
Planning for Operational Control Systems
with Predictable Exogenous Events∗

Ronen I. Brafman
Computer Science Dept.

Ben-Gurion Univ. of the Negev, Israel
brafman@cs.bgu.ac.il

Carmel Domshlak
Industrial Eng. and Mgmt.

Technion–Israel Inst. of Technology
dcarmel@ie.technion.ac.il

Yagil Engel and Zohar Feldman
IBM - Haifa Research Lab

Haifa, Israel
{yagile,zoharf}@il.ibm.com

Abstract

Various operational control systems (OCS) are naturally
modeled as Markov Decision Processes. OCS often enjoy
access to predictions of future events that have substantial
impact on their operations. For example, reliable forecasts
of extreme weather conditions are widely available, and such
events can affect typical request patterns for customer re-
sponse management systems, the flight and service time of
airplanes, or the supply and demand patterns for electricity.
The space of exogenous events impacting OCS can be very
large, prohibiting their modeling within the MDP; moreover,
for many of these exogenous events there is no useful pre-
dictive, probabilistic model. Realtime predictions, however,
possibly with a short lead-time, are often available. In this
work we motivate a model which combines offline MDP in-
finite horizon planning with realtime adjustments given spe-
cific predictions of future exogenous events, and suggest a
framework in which such predictions are captured and trig-
ger real-time planning problems. We propose a number of
variants of existing MDP solution algorithms, adapted to this
context, and evaluate them empirically.

Introduction
Operational control systems1 (OCS) are devised to moni-
tor and control various enterprise-level processes, with the
goal of maximizing enterprise-specific performance metrics.
These days, OCS is a beating heart of various heavy in-
dustries, financial institutions, public service providers, call
centers, etc. (Etzion and Niblett 2010). While different OCS
employ different degrees of automation, a closer introspec-
tion reveals an interesting wide common ground. In most
cases, as long as the enterprise is operating in its “normal
conditions”, its control by the OCS is mostly automatic, car-
ried out by a default policy of action. However, once devi-
ations from the “normal conditions”, or anomalies, are ei-
ther detected or predicted, it is common that a human deci-
sion maker takes control of the system and changes the pol-
icy to accommodate the new situation. Anomalies, such as
machine failures, severe weather conditions, and epidemic

∗Brafman and Domshlak were partly supported by ISF Grant
1101/07. We thank anonymous reviewers for helpful comments.
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1We note that the terminology in this area is still evolving, and
OCS are called differently in different domains.

bursts are detected either by system operators, or through an
automatic event-processing system. Because the state mod-
els of enterprises adopting OCS are complex and because the
decisions need to be timely, the outcome of human decisions
in face of exogenous events are often sub-optimal, leading
to unnecessary high costs for the enterprises. Achieving a
higher degree of OCS automation is thus clearly valuable,
and this is precisely the agenda of our work here.

At a high level, OCS are naturally modeled as Markov
decision processes (MDP), and previous works on MDPs
with exogenous events suggested compiling a prior distribu-
tion over these events into the probabilistic model of effects
of actions performed by the system (Boutilier, Dean, and
Hanks 1999). OCS, however, challenge this approach three-
fold. First, the space of exogenous events and their combi-
nations, which may impact an OCS can be very large, pro-
hibiting their modeling within the MDP. Second, for many
of these exogenous events there is no useful predictive, prob-
abilistic model. Finally, even if accurate priors are available,
realtime predictions, possibly with short lead-time, make
these priors effectively useless. Given an information about
ongoing and near-coming events, the model has to be up-
dated, and a good/optimal policy for it needs to be com-
puted. The major computational issue here is that the new
policy should be computed in real time, during system oper-
ation, and thus there is usually not enough time to solve the
new model from scratch.

