
Qualitative Numeric Planning

Siddharth Srivastava and Shlomo Zilberstein and Neil Immerman
Department of Computer Science

University of Massachusetts, Amherst, MA 01003
{siddharth, shlomo, immerman}@cs.umass.edu

Hector Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, SPAIN
hector.geffner@upf.edu

Abstract

We consider a new class of planning problems involving a set
of non-negative real variables, and a set of non-deterministic
actions that increase or decrease the values of these variables
by some arbitrary amount. The formulas specifying the ini-
tial state, goal state, or action preconditions can only assert
whether certain variables are equal to zero or not. Assuming
that the state of the variables is fully observable, we obtain
two results. First, the solution to the problem can be expressed
as a policy mapping qualitative states into actions, where a
qualitative state includes a Boolean variable for each origi-
nal variable, indicating whether its value is zero or not. Sec-
ond, testing whether any such policy, that may express nested
loops of actions, is a solution to the problem, can be deter-
mined in time that is polynomial in the qualitative state space,
which is much smaller than the original infinite state space.
We also report experimental results using a simple generate-
and-test planner to illustrate these findings.

1 Introduction

The problem of planning with loops (Levesque 2005), has
received increasing attention in recent years (Srivastava
et al. 2008; Bonet et al. 2009; Hu and Levesque 2010;
Srivastava et al. 2010), as situations where actions or plans
have to be repeated until a certain condition is achieved are
quite common. For example, the plan for chopping a tree
discussed by Levesque involves getting an axe, moving to
the tree, and chopping the tree until it falls down. The plan
thus includes the action chop, which must be repeated a fi-
nite, but unknown number of times. In this work, we aim to
understand the conditions under which plans with loops of
various forms may be required, and likewise, the conditions
under which execution can be guaranteed to lead to the goal
in finitely many steps.

We consider a new class of planning problems involving
a set of non-negative real variables x1 . . . , xn, and a set of
actions that increase or decrease the values of these variables
by an arbitrary random positive amount. These effects, de-
noted as inc(xi) (resp. dec(xi)), change the value of xi to
xi + δ (resp. xi − δ), where δ is some arbitrary positive
value that could vary over different instantiations of an ac-
tion. The only restrictions are that (1) decreases never make

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a variable negative, i.e., δ cannot be greater than xi when xi

is decreased, and (2) a sequence of decreases will eventually
make any variable x equal to 0.

For the chopping tree example, for instance, we may as-
sume that the action “chop” decreases the probability of the
tree not falling by some random amount δ each time, so that
if this probability x is initially x = 1, it will be x = 1−δ ≥ 0
after a single “chop” action, and it will be x = 0 (“tree falls
down”) after a finite sequence of actions whose length can-
not be predicted. Other examples could involve refueling a
vehicle, shoveling snow, or loading a truck. Our goal is to
develop a general framework for planning with actions that
could affect multiple variables simultaneously.

Plans in such non-deterministic settings naturally require
loops, and in many cases, nested or complex loops. For ex-
ample, suppose that initially x = 10 and y = 5, and the
goal is x = 0. The available actions are a with precondition
y = 0 and effects dec(x) and inc(y), and b with no precon-
ditions and effect dec(y). A plan for this problem involves a
loop in which the action b is repeated (in a nested loop) until
y = 0 and then the action a is performed. The main loop
repeats until x = 0.

We consider the simplest setting where the need for such
loops arises, restricting the literals in action preconditions,
initial and goal states to be of the form x = 0 or x �= 0.
The effects of all the actions are of the form inc(x) (ran-
dom increases) or dec(x) (random decreases). For the sake
of simplicity, the representation does not include Boolean
propositions, but such an extension is straightforward.

We assume initially that the states (variable values) are
fully observable. One of the key results is that, given the na-
ture of the literals in action preconditions, initial and goal
states, full observability provides no more useful informa-
tion than partial observability, which only indicates whether
each variable is equal to zero or not. We refer to such abstract
states as qualitative states, and show that solutions to plan-
ning problems considered in this paper can be expressed as
functions or policies that map qualitative states into actions.
For example, the above problem with a nested loop,

repeat {repeat {b} until (y = 0); a; } until (x = 0)

corresponds to the following qualitative policy π:

π(qs) = a if y = 0 in qs ; π(qs) = b if x �= 0 and y �= 0

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1010

where qs ranges over qualitative states.
Furthermore, we develop a sound and complete algorithm

for testing whether a plan with loops expressed by a pol-
icy π solves the problem; meaning, that it terminates in a
goal state in a finite number of steps. This algorithms runs
in time that is polynomial in the size of the qualitative space,
which is exponential in the number of variables, but still
much smaller than the original state space, which is infinite.
Experiments with a simple generate-and-test planner are re-
ported, illustrating the potential utility of these results.

