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Abstract 
Diversity-aware planning consists of generating multiple 
plans which, while solving the same problem, are dissimilar 
from one another. Quantitative plan diversity is domain-in-
dependent and does not require extensive knowledge-en-
gineering effort, but can fail to reflect plan differences that 
are relevant to users. Qualitative plan diversity is based on 
domain-specific characteristics, thus being of greater prac-
tical value, but may require substantial knowledge engineer-
ing. We demonstrate a domain-independent diverse plan 
generation method that is based on customizable plan dis-
tance metrics and amenable to both quantitative and qualita-
tive diversity. Qualitative plan diversity is obtained with 
minimal knowledge-engineering effort, using distance me-
trics which incorporate domain-specific content. 

 Introduction   
Diversity-aware problem solving involves generating two 
or more distinct solutions to the same problem. In plan-
ning, solution diversity has practical value for multiple 
domains (e.g. military planning, route planning, intrusion 
detection), particularly in mixed-initiative planning envi-
ronments (Myers, 2002), where awareness of available al-
ternatives is particularly useful. Sets of diverse plans cover 
a large portion of the solution space, providing a good in-
dication of the range of available possibilities, and poten-
tially highlighting solutions that may otherwise not be con-
sidered (Myers and Lee, 1999).  
 Previous approaches to diverse plan generation can be 
seen as belonging to one of two categories: qualitative and 
quantitative.1 Quantitative plan diversity is domain-
independent and has the advantage of not requiring exten-
sive domain knowledge. However, the plan differences it
reflects may be irrelevant to users. Qualitative plan diversi-
ty is based on domain-specific knowledge, thus reflecting 
significant differences that a human expert might take into 
account when comparing two plans (Myers and Lee 1999). 

                                               
Copyright © 2011, Association for the Advancement of Artificial 
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1 We adopt the terminology used by Myers and Lee (1999).

Our objective is to generate qualitatively diverse plans with 
minimal additional knowledge requirements aside from the 
usual domain transition model.  
 One possible approach to obtaining plan diversity is by 
modifying heuristic search planners to add diversity crite-
ria to the plan generation process, thus balancing the com-
peting needs of plan generation efficiency and plan diversi-
ty (Srivastava et al. 2007). We show how such approaches 
can be used to obtain not only quantitative, but also qualit-
ative plan diversity, through the use of customizable plan 
distance metrics which, when the aim is to obtain qualita-
tive diversity, incorporate the minimal domain-specific 
content required for differentiating between plans, thus 
eliminating the need for a comprehensive domain model 
and its associated knowledge-engineering effort.  
 We demonstrate this approach on 4 planning domains: 3 
preexisting, synthetic domains and a real-time strategy 
game domain. In the latter case, we test the diversity of the 
generated plans by running them in the game environment 
and assessing the variation of game scores thus obtained. 

The Plan Diversity Problem 
Let D: ∏×∏ → [0,∞) be a plan distance metric (a measure 
of the dissimilarity between two plans). For a non-empty 
set of plans ∏, let the plan-set diversity Div(∏), and the 
relative diversity RelDiv(π,∏) of a plan π relative to ∏, be 
defined as: 

(1)

(2)
  

 These definitions are similar to those used in case-based 
reasoning by Smyth and McClave (2001). Myers and Lee 
(1999) use a definition similar to Equation 1 for the “dis-
persion” of sets of plans. 
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 The maximal plan diversity problem can be defined as 
follows:  

Definition (maximal plan diversity problem). Given a 
plan distance metric D, a parameter k, and a new problem 
P, obtain a collection of k solution plans ∏ solving P, such 
that no other set of k solution plans ∏’ solving P exists 
such that Div(∏) < Div(∏’). 
 Finding a set ∏ of k solution plans with maximum 
Div(∏) can be impossible, depending on how D is defined. 
Let us assume that we are attempting to find two maximal-
ly distant plans (i.e., k = 2). If we define D = Dstability(π, π’)
as the number of actions in π not in π’ plus the number of 
actions in π’ not in π (Fox et al. 2006)2,  then the genera-
tion of maximally diverse sets of plans can diverge (e.g., in 
a logistics transportation domain plan, one could repeated-
ly move a truck back and forth between two locations, the-
reby, with every repetition, making the plan more distant to 
another one not containing these movement actions).  
 Therefore, we propose to solve a relaxation of this prob-
lem, where a distance metric D is taken into account during 
plan set generation, but maximal plan diversity is not guar-
anteed. We refer to this as the plan diversity problem. 