In this work we introduce a model that combines offline
MDP infinite horizon planning with realtime adjustments
given specific predictions of exogenous events, and suggest
a concrete framework in which such predictions are captured
and trigger real-time planning problems. At a high level, the
model is based on the characteristic OCS property, whereby
exogenous events constitute anomalies, derailing the system
from some concrete default mode of operation. Specifically,
the model exploits the fact that (i) the MDP representing
the system is expected to differ from the default MDP only
within a specific time interval affected by a set of exoge-
nous events, and that (ii) most of the actions prescribed by
the pre-computed policy for the default mode of operation
are likely to remain optimal within the event-affected pe-
riod. Under this perspective, we suggest modeling predic-
tions of exogenous events as trajectories in a space of dif-
ferent MDPs, each capturing system operation under spe-

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

940

cific external conditions. The overall decision process then
combines fixed horizon MDPs corresponding to the states
of the predicted trajectory, with infinite horizon MDP cap-
turing the default working mode. Beyond formalizing and
motivating this model, our main contributions are in provid-
ing a new variant of policy iteration for this setting, and em-
pirically evaluating it, along with adaptations of other MDP
algorithms, on a call center model.

Operational Control by Example
Before proceeding with formalizing our decision process
model for OCS, we wish to provide the reader with a better
intuition of daily problems addressed by these systems. We
therefore commence by describing two realistic scenarios.
Example 1. Consider a call center of a large company, such
as a communication service provider, or a B2C retailer, or a
travel agency. Typically, such a company is doing most of its
business online, but needs to provide telephone support for
cases that cannot be handled over the web or for users that
prefer human interaction. The state of the call center com-
prises the current availability of representatives, and may
also include information regarding the expected distribution
of types of calls in the near future. The so called “routing
policy” of the call center indicates the type of representative
to which a call type is assigned at any given state. Beside
that, the company needs to decide, on a daily basis, how
many representatives of each type it will need on the next
day. An important part of the reality is that some represen-
tatives hired for the next days may still not show up.

Putting the specifics of the call center aside, the exam-
ple above actually represents a typical enterprise operational
control problem of resource management and allocation in
face of uncertainty about resource availability and the de-
mand for the enterprise’s services. Two kinds of actions
are typically available to the system: actions that change
resource-allocation policy, and actions that affect the avail-
ability of resources for a certain period of time. Consider-
ing the demand in the context of Example 1, there are vari-
ous factors that are known to affect the distribution of calls.
For example, if the main business of the company is done
through web servers, and a webserver crashes, a surge in the
number of calls will soon follow. A crash can in turn be
sometimes predicted in advance based on specific patterns
of preceding events. Other factors can affect the volume
of calls. For instance, travel agencies are affected by terror
alerts that typically lead to waves of cancellations, usually
a day or two after the alert is published, and often cancella-
tions cannot be done through the website.
Example 2. A power company controls the production of
electric power and its allocation to geographic areas. Simi-
larly to Example 1, given a set of resources (power produc-
tion in specific plants) and demands (coming from differ-
ent geographic areas), the overall operational control prob-
lem is of resource management to match the set demands.
The actions available to the power company correspond to
increasing/decreasing production at various costs; for in-
stance, the company can start up diesel generators (approx-
imately ten times more expensive than coal generators). In

addition, the company can launch emergency fix to its coal
generators (coal generators normally lose some of their pro-
duction capacity over time, and are fixed according to a reg-
ular maintenance schedule). Finally, power companies can
also affect consumption through particular pricing mech-
anisms with industrial consumers; the contract with these
consumers defines the timing in which a price increase can
be announced.

Here as well, the ability to predict both production con-
straints and demand for the service, significantly affects sys-
tem’s capability of acting optimally. Here as well, different
events affecting the production and demand, such as weather
conditions, can be predicted sufficiently in advance. We
note that the palette of OCS applications goes beyond the
resource management class of problems; additional exam-
ples can be found in Engel and Etzion (2011).