2 The Planning Problem
We begin by defining the fully-observable non-deterministic
quantitative planning problem, or simply the planning prob-
lem to be discussed in this paper. Throughout the paper, we
will make the assumption that whenever an action (qualita-
tive or quantitative) has a decrease effect on x, the action
preconditions include x �= 0. Given a set of variables X , let
LX denote the class of all consistent sets of literals of the
form x = 0 and x �= 0, for x ∈ X .
Definition 1. A quantitative planning problem P =
〈X, I,G,O〉 consists of X , a set of non-negative numeric
variables; I , a set of initially true literals of the form x = c,
where c is a non-negative real, for each x ∈ X; G ∈ LX , a
set of goal literals; and O, a set of action operators. Every
ai ∈ O has a set of preconditions pre(ai) ∈ LX , and a set
eff(ai) of effects of the form inc(x) or dec(x) for x ∈ X .

This formulation is related to the general numeric
planning problem (Helmert 2002), but includes non-
deterministic actions and uses limited forms of precondi-
tions and goals.

A setting of the variables in X constitutes a state of the
quantitative planning problem. Unless otherwise specified,
a “state” in this paper refers to such a state. When needed
for clarity, we will refer to these states as quantitative states.
Note that these states are fully obvervable. We use sI to rep-
resent the initial state of the problem, corresponding to the
assignment I . Solutions to quantitative planning problems
can be expressed in the form of policies, or functions from
the set of states of P to the set of actions in O. Without loss
of generality, we will assume that all policies discussed in
this paper are partial. In particular, states satisfying the goal
condition are not mapped to any action.

A sequence of states, s0, s1, . . . is a trajectory given a pol-
icy π iff si+1 ∈ ai(si), where ai = π(si). Intuitively, a pol-
icy π solves P if every trajectory given π beginning with sI
leads to a state satisfying the goal condition in a finite num-
ber of steps. To make this definition formal, we first define
ε-bounded transitions and trajectories:
Definition 2. The pair (s1, s2) is an ε-bounded transition if
there exists ai ∈ O such that for every variable x, if inc(x) ∈
eff(ai), then the value of x in s2 (denoted x(s2)) is x(s1) +
δ, δ ∈ [ε,∞) and for every variable x such that dec(x) ∈
eff(ai), x(s2) = x(s1)− δ, where δ ∈ [min(ε, x), x].

An ε-bounded trajectory is one in which every consecutive
pair of states is an ε-bounded transition.

In ε-bounded trajectories, no variable can be decreased
an infinite number of times without also being increased an

infinite number of times. Recall that a variable being positive
is a precondition of every action that decreases the variable.
We can now define when a policy solves a given quantitative
planning problem:

Definition 3. A policy π solves P = 〈X, I,G,O〉 if for any
ε > 0, every ε-bounded trajectory given π starting with sI
is finite and ends in a state satisfying G.

While each ε-bounded trajectory of a solution policy must
be of some finite length, the policy itself must cover an infi-
nite set of reachable states. Consequently, explicit represen-
tations of such policies in the form of state-action mappings
will be infinite, making explicit representations infeasible,
and the search for solutions difficult. In order to deal with
this problem, we use a particularly succinct policy represen-
tation that abstracts out most of the information present in a
quantitative state, and yet is sufficient to solve the problem.

2.1 Qualitative Formulation

We consider an abstraction of the quantitative planning
problem defined above, where qualitative states (qstates) are
elements of LX , for a set of variables X . We first define the
effect of qualitative increase and decrease operations on qs-
tates, and then show their correspondence with the original
planning problem.

