
Exploiting Path Refinement Abstraction in Domain Transition Graphs

Peter Gregory and Derek Long and Craig McNulty and Susanne Murphy
Department of Computer and Information Sciences

University of Strathclyde, Glasgow, UK
firstname.lastname@cis.strath.ac.uk

Abstract

Partial Refinement A-Star (PRA�) is an abstraction tech-
nique, based on clustering nearby nodes in graphs, useful
in large path-planning problems. Abstracting the underly-
ing graph yields a simpler problem whose solution can be
used, by refinement, as a guide to a solution to the original
problem. A fruitful way to view domain independent plan-
ning problems is as a collection of multi-valued variables that
must perform synchronised transitions through graphs of pos-
sible values, where the edges are defined by the domain ac-
tions. Planning involves finding efficient paths through Do-
main Transition Graphs (DTGs). In problems where these
graphs are large, planning can be prohibitively expensive. In
this paper we explore two ways to exploit PRA� in DTGs.

1 Introduction

Abstraction is a powerful tool for search problems, in-
cluding planning. Recent research in abstraction in plan-
ning (Helmert, Haslum, and Hoffmann 2007; Domshlak,
Hoffmann, and Sabharwal 2009; Haslum et al. 2007;
Edelkamp 2002; Katz and Domshlak 2008) has explored a
range of techniques including value abstraction, in which
the domains of one or more variables are abstracted. Value
abstraction is a graph-abstraction technique, applied to Do-
main Transition Graphs (DTGs) (Helmert 2008). A separate
strand of research is concerned with efficiently finding paths
through very large graphs, using abstraction as a way to re-
duce and simplify the problem: Partial Refinement A-Star
(PRA�) (Sturtevant and Buro 2005) is one example of this
work in which the authors use abstraction to simplify the
task of navigating large graphs. In this paper we consider
how this idea can be adapted to help to navigate DTGs.

We demonstrate two methods for using ideas inspired by
PRA� in planning, to improve search performance: abstract-
and-refine and abstract-and-conquer. Abstract-and-refine
begins with the creation of a hierarchy of abstracted plan-
ning problems. A solution to one of these abstract problems
then determines the abstract problem that must be solved di-
rectly below it in the hierarchy. Abstract-and-conquer, on
the other hand, uses the structure of a solution to an ab-
stracted problem to define intermediate goals (which can
be seen as a form of landmark) generating a sequence of
planning problems whose linked solutions solve the original

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problem. We demonstrate, using variants of the FF (Hoff-
mann and Nebel 2001) and LAMA (Richter and Westphal
2010) algorithms, the effectiveness of each of these meth-
ods of abstraction for planning problems.

2 Background

Abstraction is not new to planning: Sacerdoti (1973) devel-
oped ABSTRIPS, a solver that exploits a hierarchy of layers
of abstraction, each removing detail from the layer beneath
it. Bacchus and Yang (1991) identified an important prop-
erty of abstraction techniques that influences how effective
they are in improving efficiency: the downward-refinement
property, that holds when all solutions in abstract space can
be refined into less abstract solutions without need to back-
track across the abstraction hierarchy.

More recently, both heuristic and optimal planning ap-
proaches using pattern databases (Edelkamp 2002; Haslum
et al. 2007) exploit abstractions for heuristic guidance. The
merge-and-shrink approach (Helmert, Haslum, and Hoff-
mann 2007) exploits a form of abstraction, in which DTGs
are multiplied together (to merge them) and then shrunk by
abstracting nodes that share the same relaxed distance to the
goal. Katz and Domshlak (2008) have explored a third kind
of abstraction they call structural abstraction. Domshlak et
al (2009) also examine the ways that abstraction interacts
with planning-as-SAT-solving.

Abstraction has been explored across many areas
of combinatorial problem-solving, but our work is in-
spired by Sturtevant and Buro’s Partial Refinement A-Star
(PRA�) (2005) algorithm for path planning with abstrac-
tions. A crucial factor in their work is that the structure of
the abstract solutions they find forms the basis of the final
complete solutions. In this work, we emulate this idea in
domain-independent planning: we find abstract plans, and
use them to form the basis of concrete plans.