Related Work
Our work is related to other MDP approaches involving on-
line planning. The influential work of (Kearns, Mansour,
and Ng 2002) describes an online algorithm for planning in
MDPs. This algorithm selects the next action to execute by
using sampling to approximate the Q value of each action
for the given state by building a sparse look-ahead tree. Its
complexity is independent of the number of states, but is ex-
ponential in the horizon size. Our setting is similar, in the
sense that we, too, need to compute a bounded horizon pol-
icy online. However, in our setting the online planning al-
gorithm can exploit the current policy and the current value
function in order to be able to respond faster. In general, we
believe that sampling methods could play an important role
in our setting as well. There are other online methods for
MDPs, including replanning (Yoon et al. 2008), which are
suitable for goal oriented domains. RTDP (Barto, Bradtke,
and Singh 1995) as well can be viewed as a sampling based
approach, and because of its bias, it is likely to explore paths
near those generated by the current policy.

Our work differs also from the typical way exogenous
events are integrated into MDPs (Boutilier, Dean, and Hanks
1999). The typical assumption is that exogenous events are
part of the decision process model, whether implicitly (in the
action transition matrices) or explicitly (by modeling their
effects and the probability of their occurrence). Even in the
latter case, these events are compiled away, at which point
any standard algorithm can be applied. Our basic assump-
tion is that there is no model that describes the probability of
an exogenous event, only a model of the effects of such an
event, and hence these events cannot be compiled away. Fi-
nally, there is much work that deals with model uncertainty
in MDPs, centered around two typical approaches. The first
is to cope with uncertainty about the model; for example, by
using representations other than probability for transitions
(e.g., (Delgado et al. 2009)). The second is to compute poli-
cies that are robust to changes (e.g., (Regan and Boutilier
2010)). Both methods are somewhat tangential to our setting
which focuses on the exploitation of concrete predictions of
exogenous events. In the absence of such an event the model
is assumed to be accurate.

941

Finally, event processing systems that we exploit here are
already in wide and growing use in OCS (Etzion and Niblett
2010). Though currently most of these systems do not ex-
hibit predictive capabilities and focus only on detecting cer-
tain ongoing events, this is expected to change in the next
generation of these systems. Preliminary work in this direc-
tion has been done by Wasserkrug, Gal, and Etzion (2005)
and Engel and Etzion (2011).

Planning with External Factors
As discussed in the introduction, OCS usually have a default
work mode which is applicable most of the time. In our
example scenarios, the call center has a usual distribution
over incoming calls, and the power company has its usual
consumption/production profile. We model this “normal”
or “default” dynamics of the world as a Markov decision
process M0 = 〈S, A, T 0, R〉 where S is a set of states, A
is a set of actions, R : S × A → � is the reward function,
and T 0 : S × A × S → [0, 1] is a transition function with
T 0(s, a, s′) capturing the probability of achieving state s′
by applying action a in state s; for each (s, a) ∈ S × A,∑

s′∈S T 0(s, a, s′) = 1.
The exogenous events we are concerned with alter the dy-

namics of the default MDP by changing its transition func-
tion. Different events (e.g., heat-wave, equipment failure,
or a major televised event) will have different effects on the
dynamics of the system, and hence would change the tran-
sition function in different ways. We use an external vari-
able E to capture the value/type of the exogenous effect.
Hence, our MDP is more generally described as M(E) =
〈S, A, T (E), R〉, where E ∈ dom(E).2 We use E0 to de-
note the default value of E , and therefore M0 = M(E0).
The state space, actions, and the reward function are not af-
fected by the exogenous events.

A basic assumption we make is that M0 has been solved,
possibly offline, and its optimal (infinite horizon, accumu-
lated reward with discount factor γ) value function v0 is
known. This reflects the typical case, in which an OCS has
a default operation policy π0 in use. If E has a small do-
main, we might be able to solve M(E) for all possible val-
ues ahead of time. However, as will become clear below,
the optimal policy for M(E) is not an optimal reaction to
an event E because of the transient nature of the changes
induced by exogenous events. But on a more fundamen-
tal level, in practice the set of potential exogenous events is
likely to be huge, so presolving the relevant MDPs is not an
option. In fact, in many natural scenarios, we expect that the
influence of the exogenous effect on the transition function
will be part of the prediction itself. The option of compiling
the model of exogenous events into the MDP is at least as
problematic, both because of the size issue, but more fun-
damentally, because we may have no good predictive model
for some of these events.

