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Abstract

From an automated planning perspective the problem of prac-
tical mobile robot control in realistic environments poses
many important and contrary challenges. On the one hand,
the planning process must be lightweight, robust, and timely.
Over the lifetime of the robot it must always respond quickly
with new plans that accommodate exogenous events, chang-
ing objectives, and the underlying unpredictability of the en-
vironment. On the other hand, in order to promote efficient
behaviours the planning process must perform computation-
ally expensive reasoning about contingencies and possible re-
visions of subjective beliefs according to quantitatively mod-
elled uncertainty in acting and sensing. Towards addressing
these challenges, we develop a continual planning approach
that switches between using a fast satisficing “classical” plan-
ner, to decide on the overall strategy, and decision-theoretic
planning to solve small abstract subproblems where deeper
consideration of the sensing model is both practical, and can
significantly impact overall performance. We evaluate our
approach in large problems from a realistic robot exploration
domain.

Introduction
A number of recent integrated robotic systems incorporate
a high-level continual planning and execution monitoring
subsystem (Wyatt et al. 2010; Talamadupula et al. 2010;
Kraft et al. 2008). For the purpose of planning, sensing is
modelled deterministically, and beliefs about the underlying
state are modelled qualitatively. Both Talamadupula et al.
and Wyatt et al. identify continual planning with probabilis-
tic models of noisy sensing and state as an important chal-
lenge for future research. Motivating that sentiment, plan-
ning according to accurate stochastic models should yield
more efficient and robust deliberations. In essence, the chal-
lenge is to develop a planner that exhibits speed and scalabil-
ity similar to planners employed in existing robotic systems
– e.g., Wyatt et al. use a satisficing classical procedure –
and which is also able to synthesise relatively efficient de-
liberations according to detailed probabilistic models of the
environment.

This paper describes a switching domain independent
planning approach we have developed to address this chal-
lenge. Our planner is continual in the usual sense that plans
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are adapted and rebuilt online in reaction to changes to the
model of the underlying problem and/or domain – e.g., when
goals are modified, or when the topological map is altered by
a door being closed. It is integrated on a mobile robot plat-
form that continuously deliberates in a stochastic dynamic
environment in order to achieve goals set by the user, and ac-
quire knowledge about its surroundings. Our planner takes
problem and domain descriptions expressed in a novel ex-
tension of PPDDL (Younes et al. 2005), called Decision-
Theoretic DTPDDL, for modelling stochastic decision prob-
lems that feature partial observability. In this paper we re-
strict our attention to problem models that correspond to
deterministic-action goal-oriented POMDPs in which all ac-
tions have non-zero cost, and where an optimal policy can be
formatted as a finite horizon contingent plan. Moreover, we
target problems of a size and complexity that is challenging
to state-of-the-art sequential satisficing planners, and which
are too large to be solved directly by decision-theoretic (DT)
systems.

Our planner switches, in the sense that the base planning
procedure changes depending on our robot’s subjective de-
grees of belief, and on progress in plan execution. When the
underlying planner is a fast (satisficing) classical planner,
we say planning is in a sequential session, and otherwise it
is in a DT session. A sequential session plans, and then pur-
sues a high-level strategy – e.g., go to the kitchen bench, and
then observe the cornflakes on it. A DT session proceeds in
a practically sized abstract process, determined according to
the current sequential strategy and underlying belief-state.

We evaluate our approach in simulation on problems
posed by object search and room categorisation tasks that
our indoor robot undertakes. Those feature a deterministic
task planning aspect with an active sensing problem. The
larger of these problems features 6 rooms, 25 topological
places, and 21 active sensing actions. The corresponding
decision process has a number of states exceeding 1036, and
high-quality plans require very long planning horizons. Al-
though our approach is not optimal, particularly as it relies
on the results of satisficing sequential planning directly, we
find that it does nevertheless perform better than a purely se-
quential replanning baseline. Moreover, it is fast enough to
be used for real-time decision making on a mobile robot.
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Propositionally Factored Decision-Theoretic

Planning

We describe the partially observable propositional proba-
bilistic planning problem, with costs and rewards. We model
a process state s as the set of propositions that are true of
the state. Notationally, P is the set of propositions, p is an
element from that set, and we have s ⊆ P . The underly-
ing process dynamics are modelled in terms of a finite set
of probabilistic STRIPS operators (Boutilier and Dearden
1994) A over state-characterising propositions P . We say
an action a ∈ A is applicable if its precondition pre(a),
a set of propositions, are satisfied in the current state – i.e.,
pre(a) ⊆ s. We denote by μa(a

d
i ) the probability that na-

ture chooses a deterministic STRIPS effect adi , and for all a
we require

∑
ad
i
μa(a

d
i ) = 1.