2.1 Terminology

The SAS+ planning formalism (Bäckström and Nebel 1995)
has been widely adopted as a complementary formalism to
the PDDL (Fox and Long 2003) planning formalism. In
SAS+, the state of a planning problem is defined by a set of
finite-domain variables. We denote the domain of variable
V by D(V). An operator in SAS+ encodes a valid transi-
tion between values of the variables, possibly requiring other
variables to hold certain values to support the transition.

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

971

Definition 1 (SAS+ Operator). A SAS+ Operator is a pair
O = 〈I, T 〉, where:
〈V, v〉 ∈ I is a constraint that requires variable V to have

value v during execution of O, known as a prevail condition.
Prevail(O) is the function that returns I.

〈V, u, v〉 ∈ T is a pre/post condition, where variable V
must have the value u before, and takes the value v after,
application of O. PP(O) is the function that returns T .

Definition 2 (SAS+ Planning Task). A planning problem,
π, is a tuple 〈V,O, s0, s�〉, where V is a set of finite-domain
SAS+ variables, O is a set of operators over V , s0 is a set of
initial assignments to V and s� is a set of goal assignments
to a subset of V . A solution to π is a sequence of actions
a1, ..., al in which the final state satisfies s�.

We assume throughout that we are solving ground SAS+
problems and that static preconditions of operators have
been removed during grounding, along with operators with
unsatisfied static preconditions.

The DTG for a SAS+ variable is a graph over nodes repre-
senting the possible values of the variable and with directed
edges representing possible transitions between values in-
duced by actions in the domain. Helmert (2009) automat-
ically translates a significant fragment of PDDL into SAS+,
including construction of DTGs.

The edges of DTGs can correspond to multiple different
kinds of actions, but in many cases DTGs exhibit a strong
homogeneity in which all the actions are instances of the
same kind (for example, all drive actions). DTGs capture an
underlying accessibility graph between values in the vari-
able domains, equivalent to maps over which the variables
can be considered to move (literally or metaphorically) ac-
cording to the legal transitions. Fox and Long (2000) ex-
ploited this observation in Hybrid STAN to identify acces-
sibility graphs and then use a specialised shortest-path algo-
rithm to reduce planning costs; other researchers have ex-
ploited similar ideas. However, in contrast to the current
work, none of the planners that use this structure exploit ab-
straction on the underlying graphs.

3 Abstracting Planning Problems

We begin by defining an abstraction of a SAS+ variable.

Definition 3 (Abstraction of a SAS+ Variable). An ab-
straction of variable V , is an abstract variable, V ′ and a
surjective abstraction function, fV : D(V) → D(V ′).

An abstraction function extends to prevail conditions:
fV (〈V, v〉) = 〈V ′, fV (v)〉 and fV (〈W, v〉) = 〈W, v〉 if
W �= V . It extends to pre/post conditions analogously and
to operators by application to all their elements.

We say that two values, u and v, from the domain of V are
abstracted together if fV (u) = fV (v). An abstract planning
problem is a planning problem where all of the variables are
replaced by abstract variables and all values in the operators
are replaced by their corresponding abstract values.

Definition 4 (Abstract SAS+ Planning Task). Given a
planning task, π = 〈V,O, s0, s�〉, and a set of abstraction
functions, F = {fV |V ∈ V}, the abstract planning task π′

is defined to be 〈V ′,O′, s′0, s
′
�〉, where V ′ is the set of vari-

ables abstracting V , O′ is the image of O under the compo-
sition of the functions in F , s′0 = {〈V ′, fV (v)〉|〈V, v〉 ∈ s0}
and s′� = {〈V ′, fV (v)〉|〈V, v〉 ∈ s�}.

One aspect of successful use of abstraction lies in appro-
priate choice of abstraction functions. In PRA�, the abstrac-
tion function abstracts small cliques of nodes in the acces-
sibility graph. Abstractions can be constructed similarly in
planning: values in small cliques in DTGs can be abstracted
to create abstract planning problems.

3.1 DTG Abstractions

In PRA�, abstract nodes are constructed from strongly con-
nected cliques in the graph. Using cliques has the desirable
property that all concrete points within the abstract node are
directly reachable from each other. In the work that follows,
the abstraction that we use is always clique-based abstrac-
tion, using cliques of size two. We abstract together two
values, u and v, only if there are two actions containing
the pre/post condition 〈V, u, v〉 and 〈V, v, u〉. Our basic ap-
proach to abstraction of DTGs is to iteratively select an ar-
bitrary pair of mutually linked values and abstract them into
a single value. At successive iterations we choose pairs of
values that have not yet been abstracted and repeat the pro-
cess. The abstraction process itself can be iterated to achieve
successive levels of abstraction, as we discuss in section 4.