2We do not consider the question of how this mapping from
E to MDPs is represented internally. A reasonable representation
could be a Dynamic Bayesian Network (see Boutilier, Dean, and
Hanks (1999)) in which the exogenous variable(s) appear in the
first (pre-action) layer, but not in the post-action layer.

Formally, a prediction takes the form of a sequence
of pairs ((E0, τ0), (E1, τ1), . . . , (Em, τm)), each Ei ∈
dom(E) capturing a specific exogenous event, and τi cap-
turing the number of time steps for which the system is ex-
pected to be governed by the transition model T (Ei). We
will refer to such predictions as trajectories, reflecting their
correspondence to trajectories in the space of possible MDPs
{M(E) | E ∈ dom(E)}. While τ0 ≥ 0, for i > 0, we have
τi > 0; the former exception allows for modeling predic-
tions of immediate change from the default value E0. A
useful notation for the absolute time in which the dynam-
ics of the system shifts from T (Ei−1) is ti =

∑i−1
j=0 τj ,

i ∈ {0, . . . ,m + 1}. Our basic assumption, inspired by
the natural usages of OCS described earlier, is that at time
tm+1 the system returns to its normal, default mode. This
captures the idea that the predictions we consider stem from
exogenous events with a transient effect on the system.3

We can now formulate the basic technical question posed
by this paper: How can an OCS quickly adapt its policy
given a prediction as captured by a trajectory.

Algorithms for Realtime Policy Adjustment
Once a prediction ((Ei, τi))

m
i=0 is received, behaving ac-

cording to M0 may no longer be optimal because it no
longer reflects the expected dynamics of the world. More-
over, because the transition function is no longer stationary,
we do not expect the optimal policy to be stationary either,
and the choice of action must depend on the time-step as
well, to reflect the dependency of value on the time. For ex-
ample, if we get a warning that the frequency of calls will
increase significantly 3 days from now, and it takes just one
day to recruit additional representatives, the value of “regu-
lar states” only begins to deteriorate 2 days from now.

This setting corresponds to a series of m + 1 finite hori-
zon MDPs defined by the trajectory, followed by an infinite
horizon MDP defined by M0. For notational convenience,
we consider the new setting as a meta-MDP whose states
are denoted by st, t ≥ 0, and v(st) denotes the value func-
tion of its optimal policy. We also use T t to denote the
transition probabilities governing the MDP at step t, that is
T t = T (Ei) if ti ≤ t < ti+1 for some 0 ≤ i ≤ m, and
T t = T (E0) if t ≥ tm+1. In principle, the value func-
tion of the optimal policy for this meta-MDP can be com-
puted in time O(|S|2 · |A| · tm+1) via backward induction,
by propagating backward the (known) values of the states
in the infinite-horizon MDP M0 terminating this trajectory,
that is,

v(st) =

⎧⎪⎨
⎪⎩
v0(s), t ≥ tm+1

γmaxa [R(s, a)+∑
s′∈S T t+1(s, a, s′)v(s′t+1)

]
, t < tm+1

(1)

In many applications, however, and in particular in OCS,
we do not expect solving the entire meta-MDP via Eq. 1 to
be feasible because the state space is large while time to re-
act is short. In order not to be left without a response, in

3Extension of the methods presented in this paper to probabilis-
tic trajectories is conceptually straightforward.

942

such cases we should adopt this or another anytime compu-
tation, quickly generating a good policy without exploring
the entire state space. Since in our problem we always have
a concrete initial state, which we denote by ŝ, search-based
algorithms appear the most promising alternative here. Be-
cause v0 is known, we can treat all states at time tm+1 as
leaf nodes in our search tree; while the size of the complete
search tree is exponential in tm+1, when the time horizon
is short and the state space is large, we expect this num-
ber to be substantially smaller than |S|2|A|tm+1. By using
heuristic search techniques, we expect to make further gains,
exploring only a small portion of this search tree.