Quantitative and Qualitative Plan Distance 
The distance metric D, on which the diversity Div of a set 
of plans is based, can be either quantitative or qualitative.  

Quantitative plan distance is based on plan elements 
(e.g. actions) derivable from the domain transition model, 
and not interpreted in any domain-specific way. It follows 
than any two distinct plan elements are considered equally 
distant from one another (e.g. in an ancient warfare ree-
nactment domain, the action of attacking using a battering 
ram is equally distant from the action of attacking using a 
catapult and the action of building fortifications). For ex-
ample, Dstability, as described above, is a quantitative dis-
tance metric. Two plans which, due to minimal action 
overlap, are identified as distant using Dstability could appear 
very similar to a human expert. 

Qualitative plan distance is based on interpretation, us-
ing domain knowledge, of the components of plans (e.g. 
battering rams and catapults are both siege engines; using 
siege engines is an offensive measure; building fortifica-
tions is a defensive measure). It follows that the qualitative 
distance between two distinct plan elements can be zero 
(e.g. the actions of attacking with a battering ram and at-
tacking with a catapult might be deemed similar enough to 
be considered identical for the purposes of diverse plan 
generation) or any non-zero value, based on any number of 
domain-specific criteria. As multiple bases for qualitative 
distance can be defined for the same domain, it is possible 
to vary the set of features along which one would like to 
see diversity (e.g. in a travel domain, variation of ticket 
cost, but not means of transportation). Obtaining qualita-
tive plan diversity requires domain-specific knowledge to 

                                               
2 This metric is used by Fox et al. (2006) in the context of plan stability 
(obtaining repaired plans which are similar to a source plan).

be encoded and utilized. Previously, this was achieved by 
Myers and Lee (1999) by requiring that the domain transi-
tion model be supplemented by a “metatheory”: an ex-
tended description of the planning domain in terms of 
high-level attributes, based on which plans can be com-
pared qualitatively. 

We propose obtaining both quantitative and qualitative 
plan diversity based solely on the domain transition model 
and quantitative/qualitative plan distance metrics. Qualita-
tive distance metrics should incorporate only the minimal 
domain-specific content that is required for the purposes of 
differentiating plans discerningly, rendering a comprehen-
sive qualitative model of the domain unnecessary for the 
purposes of obtaining plan diversity.

Generating Diverse Plans 
Our diverse plan generation method enhances heuristic 
search planning with diversity techniques emulating those 
used by Smyth and McClave (2001) for obtaining solution 
diversity in case-based reasoning. While the case-based-
reasoning approach to problem solving generally involves 
retrieving library cases on the basis of maximal similarity 
to a problem, the additional retrieval criterion of case di-
versity helps ensure that the retrieved results provide valu-
able alternatives (Smyth and McClave 2001, McSherry 
2002, McGinty and Smyth 2003). We address the chal-
lenge of balancing the planner’s own heuristic function 
(which ensures planning speed) with diversity considera-
tions in a manner similar to that used in case-based reason-
ing to handle the trade-off between similarity to the prob-
lem and diversity within the retrieved case set.  

Diversity-aware Retrieval in Case-Based Reason-
ing 
Case Diversity Greedy Selection (Smyth and McClave 
2001) retrieves a set of k cases as follows: first, it automat-
ically adds to the retrieved set the case that is maximally 
similar to the new problem. Then, for k-1 steps, it retrieves 
the case that maximizes a metric taking into account both 
the similarity to the new problem and the relative diversity 
to the set of solutions selected so far (where the relative di-
versity is based on a distance metric that is the inverse of 
the similarity metric).  