Whether an abstraction preserves the downward-
refinement property (DRP) depends, in part, on the
dependency relations between abstracted variables and
other variables in the problem. A causal graph (Helmert
2008) is a directed graph recording the dependencies
between variables in a planning domain. We say that a
variable, V , lies on a causal chain if the subgraph in the
causal graph containing V and those variables with a path
to V is acyclic and none of the variables in this subgraph
(other than V itself) has an edge to a variable not in the
subgraph. We say that the causal chain is accessible if
the values of the variables in the chain all form strongly
connected components. There are additional constraints on
DTGs that can contribute to preservation of the DRP:

Homogeneous DTG (HD) A DTG is homogeneous if all
its transitions correspond to the same action type.

Unary Effect (UE) A DTG is unary effect if every edge is
an action that has only one pre/post condition.

Uniform Prevail Conditions (UPC) A DTG has uniform
prevail conditions if, for each transition in the DTG, A,
the DTG is strongly connected when restricted to edges
with the same prevail condition as A.

Many domains in which abstraction proves useful sat-
isfy HD and it can make the process of finding DTGs that
are appropriate to abstract faster if we restrict attention to
those with HD. DTGs with UPC and HD represent a class
of DTGs that can be easily tested to determine the accessi-
bility of their causal chains.

Theorem 1. Abstractions of a UE DTG on an accessible
causal chain have the DRP.

972

I

G

Abstract

I

G

I

G

I

G

Refine

I

G

I

G

Solve

Abstract Refine

Figure 1: An example of an abstract-and-refine process. At
left, nodes bordered by dotted lines are abstracted in the next
level. At right, successive abstract problems are solved. Dot-
ted structure is removed in refinement to lower levels.

Proof (sketch): This result appears to be related to a the-
orem of Haslum’s (2007) and a result of Helmert’s (2008),
showing that abstraction of strongly connected components
in free DTGs preserves DRP. However, it should be noted
that those results are concerned with abstraction by removal
of a variable, where this result is concerned with abstraction
by reduction of the value set in a DTG.

The proof depends on showing that DRP holds for a single
variable abstraction, fV , which can be generalised to mul-
tiple abstractions by induction. Suppose that a′1, ..., a

′
n is

a plan for the abstracted planning task. Each action, a′i is
the abstraction of a corresponding action, ai, in the original
task. Consider the process of applying the actions a1, ..., an
in sequence. Suppose some action, ai, is not executable in
the state, si−1, resulting from application of the preceding
actions. Then there must be distinct values, x and y, such
that V = x in si−1, V = y is a precondition of ai and
fV (x) = fV (y). To demonstrate DRP it is sufficient to show
that there is a sequence of actions, B, applicable to si−1 such
that the state following execution of B is si−1[V = y]. In
this state ai can execute and an inductive argument confirms
that the complete plan can be similarly repaired.

The existence of the sequence B follows from the fact that
V lies on an accessible causal chain, so each variable in the
chain can be set to allow transitions for the variables below
it in the chain, and their values can be restored after V has
been switched from x to y. UE is required to ensure that the
actions that change V from x to y do not have any further
effects on other variables in the problem. �

4 Abstract-and-Refine

Planning problems can scale in two ways: the number of
DTGs can grow and the size of DTGs can grow. In the for-
mer case, planning problems become harder because of the
need to coordinate the values of many interacting variables,
while in the latter they become harder because of the need to
navigate variables through larger DTGs. As the number of
values in DTGs increases, the performance of many planners
can be observed (empirically) to degrade exponentially —
this is true, for example, of those planners based on FF (see,
for instance, figures 2 and 4).

We hypothesise that an abstract-and-refine approach can
be used to improve scaling performance on problems with
large DTGs, such as the Driverlog-1,1,2 problem family, a
set of Driverlog problems in which there is one truck, one
driver and two packages to deliver, but a varying number of
locations to traverse.

