
On Improving Conformant Planners
by Analyzing Domain-Structures∗

Khoi Nguyen, Vien Tran, Tran Cao Son, and Enrico Pontelli
Computer Science Department
New Mexico State University

MSC CS, PO Box 30001
Las Cruces, NM 88003, USA

knguyen—vtran—tson—epontell@cs.nmsu.edu

Abstract

The paper introduces a novel technique for improving the per-
formance and scalability of best-first progression-based con-
formant planners. The technique is inspired by different well-
known techniques from classical planning, such as landmark
and stratification. Its most salient feature is that it is relatively
cheap to implement yet quite effective when applicable. The
effectiveness of the proposed technique is demonstrated by
the development of new conformant planners by integrating
the technique in various state-of-the-art conformant planners
and an extensive experimental evaluation of the new planners
using benchmarks collected from various sources. The re-
sult shows that the technique can be applied in several bench-
marks and helps improve both performance and scalability of
conformant planners.

Introduction
The concept of ordered landmarks, introduced in (Hoff-
mann, Porteous, and Sebastia 2004), has played an impor-
tant role in the development of various state-of-the-art plan-
ning systems. It has been extensively studied, and variants
and heuristics based on it have been proposed (e.g., action
landmarks (Zhu and Givan 2004; Vidal and Geffner 2006)).
To the best of our knowledge, these extensions and varia-
tions have been considered mainly in the context of clas-
sical planning, focusing on the generation of good heuris-
tics in different settings, such as satisfycing and/or opti-
mal planning (e.g., (Hoffmann, Porteous, and Sebastia 2004;
Karpas and Domshlak 2009; Richter and Westphal 2010)).

In this paper, we investigate the idea of using landmarks
in conformant planning (Smith and Weld 1998), specifically,
to address the problem of dealing with the high degree of
uncertainty in conformant planning. In PDDL, uncertainty
is often specified by one-of-clauses or or-clauses. The size
of the initial belief state of a conformant planning problem
depends directly on the number and size of these clauses in
the initial state specification, and it is often exponential in
the number of objects in the problem instances; e.g., one of
the hardest instances in the IPC 2008, coins-30, has 25
one-of-clauses which generate 1025 possible initial states.

Dealing effectively with the potentially huge size of the
initial belief state is one of the main challenges for the scal-

∗Partially supported by the NSF grant IIS-0812267
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ability of conformant planners. A variety of techniques have
been developed to address this issue. Different representa-
tions of belief states are used in (Brafman and Hoffmann
2004; To, Pontelli, and Son 2009; To, Son, and Pontelli
2010). Several heuristics are developed in (Bryce, Kamb-
hampati, and Smith 2006). (Tran et al. 2009) proposes the
one-of-combination technique to reduce the size of the ini-
tial belief state, effective in various problems. While it is
useful for planners employing an explicit disjunctive repre-
sentation of belief states, as in CPA (Tran et al. 2009) and
DNF (To, Pontelli, and Son 2009), a significant amount of
work is required to apply this technique to other planners,
due to the different representations they use. Likewise, the
one-of-relaxation technique in (To, Son, and Pontelli 2010)
is useful in CNF but is difficult to use in other planners.

Our motivation in this work comes from these observa-
tions and the fact that classical planners can be used for dif-
ferent purposes in non-classical planning, as in the trans-
lation approach for conformant planning in (Palacios and
Geffner 2009) and the replanning approach in probabilistic
planning (Yoon, Fern, and Givan 2007). Our goal is to ap-
ply techniques which are useful in classical planning (e.g.,
landmarks and stratification), and utilize classical planners
in conformant planning. To achieve this, we propose the no-
tion of viable landmarks and discuss the complexity of the
problem of computing them. To address the computational
challenge of the problem, we propose to approximate viable
landmarks and develop an algorithm for computing these ap-
proximations. To test the effectiveness of the new technique,
we integrate it in different planners and compare them with
state-of-the-art planners. The results show that the new tech-
nique is useful in several problems and improves the perfor-
mance and scalability of other planners.

Background: Conformant Planning Problem

A conformant planning problem P is specified by a tuple
〈F,O, I,G〉, where F is a set of propositions, O a set of
action descriptions, I a set of formulae describing the ini-
tial state of the world, and G a formula describing the goal.
(F,O) are referred to as a planning domain.

A literal is a proposition p ∈ F or its negation ¬p. �̄
denotes the complement of the literal �, and it is defined as
�̄ = ¬�, where ¬¬p = p for p ∈ F . For a set of literals L,
L = {�̄ | � ∈ L}, and L is often used to represent ∧�∈L�.