The qualitative version of inc(x) always results in a state
where x �= 0. The qualitative version of dec(x), when ap-
plied to a qstate where x �= 0 results in two qstates, one
with x �= 0 and the other with x = 0. For notational conve-
nience we will use the same terms (inc and dec) to represent
qualitative effects and clarify the usage when it is not clear
from the context. The outcome of a qualitative action with
dec() effects on k different non-zero variables includes 2k

qstates representing all possible combinations of each quali-
tative effect. While large, this is better than the infinite set of
quantitative states that could arise from a single action that
adds or subtracts any possible δ.

Definition 4. A qualitative planning problem P̃ =
〈X̃, Ĩ, G, Õ〉 for a set of variables X , consists of X̃ , the set
of literals x = 0 and x �= 0 for x ∈ X; Ĩ ∈ LX , a set of ini-
tially true literals from X̃; G ∈ LX the set of goal literals;
and Õ, a set of qualitative action operators. Every ai ∈ Õ
has a set of preconditions pre(ai) ∈ LX and a set eff(ai) of
qualitative effects of the form inc(x) or dec(x), for x ∈ X .

Any quantitative planning problem P can be abstracted
into a qualitative planning problem by replacing each as-
signment in I with the literal of the form x = 0 or x �= 0
that it satisfies, and replacing inc and dec effects in actions
with their qualitative counterparts. Similarly, every state s
over a set of variables X corresponds to the unique qstate s̃
obtained by replacing each variable assignment x = c in s
with x = 0 if c = 0 and x �= 0 otherwise. We denote the set
of states corresponding to a qstate s̃ as γ(s̃).

Example 1. For the example used in the introduction, X =
{x, y}; I = {x = 10, y = 5}; G = {x = 0}; O = {a, b},
where a = 〈pre:{y = 0}; eff:(dec(x), inc(y))〉 and b =
〈pre:{}; eff:(dec(y))〉.

1011

The qualitative version of this problem defined over X has
the same G, with X̃ = {x = 0, x �= 0, y = 0, y �= 0};Ĩ =

{x �= 0, y �= 0} and Õ has the same operators as O but uses
the qualitative forms of inc and dec effects.

The qstate s̃I = {x �= 0, y �= 0}. γ(s̃I) includes sI , and
infinitely many additional states where x and y are non-zero.

Notation In the rest of this paper, we will refer to the quan-
titative planning problems that can be abstracted into a qual-
itative planning problem P̃ as the quantitative instances of
P̃ . We will use the notation ã and s̃ to denote the qualita-
tive versions of an action a and state s, respectively. Since
the class of states represented by any qstate is always non-
empty, any qstate can be represented as s̃ for some state s.

The following result establishes a close relationship be-
tween the quantitative and qualitative formulations:

Theorem 1. (Soundness and completeness of qualitative ac-
tion application) s̃2 ∈ ã(s̃1) iff there exists t ∈ γ(s̃2) such
that t ∈ a(s1).

Proof. If t ∈ a(s1), then it is easy to show the desired conse-
quence (soundness) because the qualitative inc and dec op-
erators capture all possible qualitative states resulting from
inc and dec.

In the other direction, if s̃2 ∈ ã(s̃1), the desired element t
can be constructed as follows. If a and ã decrease a variable
x, then we must have x �= 0 in s1 and either x �= 0 or
x = 0 in s̃2. In either case, we can use a suitable δ for the
decrease to arrive at a value of x satisfying the condition.
If a increases a variable, then we can use any δ for inc(x),
because s̃2 must have x �= 0. In this way we can choose δ’s
for each inc/dec operation in a to arrive at a setting of the
variables corresponding for t ∈ a(s1) ∩ γ(s̃2).

2.2 Qualitative Policies

A qualitative policy for a qualitative problem P̃ is a mapping
from the qstates of P̃ to its actions. A terminating qualitative
policy is one whose instantiated, ε-bounded trajectories are
finite. Formally,

Definition 5. Let π̃ be a qualitative policy. An instantiated
trajectory of π̃ started at qstate t̃ is a sequence of quantita-
tive states s0, s1, . . ., such that s0 ∈ γ(t̃) and si+1 ∈ ai(si),
where ai is the quantitative action corresponding to the ac-
tion ãi = π̃(s̃i).

Definition 6. A qualitative policy is said to terminate when
started at s̃i iff all its instantiated, ε-bounded trajectories
started at s̃i are finite.