CaseDiversityGreedySelection(P, CL, k)  
1: S ← {};     R ← CL
2: Sort R by Sim(c,P) 
3: S ← S + first(R);     R ← R - first(R) 
4: Repeat 
5:  Sort R by BalancedCase(c, P, S) 
6:  S ← S + first(R) 
7:  R ← R - first(R) 
8: Until |S| = k library cases have been retrieved  
9: Return S 
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 In the pseudocode above, P is the problem, CL the case 
library, c an individual case in CL, k the number of cases to 
be retrieved, S the set of retrieved cases, and R the current 
set of library cases that are candidates to be added to the 
solution set. Sim(c, P) is the similarity of case c to problem 
P, while BalancedCase(c, P, S) is a metric that takes into 
account both the similarity of c and P and the relative di-
versity between c and S. 

Heuristic Search Planning 
In this type of planning, heuristic functions are used to as-
sess candidate refinements of partial solutions, as in the 
highly abstracted pseudocode below. PL, hPL, and P are the 
heuristic search planner, its heuristic function, and the 
problem, respectively. The call getCandidates(P, π) returns 
the set of possible one-step refinements for the partial plan 
π. The call selectCandidate(C, hPL) chooses the candidate 
refinement that is ranked highest based on hPL. hPL is usual-
ly computed based on the solution plan of a relaxed version 
of the planning problem. 

GeneratePlan(PL, P)  
1: π ← empty-plan 
2: Repeat  
3:  C ← getCandidates(P, π) 
4:  π ← selectCandidate(C, hPL)
5: Until π is a solution for P
6: Return π

 The FF (Hoffmann and Nebel 2001) forward state-space 
planner uses a goal-distance planning heuristic: the heuris-
tic value of a candidate state is the length of the solution 
plan, obtained by running the Graphplan planner (Blum 
and Furst 1997) with the candidate state as initial state, of a 
relaxation of the planning problem. The relaxed problem is 
obtained by eliminating all negative effects of the actions 
(Bonet, Loerincs, and Geffner 1997), thereby guaranteeing 
that a solution can be found in polynomial time. FF’s pri-
mary search type, Enforced Hill-Climbing (using a filter 
called Helpful Actions for preliminary action pruning) is 
efficient, but not complete. When it fails to produce a re-
sult (which occurs if dead-end states are reached), FF 
switches to complete search, with no action pruning. 

Diversity-aware Heuristic Search Planning 
Below, we describe the algorithm GreedyDiversePlanSet, a
combination of GeneratePlan and CaseDiversityGreedySe-
lection, which generates a set of k diverse plans. Initially, it 
uses the heuristic search planner to generate the first plan 
in the set. Then, the modified, diversity-aware version of 
the planner is run k-1 times, each time generating a plan by 
using two criteria for candidate selection: a plan-diversity 
metric (estimating the relative diversity between a candi-
date plan and the plan set ∏ generated so far), and the 
planner’s regular heuristic. PL is the heuristic search plan-
ner, hmixed a heuristic function that evaluates a candidate 
partial plan (Equation 3), P the problem and k the number 

of diverse plans to be generated. The call generatePlan(PL, 
P) runs an unmodified version of the planner on problem 
P, while getCandidates(P, π) returns the set of possible 
one-step refinements for the partial plan π. selectCandi-
date(C, hmixed, ∏) chooses a candidate partial plan that 
maximizes hmixed, instead of one that minimizes the regular 
planning heuristic, hPL. 