4.1 Abstract-and-Refine Algorithm

In order to define the abstract-and-refine (A&R) algorithm,
we introduce a hierarchy of abstractions and refinement.
Definition 5 (Abstraction Hierarchy). Given a planning
task π, an abstraction hierarchy is a sequence of planning
tasks, π, π1, ..., πn, where π1 is an abstraction of π, and πi

is an abstraction of πi−1.
Definition 6 (Refinement). Given a planning task π =
〈V,O, s0, s�〉, an abstract planning task π′ and the set of
facts, F (P), used in a plan P solving π′, a refinement is the
planning task πR = 〈V,OR, s0, s�〉 where

OR = {〈I, T , c〉 ∈ O|∀〈V, v〉 ∈ I fV (v) ∈ F (P) and
∀〈V, u, v〉 ∈ T fV (u), fV (v) ∈ F (P)}

Definition 6 is the key to the A&R approach: the refine-
ment, πR, of a problem, π, with respect to its abstraction,
π′, and a solution, P ′, of π′ is a restriction of the original
problem. The restriction removes the values from the do-
mains of abstracted variables if those values are not used in
P ′. The process also removes ground operators referring to
these values. πR is (usually) easier to solve than π because
it is smaller, containing fewer irrelevant values (and, corre-
spondingly, fewer grounded operators).

A hierarchy of abstractions is constructed using a sim-
ple process to select the values to abstract together in each
successive level of abstraction. In our implementation we
restrict attention to DTGs satisfying HD and UE. This pro-
cess ends when it reaches a fixpoint. To select the starting
point for search within the abstraction hierarchy we follow
the proposal made by Sturtevant and Buro (2005) and begin
at the middle layer in the hierarchy.

Once an abstracted problem is solved, the plan generated
at that level is used to guide the search for a plan at the next
level in the hierarchy. This is achieved by removing from
the refinement all the values that do not correspond to ab-
stract values appearing in the abstract plan. The process is
illustrated in Figure 1. The A&R algorithm is as follows:
Abstract and Refine Algorithm

Given a planning task π:

1. Let π, π1, ..., πn be the abstraction hierarchy for π.
2. Let c = �n/2�
3. Repeat, while c ≥ 0:
(a) Let P be a solution to πc

(b) Decrement c
(c) Let πc be the refinement of P and πc+1

4. Return P

4.2 Algorithm Properties

A&R does not backtrack over bad decisions; if an abstrac-
tion that does not preserve DRP refines into an unsolvable
problem then no solution is returned. In the general case
abstractions do not preserve DRP, therefore A&R is an in-
complete algorithm. In specific cases (for example, when

973

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18

T
im

e
to

 s
ol

ve
 (

se
c.

)

Instance Number

AR-FF
JavaFF

Figure 2: Time to plan in the Roadlog domain.

Theorem 1 holds) completeness can be guaranteed. How-
ever, we do not restrict ourselves to these cases, we insist
only on the UE property. We will demonstrate the practical
implications of this decision.

The Grid domain is an example affected by loss of DRP
and consequent incompleteness. In this domain, a single
variable encodes the position of a robot in a grid. Some of
the locations begin locked, requiring a key to unlock them. If
the abstraction algorithm abstracts two values together that
represent a locked and an unlocked location, then the loca-
tions will be considered both locked and unlocked during
planning. Abstract plans will, therefore, not necessarily use
paths that visit the locations of keys that are required to open
locked locations on the path once it is refined. This problem
demonstrates that the abstraction does not have DRP in gen-
eral: backtracking across abstraction layers is necessary if a
solution is to be found in this case.

Theorem 1 shows how DRP can be maintained, at the
price of reduced applicability of the approach. The Grid do-
main also violates UPC since the transition from a to b has
a prevail condition that b be unlocked, but the same prevail
condition is not sufficient to allow transition from b to a.

4.3 Empirical Evaluation

We compare the performance of A&R FF (AR-FF) with
JavaFF (Coles et al. 2008) (an easily modifiable Java imple-
mentation of FF). AR-FF is built on JavaFF so the compar-
ison evaluates the effect of the A&R process. Experiments
used an Intel 3.16GHz Dual Core CPU with limits of 2GB
memory and 15 minutes.

Choice of Benchmarks We present results for five bench-
mark domains: Roadlog, Driverlog, Rovers, Goldminer and
Grid. AR-FF abstracts (according to the process described in
section 3.1), but only DTGs satisfying the UE restrictions.
Any problem which has no DTGs meeting these criteria is
not abstracted and is therefore solved in the same time and
memory as standard JavaFF. We therefore only show results
on benchmarks containing UE DTGs. Roadlog is a vari-
ant of Driverlog in which the drivers are removed and the
maps are planar graphs: we explore this version because the
geometric structure of the maps is more realistic and also,
possibly, more susceptible to the PRA� approach. The first
five Grid problems are the IPC instances, the remainder were
generated by the authors. The Goldminer instances are the
problems used in the IPC learning track for evaluation.