In what follows we elaborate on several possible adapta-
tions of existing MDP solution algorithms while attempting
to exploit the properties and address the needs of the OCS-
style problems. In particular, we make use of an assumption
that exogenous events cause only unfavorable changes in the
system dynamics.

Assumption 1. For any state s ∈ S , and any time step t ∈
{0, . . . , tm+1}, we have that v(st) ≤ v0(s).

While in general this is, of course, a heuristic assump-
tion, it very often holds in the systems we are interested
in. For instance, in resource management problems, the ex-
ternal events affecting the operational decisions either de-
crease available resources or increase demand. Note that,
if this assumption holds, then the default-mode value func-
tion v0 provides us with admissible value estimates for the
time-stamped states of our meta-MDP.

Search Based on AO∗

AO∗ is arguably the most prominent framework for planning
by search in MDPs (Hansen and Zilberstein 2001). When
used with an admissible heuristic, AO∗ is guaranteed to con-
verge to an optimal solution. At high level, AO∗ maintains a
current best solution graph, from which it selects a tip node
to expand. The expansion results in a value update, using
the heuristic values of the newly revealed nodes. The update
may lead to change of policy and hence a change of current
best solution graph. The main parameter for AO∗ is a se-
lection procedure for which tip node in the current optimal
solution graph shall be expanded. The selection we have
used in our evaluation was to expand the node associated
with the time-stamped state having the highest probability
to be reached from ŝ. Our motivation being that, as this is an
online setting, we would like to improve the most likely tra-
jectory of the policy induced by the current solution graph.
However, as we discuss below, this selection principle is not
free of pitfalls.

Given a meta-MDP, AO∗ will start by expanding the
reachability tree of π0 for t1 time steps. This follows from
the fact that the heuristic function is the optimal value func-
tion of M0 and that during the first t1 steps, the dynamics of
the system corresponds to its transition function T 0. Thus,
for each time-stamped state st with t < t1, one of its greed-
ily optimal actions will correspond to π0(s). However, once
we reach depth t1, the transition probabilities change; this
results in updated heuristic values to st1 and its predeces-
sors. After the update, π0(s) is not necessarily optimal. In

the context of action execution, in parallel to the computa-
tion, we now have a dilemma: should we keep on follow-
ing the default policy π0, even though its heuristic value is
now suboptimal, or switch to follow the new greedy policy,
which follows the best updated heuristic values? It appears
that the latter can be dangerous. Considering the call center
example, assume that we have an action reducing the staff
of representatives, and that this action is not optimal for ŝ
because all of the current staff is really needed. Now as-
sume that the first external event is expected to increase de-
mand. The current policy leads to a value lower than v0(ŝ),
because the current staff is insufficient, and this value is per-
haps even lower than the value we had under M0 for the
action of dismissing staff members. Hence, if we follow the
updated heuristic, we might release staff members and end
up in a worse situation.

The example above illustrates our rationale behind not
following the updated heuristic before we have a robust in-
formation about the actions it proposes to follow. This re-
veals a drawback of AO∗ in our online settings: if we keep
on following the old policy, and let the algorithm continue
exploring the prospects of changing the policy close to the
initial state (where the meta-MDP states have higher proba-
bility to be reached), then a dominant part of our computa-
tion will turn out to be redundant: most of the time-stamped
states explored by the search may no longer be reachable af-
ter the next action is performed by the system. Even if we
select a different node expansion policy, AO∗’s breadth-first
flavor is going to prevent us from exploring more deeply
the implication of a change, and therefore, we may not have
high confidence in its intermediate greedy choice.