We are concerned with problems that feature partial ob-
servability. Although we could invoke extended probabilis-
tic STRIPS operators (Rintanen 2001) to model actions and
observations propositionally, we find it convenient for pre-
sentation and computation to separate sensing and action.
Therefore, we suppose a POMDP has a perceptual model
given in terms of a finite set of stochastic senses K, deter-
ministic sensing outcomes Kd, and perceptual propositions
Π, called percepts. In detail, we take an observation o to
be a set of percepts , i.e., o ⊆ Π, and denote by O the set
of observations. The underlying state of the process can-
not be observed directly, rather, senses κ ∈ K effect an
observation o ∈ O that informs what should be believed
about the state the process is in. If action a is applied ef-
fecting a transition to a successor state s′, then an observa-
tion occurs according to the active senses K(a, s′) ⊆ K.
A sense κ is active, written κ ∈ K(a, s′), if the senses’
action-precondition, preA(κ), is equal to a, and the state-
precondition preS(κ) ⊆ P is satisfied by the state s′, i.e.,
preS(κ) ⊆ s′. When a sense is active, nature must choose
exactly one outcome amongst a small set of deterministic
choices Kd(κ) ≡ {κd1, . . . , κdk}, so that for each i we have
κdi ⊆ Π. The probability of the ith element being chosen is
given by ψκ(κ

d
i ), where

∑
κd
i
∈Kd(κ) ψκ(κ

d
i ) = 1. The ob-

servation received by the agent corresponds to the union of
perceptual propositions from the chosen elements of active
senses.

A POMDP has a starting configuration that corresponds
to a Bayesian belief-state. Intuitively, this is the robot’s sub-
jective belief about its environment. Formally, a belief-state
b is a probability distribution over process states. We write
b(s) to denote the probability that the process is in s accord-
ing to b, and b0 when discussing the starting configuration.

Costs, Rewards, and Belief Revision

Until now we have discussed the POMDP in terms of propo-
sitions and percepts. In order to address belief revision
and utility it is convenient to consider the underlying de-
cision process in a flat format. This is given by the tuple
〈S, b0,A,Pr,R, O, v〉. Here, b0 is the initial belief-state, S
is the finite set of reachable propositional states, A is the
finite set of actions, and O is the finite set of reachable ob-

servations. Where s, s′ ∈ S , a ∈ A, from μ we have a state
transition function Pr(s, a, s′) giving the probability of a
transition from state s to s′ if a is applied. For any s and awe
have

∑
s′∈S Pr(s, a, s′) = 1. The function R : S × A → �

is a bounded real valued reward function. Therefore a finite
positive constant c exists so that for all s ∈ S and a ∈ A,
|R(s, a)| < c. We model costs as negative rewards. From
ψ we have that for each s′ ∈ S and action a ∈ A, an ob-
servation o ∈ O is generated independently according to a
probability distribution v(s′, a). We denote by vo(s

′, a) the
probability of getting observation o in state s′. For s′ and a
we have

∑
o∈O vo(s

′, a) = 1.
Successive state estimation is by application of Bayes’

rule. Taking the current belief b as the prior, and supposing
action a is executed with perceptive outcome o, the proba-
bility that we are in s′ in the successive belief-state b′ is:

b′(s′) =
vo(s

′, a)
∑

s∈S Pr(s, a, s′)b(s)
Pr(o|a, b) (1)

where Pr(o|a, b) is a normalising factor, giving the proba-
bility of getting observation o if a is applied to b.

Plan Evaluation

An optimal solution to a finite-horizon POMDP is a contin-
gent plan, and can be expressed as a mapping from obser-
vation histories to actions. Although suboptimal in general,
useful plans can also take a classical sequential format. This
is the case in conformant planning, where the objective is to
find a sequence of actions that achieves a goal —i.e., reaches
a state that satisfies a given Boolean condition— with prob-
ability 1. Generally, whatever the plan format, its value cor-
responds to the expected reward:

VPLAN(b) = E
[N−1∑

t=0

R(bt,PLANt) | PLAN, b0 = b

]
(2)

Where bt is the belief-state at step t, PLANt is the action
prescribed at step t, and

R(b, a) =
∑
s∈S

b(s)R(s, a).