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

998

A set of literals X is consistent if there exists no p ∈
F such that {p,¬p} ⊆ X . A state s is a consistent and
complete set of literals, i.e., s is consistent, and for each
p ∈ F , either p ∈ s or ¬p ∈ s. A belief state is a set of
states. A set of literals X satisfies a literal �, denoted by
X |= �, (resp. a set of literals Y) iff � ∈ X (resp. Y ⊆ X).
For a belief state S, S |= � iff u |= � for every u ∈ S.

Each action a in O is associated with a precondition, de-
noted by pre(a), and a set of conditional effects of the form
ψ → � (denoted by a : ψ→�), where pre(a) and ψ are sets
of literals and � is a literal. We write a : ψ → �1, . . . , �k to
denote {a : ψ → �1, . . . , a : ψ → �k}.

The initial state I is a set of literals, one-of clauses (each
of the form one-of(ψ1, . . . , ψn)), and or clauses (each of
the form or(ψ1, . . . , ψm)), where each ψi is a set of literals.

A set of literals X satisfies the one-of clause
one-of(ψ1, . . . , ψn) if there exists some i, 1 ≤ i ≤ n, such
that ψi ⊆ X and for every j
= i, 1 ≤ j ≤ n, ψj∩X
= ∅. X
satisfies the or clause or(ψ1, . . . , ψm) if there exists some
1 ≤ i ≤ m such that ψi ⊆ X .

By ext(I) we denote the set of all states satisfying every
literal in I , every one-of clause in I , and every or clause
in I . E.g., if F={g, f, h} and I={or(g, h), one-of(f, h)}
then ext(I) = {{g, h,¬f}, {g,¬h, f}, {¬g, h,¬f}}.

A goal G is a collection of literals and or clauses.
Given a state s and an action a, a is executable in s if

pre(a) ⊆ s. A conditional effect a : ψ → l is applicable in
s if ψ ⊆ s. The set of effects of a in s, denoted by ea(s), is
defined as: ea(s) = {l | a : ψ → l ∈ O is applicable in s}.
The execution of a in a state s results in a successor state
succ(a, s), where succ(a, s) = (s ∪ ea(s)) \ ea(s) if a is
executable in s, and succ(a, s) = failed, otherwise. Us-
ing this function, we define ŝucc for computing the state
resulting from the execution of a sequence of actions α =
[a1, . . . , an]: ŝucc(α, s) = s if n = 0; and ŝucc(α, s) =
succ(an, ŝucc(β, s)) if n > 0, where β = [a1, . . . , an−1]

and ŝucc(γ, failed)
def
= failed for any sequence of ac-

tions γ. For a belief state S and action sequence α, let
ŝucc

∗
(α, S) = {ŝucc(α, s) | s ∈ S} if ŝucc(α, s)
=

failed for every s ∈ S; and ŝucc
∗
(α, S) = failed, other-

wise. α is a solution of P iff ŝucc∗(α, ext(I))
= failed and
G is satisfied in every state belonging to ŝucc

∗
(α, ext(I)).

Viable Landmarks in Conformant Planning

In this section, we define the notion of a viable landmark for
conformant planning problems. By definition, the search for
a conformant plan is done in the space of belief states. A
straightforward generalization of a landmark to conformant
planning would be a literal which is true in one of the belief
states generated during the execution of any solution from
the initial belief state. This is quite restrictive though.

Example 1. Consider P = 〈{f, g, h}, O, I, {h}〉 where
I = {one-of(f, g), one-of(h,¬h)} and O contains
a : f,¬g→¬f,¬g; a : ¬f, g → f, g; b : ¬f,¬g → h;
b : f, g → h; c : f → ¬f ; and c : g → ¬g. Furthermore,
pre(a) = pre(b) = pre(c) = �.

It is easy to see that [a, b] is a solution of P . Yet, there ex-
ists no literal � different from h that is true during the execu-

tion of [a, b]. In other words, this problem has only a trivial
landmark, h, according to the proposed generalization.

It is easy to see that [c, b] is another solution of P in Ex-
ample 1 and for every state s ∈ succ∗(c, ext(I)), ¬f ∈ s,
and ¬g ∈ s. In other words, the uncertainty with re-
gards to the clause one-of(f, g) has been removed from
succ∗(c, ext(I)). Moreover, succ∗(c, ext(I)) has fewer el-
ements than succ∗(a, ext(I)). This means that for confor-
mant planners employing the cardinality heuristic, the solu-
tion [c, b] is likely to be returned as the first solution of P .
This motivates us to define the notion of a viable landmark
for a conformant problem as a belief state which (i) can eas-
ily be reached or predicted; and (ii) from which there is a
sequence of actions that reaches the goal. In the above ex-
ample, succ∗(c, ext(I)) would be a viable landmark, which
can be reached by the sequence [c] and from which there
is the sequence [b] that reaches the goal. For simplicity of
the presentation, we will focus on reducing the uncertainty
caused by the one-of clauses in this paper—the results can
be easily extended to the or-clauses.
Definition 1. Let S be a belief state, Ω be a belief state, and
o be an one-of clause. We say that S is a convergent point of
Ω for o, denoted by Ω � S[o], if for every literal � appearing
in o, S |= � or S |= �, and for every state s ∈ Ω, there exists
an action sequence αs such that ŝucc(αs, s) ∈ S.