A qualitative policy π̃ is said to solve a qualitative plan-
ning problem Q = 〈X, Ĩ, G, Õ〉 iff: (1) π̃ terminates when
started at the initial state s̃I and (2) every instantiated ε-
bounded trajectory of π̃ started at s̃I ends at a state satisfy-
ing the goal condition G.

If π̃ is a qualitative policy for a qualitative planning prob-
lem, P̃ , then π̃ defines a corresponding policy π for any
quantitative instance P of P̃ : π(s) is the quantitative ver-
sion of the action π̃(s̃). However, the converse is not true:
a quantitative policy may map different states represented

by the same qstate to different actions. In such cases, it is
not clear which action this qstate must be mapped to under
a qualitative policy. To distinguish the class of quantitative
policies that do yield a natural qualitative policy, we use the
following notions:

Definition 7. Let P = 〈X, I,G,O〉 be a quantitative plan-
ning problem. Two states s1, s2 of P are qualitatively similar
iff ∀x ∈ X, (x=0 in s1) ⇔ (x=0 in s2). Otherwise, they
are qualitatively different.

A policy π for P is essentially qualitative iff π(s) = π(s′)
for every pair of qualitatively similar states s, s′.

Note that qualitative similarity is an equivalence relation
over the set of quantitative states. Essentially qualitative
policies can be naturally translated into qualitative policies.
In order to show that any problem P must have a qualita-
tive solution if it has a quantitative solution, we first define a
method for translating a state trajectory into the qstate space:

Definition 8. An abstracted trajectory given a quantita-
tive policy π starting at state s0 is a sequence of qstates
s̃0, s̃1, . . ., corresponding to an ε-bounded trajectory given
π, s0, s1, . . ., where each si is qualitatively different from
si+1.

We now present the main result of this section. Proofs of
the lemmas used to prove this result are presented in Ap-
pendix A.

Theorem 2. If P has a solution policy then it also has a
solution policy that is essentially qualitative.

Proof. Suppose the conclusion is not true, and every solu-
tion policy for P requires that two qualitatively similar states
s1 and s2 are mapped to different actions. Let π be such a
solution policy with π(s1) = a1 and π(s2) = a2. By our
assumption, a1(s2) must be an unsolvable state.

Let π′ be a policy such that π′ is the same as π, except
that π′(s2) = a1. Let the set of abstracted trajectories for π
and s1 be AT1, and AT2, those for π′ and s2. By Lemma 1
(see Appendix A for proofs of lemmas), since s1 and s2 are
qualitatively similar, we know that π and π′ have the same
set of abstracted trajectories. As π solves P , by Lemma 2 π′
also solves P . Thus, s1 and s2 can be mapped to the same
action and we have a contradiction.

This result gives us an effective method to search for so-
lutions to the original planning problem whose policies need
to map an entire space of real-valued vectors to actions: we
only need to consider policies over the space of qualitative
(essentially boolean) states. Further, we only need to solve
the qualitative version of a problem to find a solution policy:
a qualitative policy π̃ solves P̃ iff the natural quantitative
translation π of π̃ solves P (Cor. 1, Appendix A).

3 Identifying Qualitative Solution Policies

We now present a set of results and algorithms for deter-
mining when a qualitative policy solves a given qualitative
problem. These methods abstract away the need for testing
all ε-bounded trajectories. Since Theorem 2 shows that the
only policies we need to consider are qualitative policies, in

1012

the rest of this paper “policies” refer to qualitative policies,
unless otherwise noted. We use the following observation as
the central idea behind the methods in this section:
Fact 1. In any ε-bounded trajectory, no variable can be de-
creased infinitely often without an intermediate increase.

Let ts(π, s̃I) be the transition system induced by a policy
π with s̃I as the initial qstate. Thus, ts(π, s̃I) includes all
qstates that can be reached from s̃I using π. In order to en-
sure that π solves P̃ , we check ts(π, s̃I) for two independent
criteria: (a) if an execution of π terminates, it terminates in
a goal state; and (b) that every execution of π terminates.
We call a state in a transition system terminal if there is no
outgoing transition from that state. Test (a) above is accom-
plished simply by checking for the following condition:
Definition 9. (Goal-closed policy) A policy π for a quali-
tative planning problem P̃ = 〈X, Ĩ,G, Õ〉 is goal-closed if
the only terminal states in ts(π, s̃I) are goal states.