GreedyDiversePlanSet(PL, hmixed, P, k)  
1: ∏ ← {};    π ← generatePlan(PL, P);   Add π to ∏
2: Repeat 
3:  π ← BalancedPlan(PL, hmixed, P, ∏)
4:  Add π to ∏
5: Until |∏| = k plans have been generated 
6. Return ∏

BalancedPlan(PL, hmixed, P, ∏)
1: π ← empty-plan 
2: Repeat  
3:  C ← getCandidates(P, π) 
4:  π ← selectCandidate(C, hmixed, ∏)
5: Until π is a solution for P
6: Return π  

(3)

where hdiversity is defined as follows: 

(4)

 The plan πrelax is a relaxed solution of P, that augments 
π. It is constructed based on the relaxed plan πrelaxPL, pro-
duced by PL. With FF, for example, πrelax can be obtained 
by appending πrelaxPL (i.e. the sequence of actions in the re-
laxed domain leading from the current state to the goal 
state) to the current partial plan π (i.e., the sequence of ac-
tions chosen so far, leading from the initial state to the cur-
rent state). The regular planning heuristic (hPL) is sub-
tracted from the diversity metric (hdiversity) because one 
must seek to minimize hPL (an estimate of the effort re-
quired for finding a solution), and to maximize hdiversity (an 
estimate of the diversity of the generated plan set). α is a 
parameter used for varying the complementary weights as-
signed to the two criteria. 

Experimental Evaluation 
We implement FFGrDiv, a diversity-aware version of the  
JavaFF (Coles et al. 2008) implementation of FF. FFGrDiv

was created by modifying JavaFF as indicated by Greedy-
DiversePlanSet, where hPL is the standard FF heuristic.   
 We test FFGrDiv on 4 domains: the first 3 are synthetic, 
while the 4th is a real-time strategy game domain. In our 
experiments, we use two types of distance metrics to com-
pute RelDiv (Equation 2). For the synthetic domains, we 
use a quantitative distance metric. For the Wargus domain, 
we use both a quantitative and a qualitative distance metric 

mixed PL diversityh (π,Π) αh (π) (1 α)h (π,Π)� � � �

diversity relaxh (π,Π) RelDiv(π ,Π)�
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(the abbreviations Quant and Qual are used to distinguish 
between FFGrDiv variants using these types of metrics).
 As a baseline, we use ε-Greedy FF, a slightly modified 
version of JavaFF, which generates sets of k plans by occa-
sionally injecting random diversity: whenever choosing be-
tween candidate states, ε-Greedy FF will, with probability 
(1-ε), pick a candidate state randomly. In all other cases, it 
will behave as JavaFF would (picking the state with the 
best heuristic value). 

Planning Domains 
The 3 synthetic domains we use are DriverLog, Depots, 
and Rovers, which are available with the JavaFF distribu-
tion. For obtaining diversity in these domains, we use the 
quantitative plan distance metric Dstability, discussed above. 
 The fourth domain is Wargus, a real-time, non-
deterministic action outcome, partial-state observable, ad-
versarial strategy game. Wargus exhibits many of the cha-
racteristics of real domains of practical interest, and is used 
herein to highlight the value of qualitative plan diversity 
for such domains. It should be stressed that our aim is not 
to produce plans demonstrating expert-gamer-like beha-
vior, but to create game sessions that are diverse, providing 
a varied sample of possible tactical approaches to the 
game. This can, for example, be of practical value in the 
modeling of AI enemies, which, to make the game envi-
ronment realistic and engaging, should vary in intelligence 
and ability. The games take place on a small-size map 
(32x32 tiles). By restricting the size of the map and the 
types of units used, we purposely do not allow for consi-
derable intrinsic game variation. Plans indicate what units 
in a team should do when competing against the built-in 
Wargus enemy AI. Units can “move” from a current loca-
tion to an indicated one, “attack” any enemies at an indi-
cated location on the map, or “guard” a location (attacking 
any enemy that comes within a certain range). A restriction 
for these actions is that no two units can be occupying the 
same map location at the same time. Because of the size of 
the map and the number of units involved, experiments are 
restricted to five problems, corresponding to game scena-
rios that are significantly different from one another. Prob-
lems indicate the available friendly unit armies and a num-
ber of map locations (waypoints which the units can visit), 
a subset of which are “attackable” (they can be the target of 
an “attack” action). 