In Example 1, succ∗(c, ext(I)) is a convergent point of
ext(I) for one-of(f, g). A convergent point is only useful
for the search of a solution if there exists a action sequence
α that leads to this point from all possible initial states. We
therefore define the notion of an abstract point as follows.
Definition 2. Let S be a belief state, Ω be a belief state, α
be an action sequence, and o be an one-of clause. We say
that S is an abstract point of Ω for o w.r.t. α, denoted by
Ω

α
� S[o], if Ω � S[o] and ŝucc

∗
(α,Ω) ⊆ S. We call α an

abstract path for o from Ω to S. S is an abstract point of Ω
for o if there exists an action sequence α such that Ω α

� S[o].

We have that ext(I)
[c]
�succ∗(c, ext(I))[one-of(f, g)] for

Example 1. The following proposition holds.
Proposition 1. Let S be a belief state, Ω be a belief state,
α be an action sequence, and o be an one-of clause. Then,
Ω

α
� S[o] implies Ω α

� ŝucc
∗
(α,Ω)[o].

We will often say that α is an abstract path for a planning
problem P = 〈F,O, I,G〉 if there exists an one-of-clause
o in I such that ext(I) α

� ŝucc
∗
(α, ext(I))[o].

Definition 3. Let P = 〈F,O, I,G〉 be a conformant plan-
ning problem. A belief state S is called a viable landmark of
P if S is an abstract point of ext(I) for some one-of clause
in I and the problem P ′ = 〈F,O, S,G〉 has a solution.

This achieves our objective of having succ∗(c, ext(I)) as
a viable landmark of P for Example 1. The next proposition
follows from the definition of a viable landmark.
Proposition 2. Let P = 〈F,O, I,G〉 be a conformant plan-
ning problem and S be a viable landmark of P . Then, there
exists an action sequence α such that for every solution β of
the problem P ′ = 〈F,O, S,G〉, α ◦ β is a solution of P .

999

β in Prop. 2 is referred to as a goal path w.r.t. S.
Prop. 2 indicates that we could solve a conformant plan-
ning problem P = 〈F,O, I,G〉 by (i) finding a viable
landmark S of P ; and (ii) solving the problem P ′ =
〈F,O, S,G〉. Prop. 1 implies that instead of S, we can
find an action sequence α and solve the problem P ′′ =
〈F,O, ŝucc

∗
(α, ext(I)), G〉. By definition of a viable land-

mark, we know that there exists an one-of clauses o in I
such that every literal � in o is known to be either true or
false in S (or in ŝucc

∗
(α, ext(I))). It means that the uncer-

tainty in o has been removed. In general, there is no guaran-
tee that the search for a solution from the new belief state S
(or ŝucc∗(α, ext(I))) will be easier than the search from the
initial belief state ext(I). However, if α only changes the
value of literals in o, then P ′′ is closer to a classical plan-
ning problem than P , and thus it could be easier than P ,
since classical planning has a lower complexity than confor-
mant planning (Baral, Kreinovich, and Trejo 2000).

An obstacle in applying the above idea is that finding a
viable landmark of P is not a simple task. Let RLand-
mark be the problem of determining if a belief state S is
a viable landmark of a conformant planning problem P =
〈F,O, I,G〉. Since determining if S is a viable landmark
requires checking for a plan from S to G, the complexity of
RLandmark is at least as hard as the conformant planning
problem (i.e., ΣP

2 (Baral, Kreinovich, and Trejo 2000)).
The above complexity result shows that attempting to find

an arbitrary viable landmark and using it in the search for a
solution is likely not a good idea. This result is also in-line
with the complexity of the LANDMARK problem (Hoff-
mann, Porteous, and Sebastia 2004). However, Prop. 1 im-
plies that a viable landmark is associated with an abstract
point and an action sequence (an abstract path). So, we can
approximate a viable landmark by an abstract point.

Approximating Abstract Points

Let us explore ways to quickly identify possible viable land-
marks. We assume that we are confronted with a problem
that has goal G from a belief state Ω that satisfies o. To
motivate this process, let us look at the following example.

Example 2. Let us consider an instance of the cube prob-
lem encoded by P = 〈{1, 2, 3}, O, {one-of(1, 2, 3)}, {2}〉
where O contains l : i → i − 1,¬i for i = 2, 3 and
r : i → i + 1,¬i for i = 1, 2; and pre(l) = pre(r) = �. i
indicates the location, and l and r stand for left and right.
The initial belief state Ω = ext(I) consists of 3 states,
s1 = {1,¬2,¬3}, s2 = {¬1, 2,¬3}, and s3 = {¬1,¬2, 3}.

