP for the NPB dis-

tance matrix is a tournament requiring at least 42763 kilo-
metres of total team travel. In Table 4 below, we present a
feasible solution with total distance 42950 kilometres.

1 2 3 4 5 6 7 8 9 10 11 12
p1 c3 c5 c1 c3 c2 c1 c6 c2 c4 c5 c6 c4
p2 c5 c3 c2 c1 c3 c6 c1 c4 c5 c6 c4 c2
p3 c4 c2 c6 c5 c4 c3 c5 c1 c3 c2 c1 c6
p4 c2 c4 c5 c4 c6 c5 c3 c6 c1 c3 c2 c1
p5 c1 c6 c4 c6 c5 c2 c4 c3 c2 c1 c5 c3
p6 c6 c1 c3 c2 c1 c4 c2 c5 c6 c4 c3 c5
c1 p5 p6 p1 p2 p6 p1 p2 p3 p4 p5 p3 p4

c2 p4 p3 p2 p6 p1 p5 p6 p1 p5 p3 p4 p2
c3 p1 p2 p6 p1 p2 p3 p4 p5 p3 p4 p6 p5
c4 p3 p4 p5 p4 p3 p6 p5 p2 p1 p6 p2 p1
c5 p2 p1 p4 p3 p5 p4 p3 p6 p2 p1 p5 p6
c6 p6 p5 p3 p5 p4 p2 p1 p4 p6 p2 p1 p3

Table 4: Solution to BTTP with total distance 42950 km.

We claim that this solution is optimal. Let M = 42950−
42763 = 187, and let Φ be a distance-optimal solution to
BTTP. For each team t, let S∗t be the set of team schedules
whose total distance is at most ILBt+M . Note that team t’s
schedule must appear in S∗t as otherwise the total distance
traveled would exceed

∑
ILBt +M = 42950.

As teams p5 and p6 are located quite far away from the
other ten teams (see Figure 4), we find that S∗p5

and S∗p6
only

consist of schedules where the six road sets are played in two
blocks of three. Furthermore, each Central League team cj
must play their road sets against p5 and p6 in two consecu-
tive time slots, as otherwise that team would travel a distance
exceeding ILBcj + M , contradicting the optimality of Φ.
Based on these two observations, a simple lemma (Hoshino
and Kawarabayashi 2011a) shows that the team schedules
for p5 and p6 must have the pattern HH-RRR-HH-RRR-
HH, with the six home sets having the following structure
for some permutation (a, b, c, d, e, f) of {1, 2, 3, 4, 5, 6}:

1 2 3 4 5 6 7 8 9 10 11 12
p5 ca cb c c c cc cd c c c ce cf
p6 cb ca c c c cd cc c c c cf ce

The forced structure of p5 and p6 significantly reduces the
search space. We include this constraint in a simple Maple-
soft program that generates all possible bipartite tourna-
ments satisfying the conditions of BTTP, where the schedule
of each team t appears in S∗t (Hoshino and Kawarabayashi
2011a). Using a Toshiba laptop under Windows with a sin-
gle 2.10 GHz processor and 2.75 GB RAM, we find 28 opti-
mal solutions in 34716 seconds (just under 10 hours). Each
optimal solution (e.g. Table 4) has feasible value 42950, rep-
resenting a reduction of 8184 kilometres, or 16%, compared
to the actual distance traveled by the teams in the 2010 NPB
season. Thus, we have solved BTTP for the NPB.

Our algorithm requires 10 hours of processing time. We
conjecture that a much faster solution could be generated
using a IP, CP, or some hybrid combination of the two.
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Application 2: American Basketball (n = 15)

The National Basketball Association (NBA) is one of the
world’s most lucrative sports leagues, with over four billion
dollars in annual revenue, and an average franchise value
of $400 million dollars. There are 15 teams in the Western
Conference and 15 teams in the Eastern Conference. Ev-
ery NBA team plays 82 regular-season games, of which 30
are inter-league (with one home game and one away game
against each of the 15 teams from the other conference.)