Search Based on Branch and Bound
A popular search scheme that allows for exploring new op-
tions more deeply is that of depth-first (or AND/OR) branch
and bound (DFB&B) algorithm (Marinescu and Dechter
2005). The specialization to our setting involves using our
heuristic value v0 as the upper bound, using the transi-
tion probabilities appropriate to the current time level in
the search tree, and merging paths as in AO∗. Informally,
DFB&B works in our setting as follows: expand the plan
tree from current state according to π0, and evaluate it from
its leaves upwards; at each node check whether there exists
an alternative action whose value under M0 (assuming π0

is performed in the rest of the states) is better than the up-
dated value of the current action. If there is, update π0, and
expand the tree again from that state (to the last time step of
the horizon relative to the initial state) and start the backward
propagation again.

Biasing towards the current policy as our first branch, we
tend to solve smaller sub-trees closer to the end of the tra-
jectory. This ensures that the computation made will be rel-
evant much longer. Importantly, if we must execute actions
before computation is complete, the execution and the com-
putation will necessarily meet along the tree.

There is no free lunch, however. The Achilles heel of
DFB&B is its exhaustive search in the state space, alleviated
only by the prospects of pruning due to the upper bound.
In particular, DFB&B initially must try all possible policy

943

improvements very close to the end of the time horizon. In
the OCS settings, however, it is unlikely that significant im-
provements can be found at steps which are close to the end
of the trajectory; usually, the policy should change earlier.

Lazy Policy Iteration
Having in mind the relative pros and cons of AO∗ and
DFB&B, we now propose a different algorithm for online
solving our meta-MDPs that tries to accommodate the best
of both worlds: bias towards modifying the current policy
at early time steps, as well as adaptation to the outcomes
of the in-parallel execution. This algorithm can be seen as
a variant of the modified policy iteration scheme; we call
it lazy policy iteration (LPI) because it performs the value
determination step of policy iteration only very selectively.
At high level, at each policy iteration the algorithm tries to
improve the current policy only for a single state-action pair
(s̄t, ā). LPI is a form of asynchronous modified policy it-
eration (Singh and Gullapalli 1993); however, it prioritizes
its value backups heuristically, and takes advantage of the
knowledge of current state and model-change horizon.

Figure 1 provides a pseudo-code description of the algo-
rithm. The algorithm incrementally updates a current policy
π that is initially set to π0, as well as a value function v, ini-
tialized to v0, and kept up to date with π for any meta-MDP
state generated so far. The algorithm also maintains a func-
tion ĥ(st, a) =

∑
s′ T

t(st, a, s
′)v(s′t+1). After the initial

expansion of the reachability graph of π, a candidate pair
(s̄t, ā) is chosen to maximize

δ∗ = max
(s,t,a)

[
p(st) · (ĥ(st, a)− v(st))

]
, (2)

where p(st) denotes the probability of reaching s from ŝ
in t steps. The selected state-action pair is then passed to
the function EXPAND where, for the sake of readability, it is
referred by (s̄t∗ , ā).

The function EXPAND defines a candidate policy

π′(st) =
{
ā st = s̄t∗

π(st) otherwise,
(3)

and computes its value, captured by the Q function:

Q(s̄t∗ , ā) = R(s̄, ā) + γ
∑
s′

T (s̄, ā, s′)v(s′t+1) (4)

This is done by generating the reachability graph of π′
from state s̄t∗ up to the time step tm+1, and then comput-
ing/updating bottom-up the value v(st) for all the generated
states st, along with the estimates ĥ(st, a) for all actions
a
= π′(st). At a more detailed level, there is no need for EX-
PAND to actually generate and recompute the value of states
st that have already been generated before. However, the
probabilities p(st) computed along the way should be com-
puted for all, both previously and newly generated, states
reachable from s̄t∗ along π up to time tm+1.