We can check that each {si} is an abstract point of Ω for
one-of(1, 2, 3). Consider {s3}. We observe that for α1 =
[r, r] α2 = [r], and α3 = [], it holds that ŝucc(αi, si) =
s3. Furthermore, for α = α1 ◦ α2 ◦ α3, we also have that
ŝucc(α, si) = s3. It is easy to see that {s3} (resp. {s1}) is a
viable landmark of P as there exists the goal path [l] (resp.
[r]) from {s3} (resp. {s1}) to the goal.

The example shows that an abstract point of a belief state
of Ω for an one-of clause o may be one of the states in Ω.

Definition 4. Let Ω = {s1, . . . , sn} be a belief state and o
an one-of clause. We say that o is closed-convergent in Ω

if there exists an si ∈ Ω and an action sequence α such that
ŝucc(α, sj) = si for every j such that 1 ≤ j ≤ n.

We can check that one-of(1, 2, 3) (Example 3) is closed-
convergent in ext(I). It is interesting to point out that if
o is closed-convergent in Ω then the uncertainty caused by
o could be completely removed after the execution of the
abstract path α. This is certainly the ideal case. The next
example shows that, sometimes, the convergent point lies
outside of the belief state itself.

Example 3. Let us consider a variant
of the cube problem encoded by P =
〈{1, 2, 3, 4}, O, {one-of(1, 2),¬3,¬4}, {4}〉 where O
contains a : 1 → 3,¬1; b : 2 → 3,¬2; c : 3 → 4, and
pre(a) = pre(b) = pref(c) = �.

The initial belief state Ω = ext(I) consists of two states,
s1 = {1,¬2,¬3,¬4} and s2 = {¬1, 2,¬3,¬4}.

Let s3 = {¬1,¬2, 3,¬4}. It is easy to check that {s3} is
an abstract point of Ω for one-of(1, 2). We observe that for
α1 = [a] α2 = [b], it holds that ŝucc(αi, si) = s3 and, for
α = α1 ◦ α2, we also have that ŝucc(α, si) = s3.

It is easy to see that {s3} is a viable landmark of P as
there exists the goal path [c] from {s3} to the goal.

The above example leads to the following definition that
generalizes the notion of closed-convergent.

Definition 5. Let Ω = {s1, . . . , sn} be a belief state and o
be an one-of clause. We say that o is open-convergent in Ω
if there exist a belief state S and an action sequence α such
that ŝucc(α, si) ∈ S for every j such that 1 ≤ j ≤ n.

Clearly, if o is open-convergent in Ω then we know that
there exists some S and α such that Ω α

� S[o].
In the rest of this section, we will develop a greedy algo-

rithm for identifying possible abstract points of a planning
problem. Before we discuss the idea in details, let us in-
troduce the following notation. Let o = (l1, . . . , ln) be an
one-of clause. A set of literals δ is an interpretation of o
if (i) for every literal l ∈ δ, l ∈ lit(o) ∪ lit(o); and (ii) for
each i, {li, li} ∩ δ
= ∅ and {li, li} \ δ
= ∅. For a state
s, let s|o = s ∩ (lit(o) ∪ lit(o)). For a belief state Ω, let
Ω|o = {s|o | s ∈ Ω}.

Proposition 3. Let Ω be a belief state, o be an one-of
clause, and δ be an interpretation of o. If α is a plan achiev-
ing δ from Ω, then Ω

α
� ŝucc

∗
(α,Ω)[o].

Although simple, the above proposition shows that an ab-
stract point can be characterized by an interpretation of the
one-of clause in consideration. I.e., if the intention is to
reduce the uncertainty caused by an one-of clause o in the
belief state Ω, then it is reasonable to focus on the set of
interpretations of o that could be reached from Ω, i.e., on
Ω|o and the interpretations reachable from Ω|o. Thus, we
can reduce the original domain to a domain related to o and
analyze this domain to look for an abstract point.

Given a planning domain (F,O), the reduced domain of
(F,O) by the abstraction of o, denoted by Ab(F,O, o), is
the planning domain (F ′, O′) obtained from (F,O) where
• a:φ|o→ψ|o∈O′ iff a:φ→ψ∈O and pre(a)∪φ satisfies o;
• for each a in O′, pre(a) is changed to pre(a)|o;

1000

• F ′ contains l iff l ∈ F and l or ¬l occurs in some condi-
tional effect in O′.

Let Ab(F,O, o) be the reduced domain of (F,O) by the ab-
straction of o. The transition graph of Ab(F,O, o), denoted
by G(o), is defined as a labeled graph (V,E) where each
δ ∈ V is an interpretation of o and (δ, a, δ′) ∈ E iff there
exits a in Ab(F,O, o) such that succ(a, δ) satisfies δ′. The
reduced graph of a belief state Ω, denoted by G(Ω, o), is
obtained by removing from G(o) every node δ that is not
reachable from a node in Ω|o and the edges coming in or
out from these nodes. Fig. 1 shows the transition graph of
Ab(F,O, o) for Exp. 2-3. The label in a node specifies what
is true in the interpretation. Labeled links between nodes
represent actions. The dotted oval contains the interpreta-
tions satisfying the one-of clause.