Given that NBA teams play inter-league games, we con-
sider BTTP for this league, where we attempt to find a
distance-optimal inter-league tournament. In this theoreti-
cal problem, we will assume that all inter-league games take
place during a consecutive stretch in the regular season, as is
done currently in the Japanese NPB. We will also enforce all
the constraints of BTTP, including no team having a home
stand or road trip lasting more than 3 games. We note that
these strict conditions are not part of the NBA scheduling
requirement, as evidenced by the San Antonio Spurs play-
ing 6 consecutive home games followed immediately by 8
consecutive road games during the 2009-10 regular season.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PT MB IP CU MB CB CC AH OM MH CU AH NK WW CB PS
GW TR CC DP CC MB CB MB IP CU NK CU AH MH OM AH
SK NK NN BC CB CC MB TR CC DP AH NK CU MB IP CU
LC IP CU MB NN MH TR OM MH AH CC CB MB CB PS WW
LL WW CB PS TR NN MH NK NN BC MB CC CB TR CC DP
PS BC NK NN MH TR NN CC DP TR CB MB CC IP CU MB
UJ OM MH AH DP PS OM PS WW CB TR NN MH BC NK NN
DN CC DP TR OM DP PS IP CU MB MH TR NN OM AH MH
OT AH OM MH IP WW BC WW CB PS DP OM PS NK NN BC
SS CU MB IP BC IP WW MH AH OM PS DP OM PS WW CB
DM DP TR CC WW BC IP CU MB IP OM PS DP AH MH OM
HR PS WW CB AH NK CU BC NK NN WW BC IP DP TR CC
MT CB PS WW PS OM DP NN BC NK NN MH TR CC DP TR
MG NN BC NK CU AH NK DP TR CC IP WW BC CU MB IP
NH MH AH OM NK CU AH CB PS WW BC IP WW NN BC NK

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
PT BC IP WW NK NN BC DP OM PS TR CC DP TR MH NN
GW WW BC IP PS WW CO PS DP OM NN NK BC NN TR MH
SK IP WW BC AH OM MH OM PS DP WW CO PS MH NN TR
LC NK AH CU NN BC NK IP WW BC DP TR CC DP OM PS
LL CU NK AH MB CU IP BC IP WW OM MH AH PS DP OM
PS AH CU NK MH AH OM WW BC IP PS WW CO OM PS DP
UJ MB CC CO CC DP TR CU NK AH CU IP MB BC WW IP
DN CO MB CC CO PS WW AH CU NK BC NN NK IP BC WW
OT TR MH NN DP TR CC MB CO CC MB CU IP CU AH NK
SS NN TR MH BC NK NN CC MB CO CC DP TR NK CU AH
DM MH NN TR WW CO PS CO CC MB NK BC NN AH NK CU
HR OM PS DP IP MB CU MH NN TR AH OM MH CO CC MB
MT CC CO MB CU IP MB NK AH CU MH AH OM WW IP BC
MG DP OM PS OM MH AH TR MH NN CO PS WW MB CO CC
NH PS DP OM TR CC DP NN TR MH IP MB CU CC MB CO

Table 5: A feasible solution for the NBA inter-league problem.

We determine the 30 × 30 NBA distance matrix from an
online website1 that lists the flight distance (in statute miles)
between each pair of major cities in North America. From
this, we calculate ILBt for each team t, giving LLBW ≥∑

t∈W ILBt = 251795, LLBE ≥ ∑
t∈E ILBt = 266137,

and TLB ≥ LLBW + LLBE ≥ 517932.
Unlike the 12-team NPB where we could solve BTTP, it

appears highly unlikely that we can solve this problem for
the 30-team NBA. Nonetheless, we can generate a uniform
inter-league tournament (i.e., a solution to BTTP*) whose
total distance is close to the trivial lower bound of

∑
ILBt,

1http://www.savvy-discounts.com/discount-travel/JavaAirportCalc.html

by determining for each team t the set of t-rooted 4-cycle-
covers containing exactly 5 cycles whose weights are close
to ILBt. Table 5 presents a uniform tournament schedule
found by grouping the fifteen teams in each conference into
five groups of three, and matching triplets from opposing
leagues. This tournament has total distance 537791, which
is just 3.8% more than the trivial lower bound of

∑
ILBt.

Our journal paper (Hoshino and Kawarabayashi 2011c)
explains all the details, as well as providing the 30 × 30
distance matrix and the labeling of all 30 teams (e.g. PT =
Portland Trailblazers, MB = Milwaukee Bucks, etc.)

While we are certain that the trivial lower bound of∑
ILBt cannot be achieved for either the BTTP or BTTP*,

we conjecture that the 3.8% figure can be reduced using
more sophisticated techniques. But how close can we get?
We leave this as a challenge for the interested reader.
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