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

T
im

e
to

 p
la

n
fo

r
Ja

va
F

F
 (

se
c.

)

Time to plan for AR-FF (sec.)

Roadlog
Driverlog

Rovers

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90

P
la

n
qu

al
ity

 fo
r

Ja
va

F
F

Plan quality for AR-FF

Roadlog
Driverlog

Rovers

Figure 3: Time to plan for A&R (top), Quality of plans for
A&R (bottom)

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300 350 400

T
im

e
to

 S
ol

ve
 (

se
c.

)

Number of Locations

AR-FF
JavaFF

Figure 4: Performance of JavaFF and AR-FF in Driverlog-
1,1,2, with increasing numbers of locations (x-axis).

AR-FF is influenced by two opposing factors: solving
multiple abstract problems slows search, while refining
planning problems reduces their size and hence the time to
solve them. The number of layers scales approximately log-
arithmically with the number of locations, as expected.

Refinement removes choices for the planner at each level
of the abstraction. This creates a tradeoff: the abstraction-
based search can speed the discovery of a solution, but the
pruned search space can prune high quality solutions, so that
the final result is a lower quality solution than is optimal
in the original search space. Of course, JavaFF is not an
optimal planner, so there is no guarantee that either planner
finds optimal plans in any of the problems.

In the Roadlog domain, Figure 2 shows that time perfor-
mance is improved. In the Rovers domain (Figure 3) plans
are typically found more quickly, especially for larger in-
stances. Figure 3 shows the distribution of relative plan qual-
ities across the domains, confirming that the use of abstrac-
tions does not lead to a significant change in plan quality

974

I

G G

G G

I

GGI

I

G

I

G

I

G

Abstract
sub−problem(s)
Next

Solve

First sub−problem

Final sub−problem

Figure 5: A&C. The problem is abstracted (left) and the re-
sulting problem solved (top). Each abstract action defines a
new problem (right), solved in sequence.

across the entire problem set.
Due to the incompleteness issues discussed in the pre-

vious section, AR-FF fails to solve some of the Goldminer
and Grid instances: AR-FF fails to solve 4/30 Goldminer in-
stances, but solves 25 more instances overall than JavaFF.
AR-FF solves 16/20 Grid problems compared with 11/20 for
JavaFF. In these domains at least, the advantage gained in
scalability improvements outweighs the disadvantage pre-
sented by the incompleteness.

Figure 4 shows results for Driverlog-1,1,2 problem: AR-
FF solves instances with 400 locations relatively easily,
while JavaFF fails at 150-location problems, demonstrating
that the A&R approach can improve the scaling performance
of planners faced with large DTGs.

5 Abstract-and-Conquer

We now consider a different way to exploit the same ab-
straction, using an abstract-and-conquer approach (A&C).
The name references the standard divide-and-conquer recur-
sive algorithm design strategy. In this approach, an abstract
plan is found and the abstract effects of each action are used
as intermediate goals. This is similar to the use of landmarks
in STeLLa (Sebastia, Onaindia, and Marzal 2002) to create
a sequence of planning problems.

Figure 5 illustrates the process. The abstract solution is
used as a skeleton for the concrete plan. The sequential
search is shown on the right side of the diagram. For each
action in the abstract plan a corresponding sub-problem is
created with an initial state equal to the final state of the plan
so far and a goal state equal to the abstract effect of the ac-
tion. This abstract goal corresponds to a disjunctive concrete
goal formed from the abstracted nodes in the graph. More
generally, the process can apply to a hierarchy of abstrac-
tions (in direct analogy with the recursive use of divide-and-
conquer), but we have found it best to apply only one or two
levels of abstraction before solving the problem directly.