1 2

3

l

r

l
r

1 2
a b

Figure 1: Transition Graph for Reduced Domain

Observe that Defs 4-5 imply that an interpretation δ of o
that is reachable by every other interpretations in Ω|o is a
candidate for being an abstract point. So, computing a can-
didate convergent point of Ω|o can be done by (i) creating
G(Ω, o); and (ii) searching for a node that is reachable from
every interpretation satisfying o. As seen in Figure 1 (left),
there could be several candidates. Furthermore, checking
reachability between the nodes is, theoretically, a computa-
tionally expensive task since the G(Ω, o) might have a num-
ber of nodes exponential in the size of the one-of clause.

To this end, we develop a greedy method for predicting of
an abstract point as follows. For an one-of clause o and a
belief state Ω, we say that o is probably closed-convergent
in Ω if for every action a in Ab(F,O, o), a maintains o, i.e..,
for every interpretation δ satisfies o, succ(a, δ) satisfies o.
Otherwise, o is probably open-convergent in Ω. We then
identify an interpretation δ in G(Ω, o) as follows.
• o is probably closed-convergent: selects δ which satisfies

o and has the minimal number of outgoing links; and
• o is probably open-convergent: selects δ which does not

satisfy o and has the maximal number of incoming links.
The rationale for the above prediction is as follows. If o is
probably closed-convergent (Fig. 1, left) then the node with
lowest number of outgoing edges in G(Ω, o) is likely the
most difficult node to reach the goal. Since a conformant
plan is required to achieve the goal from any node, it is rea-
sonable to make the plan going through this node. If o is
probably open-convergent (Fig. 1, right) then the node with
highest number of incoming edges in G(Ω, o) that does not
satisfy o is likely the door to the goal of the problem. This
is summarized in the following algorithm.

It is easy to see that the complexity of the above algo-
rithm depends on the construction of (i) Ab(F,O, o); and
(ii) G(Ω, o). The first item can be done in linear time in the
size of the domain (in term of the size of |O| + |F |). The
second item can be done in O(|o| × (|O| + |F |)) because

Algorithm 1 Predict Abstract Point(o,Ω, P)

1: Input: P=〈F,O, I,G〉–conformant planning problem
Ω–a belief state
o–an one-of-clause in P

2: Output: A possible abstract point of Ω for o
3: Compute (F ′, O′)=Ab(F,O, o) and G(Ω, o)=(V,E)
4: if G(Ω, o) contains only nodes satisfying o then
5: return δ with lowest number of outgoing edges
6: else
7: return δ with highest number of incoming edges
8: end if
9: return Unknown

we only need to scan through the set of interpretations satis-
fying o and create additional nodes, i.e., Alg. 1 is relatively
efficient to implement. Before we discuss how this can be
used in a planner, we will turn out attention to the case of
multiple one-of clauses in a planning problem.

Stratification Between one-of-Clauses
A conformant problem P = 〈F,O, I,G〉 usually has sev-
eral one-of clauses, say o1, . . . , on, which may interact with
each other. Assume that Algo. 1 can be used to identify pos-
sible abstract points δ1, . . . , δn of these clauses. If we were
to use these possible abstract points as intermediate goals in
solving the problem, the interaction among o1, . . . , on might
dictate an order among these points, in the same way as a
reasonable order among landmarks affects the search for a
solution in a classical planner (see, e.g., (Tran et al. 2009)).

To address the above problem, we introduce the notion
of a stratification between one-of clauses. This notion is
inspired by the notion of stratification in classical planning
(Chen and Yao 2009). To this end, we define the notion of
dependency between one-of-clauses as follows.
Definition 6. Let o1 and o2 be two different one-of clauses
in a conformant problem P . We say o1 depends on o2, de-
noted by o1≺o2, if there exists action a and an effect a : φ→l

in O such that pre(a) satisfies o1 and l∈lit(o2) ∪ lit(o2).
The notions of a level-mapping and a stratification of a set

of one-of clauses are defined next.
Definition 7. Let P be a planning problem. A level-mapping
function of P is a mapping lv from the set of one-of clauses
in P into the set of non-negative integers.

A level-mapping lv is a stratification of the one-of clauses
in P if lv satisfies the following properties:
• lv(o)=0 if o does not depend on any one-of clause;
• lv(o) > max{lv(o′) | o depends on o′}.