If a policy π solves a qualitative planning problem P̃ then
it must be goal-closed (Lemma 3, Appendix A). Testing that
a policy is goal-closed takes time linear in the number of
states in ts(π, s̃I). It is easy to see that if a policy terminates
then it must do so at a terminal node in ts(π, s̃I). Conse-
quently, if we have a policy π that is goal-closed and can
also be shown to terminate (as per Def. 6), then π must be a
solution policy for the given qualitative planning problem.

Terminating qualitative policies are a special form of
strong cyclic policies (Cimatti et al. 2003). A strong cyclic
policy π for a qualitative problem P̃ is a function map-
ping qstates into actions such that if a state s is reachable
by following π from the initial state, then the goal is also
reachable from s by following π. The execution of a strong
cyclic policy does not guarantee that the goal will be eventu-
ally reached, however, as the policy may cycle. Indeed, the
policies that solve P̃ can be shown to be terminating strong
cyclic policies for P̃ :

Theorem 3. π is a policy that solves P̃ iff π is a strong
cyclic policy for P̃ that terminates.

Proof. Suppose π is a policy that solves P̃ and has a cyclic
transition graph. By Def. 6, π must terminate at a goal state.
Suppose s is a qstate reachable from sI under π. If there is no
path from s to the goal, then no instantiated trajectory from
s will end at a goal state, contradicting the second condition
in Def. 6. Thus, π must be strong cyclic. The converse is
straightforward.

The set of terminating qualitative policies is a strict sub-
class of the set of strong cyclic policies, which in turn is a
strict subclass of goal-closed policies. If we can determine
whether or not a policy terminates, then we have two meth-
ods for determining if it solves a given problem: by proving
either that the policy is goal-closed or that it is strong cyclic.

3.1 Identifying Terminating Qualitative Policies

We now address the problem of determining when a qualita-
tive policy for a given problem will terminate. Execution of
a policy can be naturally viewed as a flow of control through

Algorithm 1: Sieve Algorithm
Input: g = ts(π, s̃I)

1 if g is not strongly connected then
2 Goto Step 11

end
3 repeat
4 Pick an edge e of g that decreases a variable that no edge

in g increases
5 Remove e from g

until Step 2 finds no such element
6 if g is acyclic then
7 Return Terminating

end
8 if no edge was removed then
9 Return “Non-terminating”

end
10 if edge(s) were removed then

11 for each g′ ∈ SCCs-of(g) do

12 if Sieve(g′)= “Non-terminating” then
13 Return “Non-terminating”

end

end
14 Return “Terminating”

end

the transition graph of the policy. Therefore, to determine if
π terminates, we check if every strongly connected compo-
nent (SCC) in ts(π, s̃I) will be exited after a finite number
of steps in any execution.

The Sieve algorithm (Alg. 1) is a sound and complete
method for performing this test. The main sections of the
algorithm apply on the SCCs of the input g. Lines 1 & 2
(see Alg. 1) redirect the algorithm to be run on each strongly
connected component in the input (lines 11-13). The main
algorithm successively identifies and removes edges in an
SCC that decrease a variable that no edge increases. Once
all such edges are removed in lines 4 & 5, the algorithm’s
behavior depends on whether or not the resulting graph is
cyclic. If it isn’t, then the algorithm identifies this graph as
“Terminating” (line 5). Otherwise, its behavior depends on
whether or not edges were removed in lines (4 & 5). If they
weren’t, then this graph is identified to be non-terminating.
If edges were removed, the algorithm recurses on each SCC
in the graph produced after edge removal (10-13). The result
“Non-terminating” is returned iff any of these SCCs is found
to be non-terminating (line 13).
Theorem 4. (Soundness of the Sieve Algorithm) If the sieve
algorithm returns “Terminating” for a transition system g =
ts(π, s̃I), then π terminates when started at s̃I .