A formal description of the algorithm relies on the follow-
ing definition of an augmented planning task.
Definition 7 (Augmented SAS+ Planning Task). Given a
planning task, π = 〈V,O, s0, s�〉, and an abstract planning
task π′ = 〈V ′,O′, s′0, s

′
�〉, an augmented planning task is

defined as π+ = 〈V+,O+, s+0 , s
+
� 〉, where V+ = V ∪ V ′,

O+ = {〈I ∪ I ′, T ∪ T ′〉|O = 〈I, T 〉 ∈ O and
〈I ′, T ′〉 ∈ O′ is the abstraction ofO}

s+0 = s0 ∪ s′0 and s+� = s�.
The A&C algorithm is as follows:

Abstract-and-Conquer Algorithm

Given a planning task, π:

1. Let π′ be an abstraction of π.
2. Let 〈V+,O+, s+0 , s�〉 be the augmentation of π and π′ .

3. Let P ′ be a plan for π′ , let P0 be the empty plan, let sc = s+0 .

4. For all O′ ∈ P ′ :
(a) Let effs(O′) be the effects of O′

(b) Let P+ be a plan for 〈V+,O+, sc, effs(O′)〉
(c) Let Pc = Pc + P+ and sc be the final state induced by P+

5. Let P+ be a plan for 〈V+,O+, sc, s�〉.

6. Return Pc + P+

This algorithm generates a plan for the original problem
by linking together subplans connecting the last state of the
preceding subplan to a goal created by taking the effects of
the next abstract action in a solution to the abstracted prob-
lem. Since achieving the effects of the last abstract operator
might not achieve the original goal, a last subplan has to be
added to navigate to the final goal state. In the best case,
there will be nothing to do in this step; in the worst-case, too
much information is lost in the abstraction and significant
extra work is required. In A&C we lift the restriction that
abstraction be applied only to DTGs satisfying HD and UE.

5.1 Algorithm Properties

One clear advantage of A&C over the abstract-and-refine
approach is that the problems associated with DRP are re-
duced. This is because each augmented problem has ac-
cess to the entire set of operators, since no refinement-based
filtering takes place. The improvement in planning perfor-
mance is gained from the planner having to find relatively
short plans to achieve the effects of each abstract step. How-
ever, there is still a potential problem with incompleteness
that could be resolved by backtracking, where, in achieving
an intermediate abstract goal, the plan moves into a dead-
end. This can happen if the problem involves tightly con-
strained resources, where the abstract plan can mislead the
planner into pursuing a path that cannot be refined within the
constraints of the resource availability. We have not experi-
enced this problem in practice.

5.2 Empirical Analysis

We implemented A&C as a simple harness around
LAMA (Richter, Helmert, and Westphal 2008), creating a
SAS+ instance for each of the individual steps, each passed
to a new invocation of LAMA. A disadvantage of this sim-
ple implementation is that the majority of execution time
is spent writing subproblem instances to file and in LAMA
rereading them. For this reason, search nodes provide a bet-
ter reflection of performance than run-times.

Figure 6 (left) compares the numbers of nodes expanded
when using A&C or not. The graph is log-scaled, so the
benefit favours A&C with exponential improvements, par-
ticularly in Rovers, Logistics, Satellite and Driverlog. The
behaviour in Grid and Goldminer is mixed, although the pat-
tern is similar. These are both domains in which the abstract
solutions can require significant work to refine, due to the
resource constraints in each of the domains.

975

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000

N
od

es
 E

xp
an

de
d

W
ith

 A
bs

tr
ac

tio
n

Nodes Expanded Without Abstraction

Driverlog
Rovers

Satellite
Logistics

Goldminer
Grid

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16 18 20

N
od

es
 E

xp
an

de
d

to
 F

irs
t S

ol
ut

io
n

Problem Number

No Abstraction
Single Variable Abstraction

Multi-variable Abstraction

 10

 100

 1000

 10000

 10 100 1000 10000

A
C

-L
A

M
A

 N
od

es
 E

xp
an

de
d

AR-FF Nodes Expanded

Grid
Goldminer

Driverlog
Rovers

Roadlog

Figure 6: Nodes expanded by LAMA to find first solution: (left) with A&C (log-log-scaled); (centre) using no abstraction,
single-variable-abstraction and multi-variable-abstraction (log-scaled) in the Zeno domain. Right: Comparison of A&R and
A&C.

The performance of A&C in the Zeno domain (Figure 6)
shows the potential benefit of lifting the UE constraint. With
the UE restriction, only the passenger variables abstract.

In terms of quality, abstract-and-conquer generally pro-
duces plans that are up to 10% poorer, although in a few
problems in Grid, Goldminer and Driverlog domains the
quality deteriorates by as much as 50-100%. It is unsurpris-
ing that quality is adversely affected by the approach, since
the subplans are combined naively.