A stratification of the one-of clauses in P can be com-
puted by (i) creating a graph whose nodes are the one-of
clauses in P and whose links encode the dependencies be-
tween them; and (ii) using a labeling algorithm to assign the
level to the nodes. This can be done in linear time in the size
of the domain and the number of one-of clauses in P .

Experimental Evaluation
Let us describe how the proposed technique can be used
in improving state-of-the-art planners. Let Pcl and Pcf

1001

denote a classical and a conformant planner, respectively.
CPLS(Pcl, Pcf) denotes a conformant planner obtained by
integrating the new technique—described in the previous
sections—into Pcf and Pcl. The overall algorithm imple-
mented in CPLS(Pcl, Pcf) is given in Fig. 2. CPCL is a con-
formant planner1 used for the verification of abstract points.

P
Compute

Stratification
&

Abstract Points

CpCl

Reduced
Initial Belief State

Pcl

Pcf

No abstract points

Solution

(A)
(B)

(C) (D)

Solution

Figure 2: Overall Structure for CPLS(Pcl, Pcf)

Given a problem P , CPLS(Pcl, Pcf) starts by computing
a stratification of the one-of clauses in P . If no stratifica-
tion exists, the conformant planner Pcf is used to find a so-
lution of P . Otherwise, CPLS(Pcl, Pcf) identifies, for each
one-of clause—from the lowest to the highest level of the
stratification—a possible abstract point (via Algorithm 1)
and verifies that it is an abstract point by calling CPCL to
find an abstract path (represented by the dotted line). If the
process finishes successfully (Fig. 2, (A)), its result will be
a belief state with a smaller degree of uncertainty than that
of the initial belief state. If this belief state is a singleton
(Fig. 2, (B)), then the classical planner, Pcl, is used to solve
the problem. Otherwise (Fig. 2, (C)), Pcf is used. If Pcl fails
to find a solution (Fig. 2, (D)), then CPLS(Pcl, Pcf) uses Pcf

to find a solution.
Observe that if Pcl is invoked and succeeds, the per-

formance of CPLS(Pcl, Pcf) does not depend on the per-
formance of Pcf . Otherwise, the overall overhead of
CPLS(Pcl, Pcf), comparing to Pcf , in solving a problem P
includes the following costs: computing a stratification, de-
termining the possible abstract points, verifying the abstract
points, and finding a solution using Pcl. As we discussed
earlier, the extra cost of the first two components is rather
small. Theoretically, the cost of the last two components
could be high. Our experiments show that, for the majority
of the benchmarks, the total overhead is reasonable.

We instantiate CPLS(Pcl, Pcf) using the following plan-
ners: Pcl is the planner LAMA (Richter and Westphal 2010)
and Pcf is one of the four conformant planners— CPA (Tran
et al. 2009), DNF (To, Pontelli, and Son 2009), t0 (Palacios
and Geffner 2009), and CPCL (Nguyen et al. 2011). These
planners have been shown to outperform all other planners
in the literature. The experiments have been performed on a
Intel Core2 Quad CPU Q9400 2.66GHz machine, with 4Gb
memory, a run-time cutoff of 30 minutes.

The benchmark set contains 1050 instances of 23 domains
from the recent IPCs (2006 and 2008) and from the distribu-

1CPCL (Nguyen et al. 2011) implements a new algorithm for
conformant planning using a classical planner. It outperforms other
planners in several benchmarks but is unable to solve the problems
in the CNF distribution.

tion of CFF, t0, and CNF. Due to lack of space, we omit
the precise description of each domain.

Applicability of Reducing Uncertainty: Table 12 shows
the effectiveness of the module for reducing the uncer-
tainty of CPLS(LAMA,Pcf) in some representative in-
stances. In summary, out of 1050 instances of 23 domains,
CPLS(LAMA,Pcf) can predict and successfully reduce the
uncertainty to a single state in 879 instances of 18 domains.
The reasons for the inapplicability of the technique are: (i)
the problem has disjunctive goals, which might require a set
of convergent points instead of a single one (e.g., adder,
IPC 2006); (ii) the greedy algorithm for predicting abstract
points fails to yield a “correct” abstract point (e.g., block).

Instance (A) (B) (C) (D) Instance (A) (B) (C) (D)
coins-20 8 2 83 ∗ 105 1 coins-30 25 2 1025 1
bomb-50-5 50 1 250 1 bomb-100-100 100 1 2100 1
cube-39-19 3 1 3919 1 cube-119-59 3 1 59119 1
ds-8-2 2 1 212 1 ds-8-3 3 1 224 1
or-ds-8-2 2 1 24096 1 or-ds-8-3 3 1 22