Planning Language and Notations

We give an overview of the declarative first-order language
DTPDDL, an extension of PPDDL that can express prob-
abilistic models of the sensing consequences of acting, to
quantitatively capture unreliability in perception. There are
straightforward compilations from problems expressed in
DTPDDL to flat state-based (and propositionally factored)
representations of the underlying decision process. Al-
though similar to the POND input language (Bryce, Kamb-
hampati, and Smith 2008), DTPDDL distinguishes itself by
explicitly treating state and perceptual symbols separately,
and by providing distinct declarations for operators (i.e, state
model) and senses (i.e., observation model). In this last re-
spect, DTPDDL admits more compact domain descriptions
where sensing effects are common across multiple opera-
tors. In detail, DTPDDL has perceptual analogues of fluent
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and predicate symbols. For example, a simple object search
domain would have:
(:functions
(is-in ?v - visual-object) - location )

(:perceptual-functions
(o-is-in ?v - visual-object) - location )

Where the first fluent symbol models the actual location of
objects, and the second the instantaneous sensing of ob-
jects following application of an action with sensing con-
sequences. To model sensing capabilities, we have operator-
like “sense” declarations, with preconditions expressed us-
ing state and action symbols, and uniformly positive ef-
fects over perceptual symbols. For example, where look-
for-object is the operator that applies an object detection al-
gorithm at a specific place, an object search task will have:
(:sense vision :parameters
(?r -robot ?v -visual-object ?l -location)
:execution (look-for-object ?r ?v ?l)
:precondition (and (= (is-in ?r) ?l) )
:effect (and
(when (= (is-in ?v) ?l)
(probabilistic .8 (= (o-is-in ?v) ?l)))
(when (not (= (is-in ?v) ?l))
(probabilistic .1 (= (o-is-in ?v) ?l)))))

I.e., there is a 10% false positive rate, and 20% probability of
a false negative. This representation allows us to represent
actions that have multiple independent observational effects.

The DTPDDL syntax for describing an initial state dis-
tribution is taken verbatim from PPDDL. That distribu-
tion is expressed in a tree-like structure of terms. Each
term is either: (1) atomic, e.g., a state proposition such
as (= (is-in box)office), (2) probabilistic, e.g.,
(probabilistic ρ1(T1)..ρn(Tn)) where Ti are conjunc-
tive, or (3) a conjunct over probabilistic and atomic terms.
The root term is always conjunctive, and the leaves are
atomic. For example, a simplified object search could have:1

(:init (= (is-in Robot) kitchen)
(probabilistic .8 (= (is-in box) office)

.2 (= (is-in box) kitchen))
(probabilistic .3 (= (is-in cup) office)

.7 (= (is-in cup) kitchen)))

The interpretation is given by a visitation of terms: An atom
is visited iff its conjunctive parent is visited, and a conjunc-
tive term is visited iff all its immediate subterms are visited.
A probabilistic term is visited iff its conjunctive parent is
visited, and exactly one of its subterms, Ti, is visited. Each
visitation of the root term according to this recursive defini-
tion defines a starting state, along with the probability that
it occurs. The former corresponds to the union of all visited
atoms, and the latter corresponds to the product of ρi entries
on the visited subterms of probabilistic elements. Making
this concrete, the above example yields the following flat
distribution:

1In PDDL, (:init T1..Tn) expresses the conjunctive root of
the tree – i.e., the root node (and T1..Tn). Also, we shall write
p, rather than (and p), for conjunctive terms that contain a single
atomic subterm.

Probability (is-in Robot) (is-in box) (is-in cup)
.24 kitchen office office
.06 kitchen kitchen office
.56 kitchen office kitchen
.14 kitchen kitchen kitchen

Switching Continual Planner

We now describe our switching planning system that oper-
ates according to the continual planning paradigm. The sys-
tem switches in the sense that planning and plan execution
proceed in interleaved sessions in which the base planner is
either sequential or decision-theoretic. The first session is
sequential, and begins when a DTPDDL description of the
current problem and domain are posted to the system. Dur-
ing a sequential session a serial plan is computed that cor-
responds to one execution-trace in the underlying decision-
process. That trace is a reward-giving sequence of process
actions and assumptive actions. Each assumptive action cor-
responds to an assertion about some facts that are unknown
at plan time – e.g. that a box of cornflakes is located on
the corner bench in the kitchen. The trace specifies a plan
and characterises a deterministic approximation (see (Yoon
et al. 2008)) of the underlying process in which that plan is
valuable. Traces are computed by a cost-optimising classi-
cal planner which trades off action costs, goal rewards, and
determinacy. Execution of a trace proceeds according to the
process actions in the order that they appear in the trace.
If, according to the underlying belief-state, the outcome of
the next action scheduled for execution is not predetermined
above a threshold (here 95%), then the system switches to a
DT session.