Proof. By induction on the recursion depth. For the base
case, consider an invocation of the sieve algorithm that re-
turns “Terminating” through line 6 after removing some
edges in lines 4-5. Fact 1 implies that in any execution of
g, the removed edges cannot be executed infinitely often be-
cause they decrease a variable that no edge in the SCC in-
creases. The removal of these edge corresponds to the fact
that no path in this SCC using these edges can be executed
infinitely often. Since g becomes acyclic on the removal of

1013

these edges, after finitely many iterations of the removed
edges flow of control must take an edge that leaves g.

For the inductive case, suppose the algorithm works for
recursive depths≤ k and returns “Terminating” when called
on an SCC that requires a recursion of depth k + 1. The
argument follows the argument above, except that after the
removal of edges in lines 4-5, the graph is not acyclic and
Sieve algorithm is called on each resulting SCC. In this
case, by arguments similar to those above, we can get a
non-terminating execution only if there is a non-terminating
execution in one of the SCCs in the reduced graph (g′ ∈
SCCs-of(g)), because once the flow of control leaves an SCC
in the reduced graph it can never return to it, by definition
of SCCs. We only need to consider the reduced graph here
because edges that are absent in this reduced graph can only
be executed finitely many times.

However, the algorithm returned “Terminating”, so each
of the calls in line 12 must have returned the same result.
This implies, by the inductive hypothesis, that execution
cannot enter a non-terminating loop in any of the SCCs g′,
and therefore, must terminate.

Theorem 5. (Completeness of the sieve algorithm) Suppose
the sieve algorithm returns “Non-terminating” for a certain
transition system g = ts(π, s̃I). Then π is non-terminating
when started at s̃I .

Proof. Suppose the sieve algorithm returns “Non-
terminating”. Consider the deepest level of recursion
where this result was generated in line 9. We show that the
SCC g0 for which this result was returned actually permits a
non-terminating ε-bounded trajectory given π, for any ε. Let
s̃0 be a state in g0 through which g0 can be entered. Let the
total number of edges in g0 that decrease any variable be D,
and let the number variables that undergo a decrease be V .

Consider a state q0 ∈ γ(s̃0) where every variable that is
non-zero in s̃0 is assigned a value of at least 3DV ε. For ev-
ery variable xi that is decreased, let (s̃i, t̃i) be an edge that
increases it. Let pi be the smallest path s̃0 →∗ s̃i → t̃i →∗
s̃0 in the SCC g0. We can then construct a non-terminating
execution sequence as follows: for each variable xi being
decreased, follow the path pi exactly once in succession, us-
ing the following δs starting with s0: the δ for every inc
operation is at least 3DV ε; the δ for each dec(x) operation
is either (a) ε, if the result state in this path following this
operation has x �= 0, or, (b) x, if the result state has x = 0.

The execution of any path causes a maximum of 2D decs
on any variable that is not zero in s̃0, and this occurs only
if the variable was never set to zero, in which case it will
be increased again in the path leading to s̃0, resulting in a
higher value. Also, after this round of executing V paths,
each non-zero variable must be at least 3DV ε − 2DV ε +
3DV ε. Thus the final value of every variable x �= 0 in s̃0
increases after one iteration of this execution sequence, and
this sequence can be repeated ad infinitum. The main result
follows, because we can construct an si ∈ γ(s̃I) that leads
to a value of at least 3DV ε for every non-zero variable in
s̃0 along a linear path from s̃I to s̃0. (This application may

result in a value greater than 3DV ε, if ε can take on only
positive integral values.)

Note that these results continue to hold in settings where
the domains of any of the variables and action effects on
those variables are positive integers, under the natural as-
sumption that ε, or the minimum change caused by an ac-
tion on those variables, must be at least 1. The results follow,
since Theorem 1 and Fact 1 continue to hold.

4 Experiments

We implemented the algorithms presented above using a
simple generate and test planner that is sound and complete:
it finds a solution policy for a given problem (which may
or may not be qualitative) iff there exists one. The purpose
of this implementation is to illustrate the scope and appli-
cability of the proposed methods. The experiments show
that these methods can produce compact plans that can han-
dle complex situations that are beyond the scope of existing
planners. The following section presents some directions for
building an even more scalable planner based on these ideas.