24

1

Table 1: Statistics of the technique on some domains

Instance CPA(H) t0 DNF CPCL CPLS(.,.) Ovh
blw-03 20.4/205 48.51/80 307/325 1.3/266 * 1.1
blw-04 AB AB AB 29.5/1384 * 1.2
coins-20 0.74/195 0.15/108 0.97/99 0.1/163 0.1/187 0.092
coins-30 AB AB AB 1.0/1107 8.6/1302 0.57
comm-15 2.29//95 0.092/110 3.43/125 0.1/97 * 0.08
comm-25 1222/389 1.55/453 1797/501 0.8/294 * 0.69
sortnet-5 0.02/13 0.18/15 0.03/15 0.05/15 * 0.06
sortnet-15 240/74 AB 35/118 63.9/120 * 129
sortnum-5 AB 1.9/10 1.67/10 0.81/10 0.01/10 0.04
sortnum-10 AB AB AB 1.31/45 57/45 0.46
uts-10 14.3/89 0.88/59 2.66/66 0.26/58 0.24/420 0.16
uts-20 8.94/156 0.56/85 1.65/109 0.097/58 0.12/555 0.06
uts-30 4.9/74 0.79/67 1.39/73 0.17/64 0.209/478 0.1
uts-cycle-03 0.01/3 0.14/3 0.01/3 0.04/3 * 0.035
uts-cycle-15 AB AB AB 1314/272 * 886.49
raos-keys-02 0.26/32 0.02/21 0.09/39 0.05/38 * 0.02
raos-keys-04 AB AB AB 16.78/163 * 12.88
forest-03 AB 0.62/45 TO 0.46/167 * 0.24
forest-09 AB AB AB 183.8/963 * 0.69
b-10-1 0.15/19 0.01/20 0.04/19 0.02/19 0.03/19 0.01
b-50-5 2.64/95 0.11/100 1.49/95 0.12/95 0.12/95 0.07
b-100-100 AB 6.26/200 TO 4.27/100 2.85/200 1.98
cube-39-19 TO 3.6/171 198/1023 0.23/171 0.29/861 0.16
cube-119-59 AB AB AB 1.9/531 5.8/10440 0.92
sqr-c-32-16 14.8/928 0.95/93 7.3/340 0.12/72 0.14/512 0.09
sqr-c-52-26 208/2374 4.4/153 51/659 0.23/154 0.36/1352 0.16
sqr-c-120-60 AB AB AB 1.03/358 3.02/6873 0.56
ring-20 AB 1.78/95 AB 0.12/72 * 0.08
ring-100 AB AB AB 8.71/1640 * 4.16
safe-10 0.04/10 0.02/10 0.029/10 0.027/10 0.03/10 0.20
safe-100 339/100 1.26/100 4.06/100 0.93/100 0.11/100 0.05

Table 2: Results for IPC and CFF Domains (Time in seconds)

Performance Evaluation: The experimental results are re-
ported in Tables 2–4. AB and TO denote an execution
aborted by the planner due to “out of memory” and “time-
out” respectively. Each column CPA, t0, DNF, or CPCL
reports the time and solution length from the correspond-
ing planner. Column Ovh reports the overhead incurred by

2(A): Number of Uncertainty Clauses; (B) Number of Different
Levels in Stratification; (C) and (D): size before/after reduction.

1002

CPLS(LAMA, Pcf), i.e., the time spent to predict and ver-
ify abstract points and to compute the reduced belief state
before LAMA or Pcf is called to compute a solution.

Column CPLS(.,.) reports the performance of
CPLS(LAMA, Pcf). It is either a star (‘*’) or of the
form time/length as in other columns. A star indicates that
the process of computing an abstract point is unsuccessful
or the reduced belief state contains more than one state. In
this case, the performance of CPLS(LAMA, Pcf) equals the
performance of Pcf plus Ovh, e.g., in blw-03 (Table 2),
CPLS(LAMA, CPA) will take 20.4+1.1=21.5 second to
find the first solution which has 205 actions. Otherwise, the
process of computing an abstract point is successful and the
reduced belief state contains exactly one state. In this case,
the performance of CPLS(LAMA, Pcf) is independent from
Pcf and is the same for all Pcf ; thus, we only need to report
it once. E.g., in coins-30, CPLS(LAMA, Pcf) takes
8.6+0.57=9.17 second to find a solution of 1302 actions.

Observe that, except for uts-cycle-15 and
raos-keys-04, the overhead incurred by the reduction
technique is rather small. On the other hand, the benefits
are quite clear: the scalability of CPLS(LAMA,Pcf) cannot
be matched by any planner.