  

(5) 

  
 For generating diverse Wargus plans, we define a qualit-
ative distance metric, Dwargus, which reflects domain know-
ledge: a relevant characteristic setting plans apart is the 
type of units used for attacking, as different units have 
their specific strengths and weaknesses (e.g. an archer is 
adept at long range attacks, but weak in close combat), and 

their losses lead to different score penalties. Given this, the 
qualitative plan distance metric Dwargus(π1,π2) is defined as 
in Equation 5, where attackUnitsType(π) is the type of 
units in the attacking army of plan π.  
 For the Wargus domain, we suppress the Helpful Ac-
tions filter employed by JavaFF (replacing it with the Null 
Filter, which does not perform preliminary action pruning), 
for both FFGrDiv and ε-Greedy FF. The Helpful Actions fil-
ter only considers a limited subset of the applicable ac-
tions, potentially making it impossible to obtain qualita-
tively diverse plans, if the actions required for doing so are 
not in the subset in question. In Equation 3, we assign α = 
0.8 (thus giving more weight to the FF heuristic) for the 
synthetic domains, in order to increase the chances of ge-
nerating a solution, as we found empirically that, with low-
er values of α, FFGrDiv generates solutions for fewer prob-
lems. For Wargus, we assign a weight of α = 0.55, which is 
sufficient to generate solutions for all problems, and still 
ensure that these solutions are diverse.  

Evaluation Methods 
For the synthetic domains, we analyze the diversity of the 
plan sets (generated with FFGrDiv and ε-Greedy FF, ε = 
0,99; 0,8; 0,7) by computing the values of the diversity me-
tric Div (Equation 1) for the plans generated (using D =
Dstability). The results are not redundant because, during plan 
generation, FFGrDiv uses the relaxed plans as a heuristic es-
timate, whereas, in the evaluation, we compute the diversi-
ty of the actual set of generated plans.
 In the Wargus domain, we test the diversity of the gen-
erated plans by running them in the game and observing 
the variation of the built-in Wargus score (which reflects 
damage inflicted and incurred).  We compare FFGrDiv Qual 
(D = Dwargus) with ε-Greedy FF, and with FFGrDiv Quant (D
= Dstability).  

In order to assess ε-Greedy FF and FFGrDiv on equal 
terms, out of the problems in each domain, we only report 
the results obtained on those which, using both planner va-
riants, were able to produce complete sets of plans (i.e. did 
not run out of memory) and did so using only Enforced 
Hill Climbing (not complete search), as the use of a differ-
ent algorithm may, by itself, influence plan diversity (e.g. 
if two plans in a set are generated using different algo-
rithms, they are more likely to differ), potentially creating 
bias in favor of one or the other of the compared algo-
rithms.  

Experimental Results 
For all three synthetic domains, the diversity of the plan 
sets generated using FFGrDiv is, in most instances, greater 
than that of plan sets obtained using the three ε-Greedy FF 
variants, while plan generation time is comparable, as can 
be seen in Figure 1: each point indicates the average of the 
diversity or planning time (as indicated by the y-axis label) 
over 4 planning sessions (with k=4) on one domain prob-
lem. It should be noted that, as ε decreases, ε-Greedy FF 
produces increasingly greater diversity (because more ran-

1
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dom choices are being made), but the number of failed 
planning attempts also increases. This causes 0.7-Greedy 
FF to repeatedly fail on the last two problems in the Dri-
verLog domain, never producing results (hence, the two 
missing data points in the DriverLog section of Figure 1). 
Increasing diversity by greatly increasing ε is, therefore, 
not a feasible approach. 