Returning now to the main algorithm, if Q(s̄t, ā) com-
puted by EXPAND for the candidate pair (s̄t, ā) turns out to
be higher than v(s̄t), then π′ replaces π as our current pol-
icy, and v is adjusted to capture the value of π′ using a local

algorithm LAZYPOLICYITERATION
input: current state ŝ, policy π0, value v0, trajectory τ
output: a policy π for meta-MDP induced by τ

foreach meta-MDP state st
schematically set π(st) = π0(s) and v(st) = v0(s)

EXPAND(ŝ0, π
0(ŝ), π, τ)

while time permits do
δ∗ = max(s,t,a)[p(st) · (ĥ(st, a)− v(st))]

(s̄t, ā) = argmax(s,a,t)[p(st) · (ĥ(st, a)− v(st))]
if δ∗ is small enough

return π
EXPAND(s̄t, ā, π, τ)
if Q(s̄t, ā) > v(s̄t)

π(s̄t) = ā
v(s̄t) = Q(s̄t, ā)
foreach node st on a backward path from s̄t to ŝ

update v(st) according to Eq. (1)
return π

procedure EXPAND (state s̄t∗ , action ā, policy π, trajectory τ)
define π′ according to Eq. (3)
for t := t∗ + 1 to tm+1

generate all states st reachable from s̄t∗ along π′, and
compute p(st)

for t := tm+1 − 1 down to t∗

foreach state st reachable from s̄t∗ along π′

v(st) = R(s, π′(st)) + γ
∑

s′ T
t(s, π′(st), s′)v(s′t+1)

foreach action a �= π′(st)
ĥ(st, a) =

∑
s′ T

t(st, a, s
′)v(s′t+1)

Q(s̄t∗ , ā) = R(s̄, ā) + γ
∑

s′ T
t(s̄, ā, s′)v(s′t+1)

Figure 1: Lazy Policy Iteration.

application of Eq. (1). Such iterative improvement of the
current policy is performed until either time is up or value
has ε-converged. Note that if in parallel the runtime system
executes an action (instructed by the current policy π), the
algorithm continues with ŝ updated to the new current state.

A simple way to understand lazy policy iteration is as fol-
lows. The standard policy iteration algorithm iteratively per-
forms two steps: value determination, and policy improve-
ment. Value determination computes the value of the current
policy for all states, while policy improvement improves the
policy in a greedy manner, by switching the policy on some
state(s) to action(s) whose Q value is higher than its cur-
rent value. Lazy policy iteration performs value determina-
tion only when it must: Rather than computing the Q values
for all state-action pairs, it does so only for a single, most
promising pair. That single Q value is computed by expand-
ing the state/time subgraph below the selected pair. If this Q
value is indeed an improvement, it changes the policy.

Lazy policy iteration aims at avoiding the pitfalls of the
previous algorithms. The Q-value update selection proce-
dure is biased towards significant states, and the algorithm
does not perform a full depth-first search of their sub-trees,
but only of the particular portions of these sub-trees, corre-
sponding to continuing with the current policy. It is guided
to explore particular actions, rather than those that are too
low in the tree (as DFB&B) or those that will never be fol-
lowed if execution happens at the same time according to the
default policy (as AO∗).

944

Experimental Results
We tested the performance of lazy policy iteration, AO∗, and
backwards induction on a call center model, inspired by real
call center data available at IBM Research. The model in-
cludes three types of queries, and two types of agents, such
that each agent can handle two of the three types of queries.
This model is often referred to as W -design, stemming from
the shape formed by its schematic representation (Garnett
and Mandelbaum 2001). There is a fixed size of queue per
query type; calls are assigned to an appropriate agent if one
is available, otherwise wait in the queue, or blocked if the
queue is full. Calls of query type i arrive according to a
Poisson Process with rate ρi (the expected number of call
arrivals per unit of time is ρi), and the time a query of type
i is served by an agent of type j is modeled as an exponen-
tial distribution with parameter σij . The reward function is
the negation of two cost factors: a waiting cost incurred by
each queued call per time unit, and a cost for each call that
is blocked. We tested the algorithms on a call center with 25
agents of each type, and queue capacities of 30. The service
rates depend merely on the agent type, so that the state of the
system can be described by the number of calls in each of the
queues, and the number of busy agents from each type. This
settings yield a state space of about 100,000 states.