Because online DT planning is impractical for the size of
problem we are interested in, DT sessions plan in a small
abstract problem defined in terms of the trace from the pro-
ceeding sequential session. This abstract state-space is char-
acterised by a limited number of propositions, chosen be-
cause they relate evidence about assumptions in the trace. To
allow the DT planner to judge assumptions from the trace,
we add disconfirm and confirm actions to the problem for
each of them. Those yield a relatively small reward/penalty
if the corresponding judgement is true/false. If a judgement
action is scheduled for execution, then the DT session is ter-
minated, and a new sequential session begins.

Whatever the session type, our continual planner main-
tains a factored representation of successive belief-states.
As an internal representation of the (:init) declaration,
we keep a tree-shaped Bayesian network which gets updated
whenever an action is performed, or an observation received.
That belief-state representation is used: (1) as the source
of candidate determinisations for sequential planning, (2) in
determining when to switch to a DT session, and (3) as a
mechanism to guide construction of an abstract process for
DT sessions.

Sequential Sessions

As we only consider deterministic-action POMDPs, all state
uncertainty is expressed in the (:init) declaration. This
declaration is used by our approach to define the starting
state for sequential sessions, and the set of assumptive ac-
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tions available to sequential planning. Without a loss of
generality we also suppose that actions do not have nega-
tive preconditions. For a sequential session the starting state
corresponds to the set of facts that are true with probability
1. Continuing our example, that starting state is the single-
ton:

s0 ≡ {(= (is-in Robot)kitchen)}.
To represent state assumptions we augment the problem

posed during a sequential session with an assumptive action
A◦(ρi;Ti) for each element, ρi(Ti), of each probabilistic
term from (:init). Here, A◦(ρi;Ti) can be executed if no
A◦(ρj ;Tj), j 	= i, has been executed from the same prob-
abilistic term, and, either (probabilistic ..ρi (Ti)..) is
in the root conjunct, or it occurs in Tk for some executed
A◦(ρk;Tk). We also add constraints that forbid scheduling
of assumptions about facts after actions with preconditions
or effects that mention those facts. For example, the robot
cannot assume it is plugged into a power source immediately
after it unplugs itself. Executing A◦(ρi;Ti) in a state s ef-
fects a transition to a successor state sTi , the union of s with
atomic terms from Ti. For example, consider the following
sequential plan:

A◦(.8; (= (is-in box)kitchen));
A◦(.3; (= (is-in cup)office));
(look box kitchen); (look cup office);
(report box kitchen); (report cup office)

Applying the first action in s0 yields:

{(= (is-in Robot)kitchen), (= (is-in box)kitchen)}
with a probability of 0.8. The assumed state before the
scheduled execution of action (look box kitchen) is:

{(= (is-in Robot)kitchen), (= (is-in box)kitchen),
(= (is-in cup)office)}
and has a probability of 0.24.
To describe the optimisation criteria used during sequen-

tial sessions we model A◦(ρi;Ti) probabilistically, suppos-
ing that its application in state s effects a transition to sTi

with probability ρi, and to s⊥ with probability 1− ρi. State
s⊥ is an added sink. Taking ρi to be the probability that the
ith sequenced action, ai, from a trace of state-action pairs
〈s0, a0, s1, a1, .., sN 〉 does not transition to s⊥, then the op-
timal sequential plan has value:

V ∗ = max
N

max
s0,a0,..,sN

∏
i=1..N−1

ρi
∑

i=1..N−1

R(si, ai),

DT Sessions

When an action is scheduled whose outcome is uncertain ac-
cording to the underlying belief-state, the planner switches
to a DT session. That plans for small abstract processes
defined according to the action that triggered the DT ses-
sion, the assumptive actions in the proceeding trace, and
the current belief-state. Targeted sensing is encouraged by
augmenting the reward model to reflect a heuristic value of
knowing the truth about assumptions. In detail, all rewards
from the underlying problem are retained. Additionally, for

each relevant assumptive action A◦(ρi;Ti) in the current
trace, we have a disconfirm action A•(ρi;Ti) so that for all
states s:

R(s,A•(ρi;Ti)) =

{
$(Ti) if Ti �⊆ s

$̂(Ti) otherwise

where $(Ti) (resp. $̂(Ti)) is a small positive (negative) nu-
meric quantity which captures the utility the agent receives
for correctly (incorrectly) rejecting an assumption. In terms
of action physics, a disconfirm action can only be executed
once, and otherwise is modelled as a self-transformation.
We only consider relevant assumptions when constructing
the abstract model. If ã is the action that switched the sys-
tem to a DT session, then an assumption A◦(ρi;Ti) is rel-
evant if it is necessary for the outcome of ã to be deter-
mined. For example, taking the switching action ã to be
(look box kitchen) from our earlier sequential plan ex-
ample, we have that A◦(.3; (= (is-in cup)office)) is
not relevant, and therefore we exclude the corresponding
disconfirm action from the abstract decision process. Given
ã, we also include another once-only self-transition action
A.pre(ã), a confirmation action with the reward property:

R(s,A.pre(ã)) =
{

$(pre(ã)) if pre(ã) ⊆ s

$̂(pre(ã)) otherwise

Execution of either a disconfirmation or the confirmation ac-
tion returns control to a sequential session, which then con-
tinues from the underlying belief-state.

Turning to the detail of (dis-)confirmation rewards, in our
integrated system these are sourced from a motivational sub-
system. In this paper, for A•(ρi;Ti) actions we set $(x) to
be a small positive constant, and have $̂(x) = −$(x)(1 −
ρ)/ρ where ρ is the probability that x is true. For A.pre(ã)
actions we have $̂(x) = −$(x)ρ/(1− ρ).

In order to guarantee fast DT sessions, those plan in an
abstract process determined by the current trace and under-
lying belief-state. The abstract process posed to the DT
planner is constructed by first constraining as statically false
all propositions except those which are true with proba-
bility 1, or which are the subject of relevant assumptions.
For example, taking the above trace and switching action
(look box office), the underlying belief in Fig. 1B would de-
termine a fully constrained belief given by Fig. 1A. Next,
static constraints are removed, one proposition at a time, un-
til the number of states that can be true with non-zero prob-
ability in the initial belief of the abstract process reaches a
given threshold. In detail, for each statically-false proposi-
tion we compute the entropy of the relevant assumptions of
the current trace conditional on that proposition. Let X be a
set of propositions and 2X the powerset of X , then taking

χ = {
∧

x∈X′∩X
x ∧

∧
x∈X\X′

¬x | X ′ ∈ 2X},

we have that χ is a set of conjunctions each of which cor-
responds to one truth assignment to elements in X . Where
p(φ) gives the probability that a conjunction φ holds in the
belief-state of the DTPDDL process, the entropy of X con-
ditional on a proposition y, written H(X|y), is given by
Eq. 3.
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(A) Fully constrained belief (C) Partially constrained belief
(:init (=(is-in Robot)kitchen)
(.6(=(is-in box)kitchen)))

(:init (=(is-in Robot)kitchen)
(.6(and(=(is-in box)kitchen)

(.9(=(is-in milk) kitchen))
.1(=(is-in milk)office))

.4(and(=(is-in box)office)
(.1(=(is-in milk)kitchen))
.9(=(is-in milk)office)))

(B) Underlying DTPDDL belief

(:init (=(is-in Robot)kitchen)
(.6(and(=(is-in box)kitchen)

(.9(=(is-in milk)kitchen))
.1(=(is-in milk)office))

.4(and(=(is-in box)office)
(.1(=(is-in milk)kitchen))
.9(=(is-in milk)office)))

(.6(=(is-in cup)office)
.4(=(is-in cup)kitchen)))

Figure 1: Simplified examples of belief-states from DT ses-
sions.