Instance CPA(H) t0 DNF CPCL CPLS(.,.) Ovh
ds-8-2 96/1480 13/ 639 54.4/302 1.36/834 0.33/392 0.17
ds-8-3 225/2227 134/761 34.4/629 1.57/962 0.55/561 0.26
ds-12-7 AB AB AB 15/4036 12.46/2459 0.57
ds-12-9 AB AB AB 20/4612 18.85/3103 0.94
push-8-2 213/1099 AB 68/903 2.52/880 6.83/3038 0.28
push-12-9 AB AB AB 35.1/2761 84.9/2754 6.16
lng-8-2-1 104/314 28.8/48 48.41/73 2.46/438 1.16/44 0.99
lng-12-1-4 AB AB AB 95.2/2010 12.22/46 11.09
lng-12-5-4 AB AB AB 265/2010 179.27/46 167.47
1-ds-8-7-dis AB AB AB 3.21/1026 1.39/454 0.86
1-ds-12-9-dis AB AB AB 83.2/3462 10.40/1080 5.2

Table 3: Results for Challenging Domains (t0 Distribution)

Table 3 shows the performance of CPLS(LAMA,Pcf) in
the challenging domains in the t0 distribution. The reduc-
tion technique is even more impressive in this test suite.
CPLS(LAMA,Pcf) can solve all problems and is slower than
CPCL only in a few instances of the push domains.

Instance t0 CNF CPLS(.,.) Ovh
or-coins-20 0.137/107 1.1/114 0.10/163 0.092
or-coins-30 AB AB 8.6/1302 0.57
or-ds-8-2 22.362/639 0.64/264 0.33/392 0.17
or-ds-8-3 275.802/761 27.85/392 0.55/561 0.26
or-push-8-3 AB 2.5/303 11.4/3657 0.4
or-push-12-7 AB AB 29.30/2595 4.34
or-push-12-9 AB AB 35.10/2761 6.16
or-lng-8-2-1 AB AB 1.16/44 0.99
or-lng-12-1-4 AB AB 12.22/46 11.09
or-lng-12-5-4 AB AB 179.27/46 167.4
or-1-ds-8-5-dis AB AB 0.34/454 0.54
or-1-ds-8-7-dis AB AB 0.45/454 0.86
or-1-ds-8-9-dis AB AB 1.88/454 1.24
or-1-ds-12-7-dis AB AB 7.5/1080 0.57
or-1-ds-12-9-dis AB AB 10.40/1080 0.94

Table 4: Results for Or Challenging Domains (CNF Distribution)

Table 4 shows that the reduction technique is very useful
in the domains from the CNF distribution—which are very
difficult for other planners. CPA, DNF, CPCL fail to solve
the large instances reported and are omitted from the table.

Conclusion

We proposed a notion called viable landmarks for confor-
mant planning and developed a technique for reducing un-
certainty based on this notion. We developed an algorithm
for approximating viable landmarks and proposed a scheme
for the integration of this algorithm within current confor-
mant planners and a classical planner. We experimented
with this idea using the best conformant and classical plan-
ners and evaluated these implementations on a large pool of
benchmarks from different sources. The results show that
the technique of reducing uncertainty helps to improve the
performance and scalability of these planners in many prob-
lems. These results show that many techniques developed
for classical planning (e.g., landmark, abstraction, stratifica-
tion) can be extended effectively to conformant planning.

References

Baral, C.; Kreinovich, V.; and Trejo, R. 2000. Computa-
tional complexity of planning and approximate planning in
the presence of incompleteness. AIJ 122:241–267.
Brafman, R., and Hoffmann, J. 2004. Conformant planning
via heuristic forward search: A new approach. In ICAPS.
Bryce, D.; Kambhampati, S.; and Smith, D. 2006. Planning
Graph Heuristics for Belief Space Search. JAIR 26:35–99.
Chen, Y., and Yao, G. 2009. Stratified Planning. In IJCAI.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. JAIR 22:215–278.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In IJCAI, 1728–1733.
Nguyen, K.; Tran, V.; Son T. C.; and Pontelli, E. 2011. A
New Approach To Conformant Planning. NMSU-CS-TR01.
Palacios, H., and Geffner, H. 2009. Compiling Uncertainty
Away in Conformant Planning Problems with Bounded
Width. JAIR 35:623–675.
Richter, S., and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
JAIR 39:127–177.
Smith, D., and Weld, D. 1998. Conformant Graphplan. In
AAAI, 889–896.
To, S. T.; Pontelli, E.; and Son, T. C. 2009. A confor-
mant planner with explicit disjunctive representation of be-
lief states. In ICAPS.
To, S. T.; Son, T. C.; and Pontelli, E. 2010. A New Approach
to Conformant Planning using CNF. In ICAPS.
Tran, D.-V.; Nguyen, H.-K.; Pontelli, E.; and Son, T. C.
2009. Improving performance of conformant planners:
Static analysis of declarative planning domain specifica-
tions. In PADL, 5418 of LNCS, 239–253. Springer.
Vidal, V., and Geffner, H. 2006. Branching and Prunning:
An Optimal Temporal POCL Planner based on Constraint
Programming. AIJ (3):298–335.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. Ff-replan: A
baseline for probabilistic planning. In ICAPS, 352–259.
Zhu, L., and Givan, R. 2004. Heuristic planning via
roadmap deduction. In IPC-4. 64–66.

1003