In the scenario we tested, the initial distribution of calls
is divided evenly between the query types. A trajectory pre-
dicts that after t1 time steps, the distribution changes; under
the new distribution, ρ1 is five times the current value of ρ2
and ρ3, and the latter ones remain unchanged. The system
returns to normal after additional t2 time steps. The policy
change we expect to occur when such prediction is received
is to divert more calls from the middle queue to the agent
whose other queue is type 3, as he is expected to be less busy.
We report the performance of the algorithms, ran to optimal-
ity, as a function of the time horizon, which is t1 + t2. The
results (Figure 2) confirm that approaches based on locality
outperform backward induction for tm+1 < 75 (lazy policy
iteration), and tm+1 < 30 (AO∗). Furthermore, lazy policy
iteration significantly outperforms AO∗ (irrespective of its
anytime performance advantage). We note that the value of
v0(ŝ) deteriorates as we increase t2; the value of the optimal
online policy (on ŝ0) is about 20% higher than v0(ŝ).

In a second set of experiments (Figure 3), we compared
the performance of lazy policy iteration and backwards in-
duction, with t1 + t2 = 50, and varying the size of the state
space As expected, the dependence of backwards induction
on the size of the state space is polynomial. In contrast, with
a fixed time horizon, lazy policy iteration hardly exhibits any
dependency on the size of the state space.

Conclusions
In this work we take a step towards practical application of
decision-theoretic planning in daily business setting. We
present a model in which exogenous events are predicted,
usually with a short lead-time. We consider several ap-
proaches to compute a temporary change of policy; our lazy
policy iteration (LPI) scheme facilitates interleaving compu-
tation with execution. Empirical evaluation on a call center

10 20 30 40 50 60 70
Time Horizon

0

20

40

60

80

100

120

140

160

S
ec

on
ds

AO*
BW Induction
Lazy PI

Figure 2: Performance as a function of time horizon.

0 20 40 60 80 100 120
State Space Size (x1000)

0

20

40

60

80

100

S
ec

on
ds

Lazy PI
BW Induction

Figure 3: Performance as a function of number of states.

model finds LPI significantly more efficient for short hori-
zons than the other approaches we considered.

References
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learning to
act using real-time dynamic programming. Artificial Inteligence
72(1):81–138.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision theo-
retic planning: Structural assumptions and computational leverage.
Journal of AI Research 11:1–94.
Delgado, K. V.; Sanner, S.; de Barros, L. N.; and Cozman, F. G.
2009. Efficient solutions to factored MDPs with imprecise transi-
tion probabilities. In ICAPS.
Engel, Y., and Etzion, O. 2011. Towards proactive event-driven
computing. In DEBS.
Etzion, O., and Niblett, P. 2010. Event Processing in Action. Man-
ning Publications.
Garnett, O., and Mandelbaum, A. 2001. An introduction to skills-
based routing and its operational complexities. Teaching note,
Technion.
Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic search
algorithm that finds solutions with loops. Artificial Intelligence
129(1-2):35–62.
Kearns, M. J.; Mansour, Y.; and Ng, A. Y. 2002. A sparse sam-
pling algorithm for near-optimal planning in large markov decision
processes. Machine Learning 49(2-3):193–208.
Marinescu, R., and Dechter, R. 2005. AND/OR branch-and-bound
for graphical models. In IJCAI.
Regan, K., and Boutilier, C. 2010. Robust policy computation in
reward-uncertain MDPs using nondominated policies. In AAAI.
Singh, S. P., and Gullapalli, V. 1993. Asynchronous modified
policy iteration with single-sided updates. unpublished.
Wasserkrug, S.; Gal, A.; and Etzion, O. 2005. A model for reason-
ing with uncertain rules in event composition. In UAI.
Yoon, S. W.; Fern, A.; Givan, R.; and Kambhampati, S. 2008.
Probabilistic planning via determinization in hindsight. In AAAI.

945