H(X|y) =
∑

x∈χ,y′∈{y,¬y}
p(x ∧ y′) log2

p(y′)
p(x ∧ y′)

(3)

A low H(X|y) value suggests that knowing the truth value
of y is useful for determining whether or not some assump-
tions X hold. When removing a static constraint on propo-
sitions during the abstract process construction, yi is consid-
ered before yj if H(X|yi) < H(X|yj). For example, if the
serial plan assumes the box is in the kitchen, then proposi-
tions about the contents of kitchens containing a box, e.g.
(= (is-in milk)kitchen), are added to characterise
the abstract process’ states. Taking a relevant assumption X
to be (= (is-in box)kitchen), in relaxing static con-
straints the following entropies are calculated:

.47 = H(X|(=(is-in milk)office))
= H(X|(=(is-in milk)kitchen))

.97 = H(X|(=(is-in cup)office))
= H(X|(=(is-in cup)kitchen))

Therefore, the first static constraint to be relaxed
is for (=(is-in milk)office), or equivalently
(=(is-in milk)kitchen), giving a refined abstract
belief state depicted in Fig. 1C. Summarising, if for Fig.1B
the DT session is restricted to belief-states with fewer than
8 elements, then the starting belief-state of the DT session
does not mention a “cup”.

Evaluation

We have implemented our switching approach in the MAP-
SIM environment (Brenner and Nebel 2009), using DLIB-
ML (King 2009) for belief revision. Sequential sessions use
a modified version of Fast Downward (Helmert 2006), and
DT sessions use our own contingent procedure. Since most
of the problems we consider are much larger than any avail-
able DT planner can solve directly, for comparison purposes
we also implemented a simple dual-mode replanning base-
line approach. Here, when a switching action is scheduled
for execution the DT session applies a single entropy reduc-
tion action, whose execution can provide evidence regarding
the truth value of a relevant assumption. Control is then im-
mediately returned to a new sequential session.

We evaluate our approaches in robot exploration tasks
from home and office environments. Spatially, these con-
sist of rooms (office/kitchen/etc), and an underlying topo-
logical map over smaller areas of space, called places, and
connectivity between those. The mobile robot and visual
objects inhabit the topological places. Objects indicate the
category of space they inhabit – e.g., spoons are likely to
be in kitchens. By examining view cones at places for par-
ticular objects, the robot is able to: (1) categorise space at
high (room) and low (place) levels, and (2) find objects for
the user, exploiting information about object co-occurrence
and room categories for efficiency. Also, in the presence of
a person, the robot can ask about the category of the current
room.

We compare switching to the baseline in several realistic
tasks, with the number of rooms ranging from 3 (12-places,
16-objects, |states| > 1021) to 6 (26-places, 21-objects,
|states| > 1036). We also compare those systems with near
optimal policies computed using Smith’s ZMDP for small 2
room problems (4-places, 3-objects, |states| 
 5000). Our
evaluation considers 3 levels of reliability in sensing: reli-
able sensors have a .1 probability of a false negative, semi-
reliable have a chance of 0.3 of false negative and 0.1 of
false positive, and noisy sensors with probabilities of 0.5 and
0.2 respectively. Each object class is assigned one sensor
model – e.g. cornflakes may be harder to detect than re-
frigerators. We performed several experiments with differ-
ent levels of reliability for sensing the target object(s), while
keeping sensing models for non-target objects constant.

Our evaluation examines DT sessions with initial belief-
states admitting between 20 and 100 abstract states with
non-zero probability. We run 50 simulations in each config-
uration, and have a timeout on each simulation of 30 minutes
(1800 seconds)2. The continual planning times are reported
in Fig. 2, and the quality data in Fig. 3. For each task, the
goal is to find one or more objects and report their position
to a user. Usually there is a non-zero probability that no plan
exists, as the desired object might not be present in the en-
vironment. In these experiments we only allocate reward on
the achievement of all goals, therefore we find it intuitive to
report average plan costs and the success rates in problems
that admit a complete solution (i.e., positive reward scaled
by a constant factor). The exception occurs for items f and g
of Fig. 3, where we report expected discounted rewards (not
plan costs).

We find that if sensing is reliable, then little is gained
using DT sessions, as the greedy approach of the baseline
is sufficient. As sensing degrades DT sessions prove more
useful. Here, time spent on DT planning increases steeply
as the abstraction becomes more refined, which is compen-
sated for by fewer planning sessions overall. More detailed
abstractions lead to a better overall success rate, particularly
for tasks d and e. Speaking to the effectiveness of our en-
tropy heuristic for abstraction refinement, we see relatively
high success rates irrespective of the level of refinement.
Comparing finally to the best ZMDP policy, although produc-

2All experiments were conducted on a 2.66GHz Intel Xeon
X5355 using one CPU core.
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Figure 2: Average runtime

ing relatively costly plans, the continual planners performed
quite well, especially in terms success rate. A key source of
inefficiency here, is due to sequential sessions always being
optimistic, and refusing to abandon the search.