Figure 6 (right) shows a comparison of numbers of nodes
expanded using AR-FF and A&C. This comparison is not
entirely equal, since the work performed at nodes is different
between LAMA and FF. Nevertheless, the trend appears to
favour the A&C approach.

6 Conclusions

The ability to abstract is the ability to focus on relevant in-
formation, while discarding irrelevant detail. We have pre-
sented Abstract-and-Refine-FF, a planner that uses graph ab-
straction and refinement in order to improve planning perfor-
mance, and a second approach to exploitation of abstraction,
based on abstract-and-conquer.

In our experiments AR-FF is shown to solve more in-
stances and solve larger instances faster than JavaFF while
not significantly reducing plan quality. Our second approach
offers an exponential improvement in the number of nodes
searched by LAMA. We anticipate that this will translate
into a similar time-performance benefit in an integrated im-
plementation. Nevertheless, one of the attractions of the
abstract-and-conquer approach is that it can be used easily
with any planning system. Abstraction approaches provide
fertile ground both for new planning research and for further
increasing the scalability of planning algorithms.

References

Bacchus, F., and Yang, Q. 1991. The Downward Refinement Prop-
erty. In Proc. Int. Joint Conf. on AI (IJCAI), 286–292.
Bäckström, C., and Nebel, B. 1995. Complexity Results for SAS+
Planning. Computational Intelligence 11:625–656.
Coles, A. I.; Fox, M.; Long, D.; and Smith, A. J. 2008. Teach-
ing Forward-Chaining Planning with JavaFF. In Colloquium on AI
Education, 23rd AAAI.

Domshlak, C.; Hoffmann, J.; and Sabharwal, A. 2009. Friends or
Foes? On Planning as Satisfiability and Abstract CNF Encodings.
J. Art. Intel. Res. (JAIR) 36:415–469.
Edelkamp, S. 2002. Symbolic pattern databases in heuristic search
planning. In Proc. Int. Conf. on AI Planning and Scheduling
(AIPS), 274–283.
Fox, M., and Long, D. 2000. Hybrid STAN: Identifying and Man-
aging Combinatorial Optimisation Sub-problems in Planning. In
Proc. Int. Joint Conf. on AI (IJCAI), 445–452.
Fox, M., and Long, D. 2003. PDDL2.1: An extension of PDDL
for expressing temporal planning domains. J. Art. Intel. Res. (JAIR)
20:61–124.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern database
heuristics for cost-optimal planning. In Proc. 22nd Conf. Ass. Adv.
AI (AAAI), 1007–1012.
Haslum, P. 2007. Reducing accidental complexity in planning
problems. In Proc. Int. Joint Conf. on AI (IJCAI), 1898–1903.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible Ab-
straction Heuristics for Optimal Sequential Planning. In Proc. Int.
Conf. AI Planning and Scheduling (ICAPS), 176–183.
Helmert, M. 2008. Understanding Planning Tasks: Domain
Complexity and Heuristic Decomposition, volume 4929 of Lecture
Notes in Computer Science. Springer.
Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Art. Int. 173(5-6):503–535.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. J. Art. Intel. Res.
(JAIR) 14:253–302.
Katz, M., and Domshlak, C. 2008. Structural Patterns Heuris-
tics via Fork Decomposition. In Proc. Int. Conf. AI Planning and
Scheduling (ICAPS), 182–189.
Richter, S., and Westphal, M. 2010. The LAMA Planner: Guiding
Cost-Based Anytime Planning with Landmarks. J. Art. Intel. Res.
(JAIR) 39:127–177.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks
Revisited. In Proc. Conf. Ass. Adv. of AI (AAAI), 975–982.
Sacerdoti, E. D. 1973. Planning in a hierarchy of abstraction
spaces. In Proc. Int. Joint Conf. on AI (IJCAI), 412–422.
Sebastia, L.; Onaindia, E.; and Marzal, E. 2002. STeLLa v2.0 :
Planning with Intermediate Goals. In Proc. IBERAMIA, 805–814.
Sturtevant, N. R., and Buro, M. 2005. Partial Pathfinding Us-
ing Map Abstraction and Refinement. In Proc. Nat. Conf. on AI
(AAAI), 1392–1397.

976