In-game results for the Wargus domain (Figure 2) indi-
cate that FFGrDiv Qual generates sets of plans containing, on 
average, more distinct values than both FFGrDiv Quant and 
0.7-Greedy FF. In Figure 2, each point indicates the aver-
age game score for 4 game runs of the same plan (the 
score’s fluctuation is shown in the error bars). For Problem 
1, FFGrDiv Qual produces 3 out of 4 distinct scores on the 
first and third plan sets and 4 distinct scores on the second 
one, while FFGrDiv Quant produces 2 out of 4 distinct scores 
on the first two sets and 3 out 4 distinct scores on the third 
set. For Problem 2, FFGrDiv Qual produces 3 out of 4 dis-
tinct scores on the first two plan sets and 2 out of 4 distinct 
scores on the last set, while FFGrDiv Quant produces 2 out 
of 4 distinct scores on all three sets. For Problem 3, FFGrDiv

Qual produces three maximally diverse sets of scores (4 
distinct scores per plan set), while FFGrDiv Quant produces 
2 out of 4 distinct scores on the first set, 4 out of 4 distinct 
scores on the second set and 3 out of 4 distinct scores on 
the third set. For Problems 4 and 5, FFGrDiv Qual produces 
3 out of 4 distinct scores on all plan sets, while FFGrDiv

Quant produces 2 out of 4 distinct scores on all plan sets. 
0.7-Greedy FF only produces 2 out of 4 distinct scores on 
the third plan set in Problem 3 and the third plan set in 
Problem 4, achieving no score diversity at all in any other 
plan set.  
 In addition to showing that both variants of FFGrDiv out-
perform a randomized diverse plan generation method, the 
results suggest that the qualitative distance metric can, in-
deed, help generate plan sets of greater genuine diversity,
as attested by their behavior in Wargus.  
 It should also pointed out that, for each problem, a sub-
set of FFGrDiv Qual plans perform at least as well as any 
plans generated with FFGrDiv Quant or 0.7-Greedy FF (as 
reflected in game scores). Furthermore, we have observed 
that FFGrDiv Quant tends to produce plans of questionable 
quality, by inflating them with actions not necessary for 
reaching the goal state, added solely for the purpose of in-
creasing the distance to the previously-generated set of 
plans. In contrast, FFGrDiv Qual generally restricts itself to 
adding actions which are necessary for reaching the goal 
state. This is reflected in the lower average length of 
FFGrDiv Qual plans, and suggests that a well-chosen qualita-
tive plan distance metric may help ensure that the generat-
ed diverse plans are also of good quality. We plan to inves-
tigate this matter further in future work. 

Related Work 
Myers and Lee (1999) have proposed a method for qualita-
tive-diversity-aware plan generation. They use a domain 
metatheory to partition the plan space into k regions, then 

generate a plan for each such region. Quantitative plan di-
versity has been explored by Srivastava et al. (2007) in ge-
nerative planning, and by Coman and Muñoz-Avila (2010) 
in case-based planning. We explore both quantitative and 
qualitative plan diversity in generative planning, without 
requiring extensive knowledge engineering. To our know-
ledge, aside from Coman and Muñoz-Avila (2010) in case-
based planning, no other work assesses plan diversity by 
running plans in their environment and observing the re-
sults thus obtained. Instead, assessment is conducted solely 
by analyzing the sets of plans themselves.  
 Outside planning, solution diversity has been explored 
extensively in case-based reasoning (Smyth and McClave 
2001, McSherry 2002, McGinty and Smyth 2003), and by 
Hebrard et al. (2005) in constraint programming.  

Conclusions and Future Work 
We investigate domain-independent diverse plan gene-
ration with heuristic search planners, using a method that is 
amenable to both quantitative and qualitative distance me-
trics. 
 Our work brings two main contributions to diverse ge-
nerative planning. First, we obtain qualitative diversity 
solely through the use of a qualitative distance metric, 
without requiring a comprehensive domain model. Second, 
we evaluate the diversity of generated plans by running 
them in their intended environment and observing their 
performance.  
 In future work, we intend to explore qualitative plan di-
versity in various real domains of practical interest, as well 
as address the trade-off between plan set diversity and plan 
quality. We anticipate that, as the distance metrics become 
more complex, the required planning effort will increase, 
requiring optimization techniques for balancing planning 
efficiency and plan set diversity. 
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