Related Work

Addressing task and observation planning specifically, there
have been a number of recent developments where the un-
derlying problem is modelled as a POMDP. For vision algo-
rithm selection, Sridharan, Wyatt, and Dearden (2010) ex-
ploit an explicitly modelled hierarchical decomposition of
the underlying POMDP. Doshi and Roy (2008) represent a
preference elicitation problem as a POMDP and take ad-
vantage of symmetry in the belief-space to exponentially
shrink the state-space. Although we have been actively ex-
ploring the Doshi and Roy approach, those exploitable sym-
metries are not present in problems we consider due to the
task planning requirement. Also, our approach is in a sim-
ilar vein to dual-mode control (Cassandra, Kaelbling, and
Kurien 1996), where planning switches between entropy and
utility focuses.

There has also been much recent work on scaling of-
fline approximate POMDP solution procedures to medium-
sized instances. Recent contributions propose more effi-
cient belief-point sampling schemes (Kurniawati et al. 2010;
Shani, Brafman, and Shimony 2008), and factored repre-
sentations with procedures that can efficiently exploit struc-
tures in those representations (Brunskill and Russell 2010;
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Figure 3: Average plan costs and number of successful runs.

Shani et al. 2008). Offline domain independent systems
scale to logistics problems with 222 states (Shani et al.
2008), taking over an hour to converge, and around 10 sec-
onds on average to perform each Bellman backup. Brunskill
and Russell are able to solve problems with approximately
1030 states, by further exploiting certain problem features –
e.g., problems where no actions have negative effects. Mov-
ing someway towards supporting real-time decision making,
recent online POMDP solution procedures have been devel-
oped which leverage highly approximate value functions –
computed using an offline procedure – and heuristics in for-
ward search (Ross et al. 2008). These approaches are ap-
plicable in relatively small problems, and can require ex-
pensive problem-specific offline processing in order to yield
good behaviours. A very recent and promising online ap-
proach for larger POMDPs employs Monte-Carlo sampling
to break the curse of dimensionality in situations where goal
reachability is easily determined (Silver and Veness 2010).
Our approach can also be thought of as an online POMDP
solver that uses a sequential plan to guide the search, rather
than (e.g., Monte-Carlo) sampling. Also, compared to most
online POMDP procedures, which replan at each step, our
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approach involves relatively little replanning.
In the direction of leveraging classical approaches for

planning under uncertainty, the most highlighted system to
date has been FFRa (Yoon, Fern, and Givan 2007); The
winning entry from the probabilistic track of the 2004 Inter-
national Planning Competition. In the continual paradigm,
FFRa uses FF to compute sequential plans and execution
traces. More computationally expensive approaches in this
vein combine sampling strategies on valuations over runtime
variables with deterministic planning procedures (Yoon et
al. 2008).

Also leveraging deterministic planners in problems that
feature uncertainty, CONFORMANT-FF (Hoffmann and
Brafman 2006) and T0 (Palacios and Geffner 2009) demon-
strate how conformant planning – i.e., sequential planning
in unobservable worlds – can be modelled as a determinis-
tic problem, and therefore solved using sequential systems.
In this conformant setting, advances have been towards com-
pact representations of beliefs amenable to existing best-first
search planning procedures, and lazy evaluations of beliefs.
We consider it an appealing future direction to pursue con-
formant reasoning during the sequential sessions we pro-
posed. Most recently this research thread has been extended
to contingent planning in fully observable non-deterministic
environments (Albore, Palacios, and Geffner 2009).

Concluding Remarks

We have addressed a key challenge, specifically that of high-
level continual planning for efficient deliberations accord-
ing to rich probabilistic models afforded by recent inte-
grated robotic systems. We developed a system that can plan
quickly given large realistic probabilistic models, by switch-
ing between: (a) fast sequential planning, and (b) expensive
DT planning in small abstractions of the problem at hand.
Sequential and DT planning is interleaved, the former identi-
fying a rewarding sequential plan for the underlying process,
and the latter solving small sensing problems posed during
sequential plan execution. We have evaluated our system
in large real-world task and observation planning problems,
finding that it performs quickly and relatively efficiently.
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Kraft, D.; Başeski, E.; Popović, M.; Batog, A. M.; Kjær-Nielsen,
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