The planner works by incrementally generating policies
until one is found that is goal-closed and passes the Sieve
algorithm test for termination. The set of possible policies
is constructed so that only the actions applicable in a state
can be assigned to it, and the test phase proceeds by first
checking if the goal state is present in the policy’s transition
graph. Tarjan’s algorithm (Tarjan 1972) is used to find the
set of strongly connected components of a graph.
Problems. In addition to the tree-chop and nested loop ex-
amples discussed in the introduction, we applied the planner
on some new problems that require reasoning about loops
of actions that have non-deterministic numeric effects. In
the Snow problem, a snow storm has left some amounts of
snow, sd and sw, in a driveway and the walkway leading
to it, respectively. The actions are shovel(), which decreases
sw; mvDW(), with precondition sw=0, which moves a snow-
blower to the driveway by decreasing the distance to drive-
way (dtDW); snow-blower(), with precondition dtDW= 0,
which decreases sd but also spills snow on the walkway, in-
creasing sw. The goal is sd=sw=0.

In the delivery problem, a truck of a certain capacity tc
needs to deliver objs objects from a source to a destina-
tion. The load() action increases the objects in truck, objInT,
while decreasing tc; mvD() decreases the truck’s distance
to destination, dtD(), while increasing its distance from the
source, dtS(); mvS() does the inverse. Both mv() actions also
decrease the amount of fuel, which is increased by getFuel().
Finally, unload() with precondition dtd = 0 decreases objs,
objInT while increasing tc. The goal is objs = 0. We also
applied the planner on the trash-collecting problem (Bonet
et al. 2009) in which a robot must reach the nearest trash
object, collect it if its container has space, move to the trash
can and empty its container. This is repeated until no trash
remains in the room.
Summary of Solutions. Solutions for each of these prob-
lems were found in less than a minute on a 1.6GHz Intel
Core2 Duo PC with 1.5GB of RAM (Table 1). Almost all
the solutions have nested loops in which multiple variables

1014

Tree NestedVar Snow Delivery+Fuel Trash-Collection
0 0.01 0.02 0.7 30

Table 1: Time taken (sec) for computing a solution policy

are increased and decreased, which makes existing methods
for determining correctness infeasible. However our planner
guarantees that the computed policies will reach the goal in
finitely many steps. Achieving these results is beyond the
scope of any existing planning approach. Most of the solu-
tions are too large to be presented, but a schematic repre-
sentation of one policy for Trash-collecting and two for the
Snow problem are presented in Fig. 1. Note that the states
corresponding to the two shovel actions after snow-blower
in the policy in the center are distinct: the shovel action
in the nested loop is for the state with snow in both the
drivewway and the walkway (sd �= 0, sw �= 0). The nested
loop must terminate because sd is never increased. On the
other hand the shovel action in the non-nested loop is for
sd = 0, sw �= 0. If allowed to continue, the planner also
finds the policy on the right in under a second.

As expected however, performance of the “generate” part
of this implementation can deteriorate rapidly as the number
of variables increases. Although problems of the kind de-
scribed above can be solved easily, in randomly constructed
problems and problems with larger variable or action sets,
the size of the policy space can be intractable as it is more
likely to approach the true bound of |O|2|X|

.

5 Related Work

The recent revival of interest in planning with loops has
highlighted the lack of sufficiently good methods for deter-
mining when a plan or a policy with complex loops will
work. Existing analysis however has focused on Turing-
complete frameworks where proving plan termination is un-
decidable in general and can only be done for plans with
restricted classes of loops (Srivastava et al. 2010) and on
problems with single numeric variables (Hu and Levesque
2010). The qualitative framework presented in this paper
is very close to the framework of abacus programs stud-
ied by Srivastava et al. (2010). If action effects are changed
from inc/dec to increments and decrements by 1, qualitative
policies can be used to represent arbitrary abacus programs.
Consequently, the problems of determining termination and
reachability of goal states in qualitative policies using in-
crement/decrement actions are undecidable in general. The
DISTILL system (Winner and Veloso 2007) produces plans
with limited kinds of loops; controller synthesis (Bonet et al.
2009) computes plans or controllers with with loops that are
general in structure, but the scope of their applicability and
the conditions under which they will terminate or lead to the
goal are not determined.

Our work is also related to the framework of strong cyclic
policies. Qualitative policies that terminate form a mean-
ingful subclass of strong cyclic policies: namely, those that
cannot decrease variables infinitely often without increasing
them. Our definition of termination is orthogonal to the def-
inition of strong cyclic policies and exploits the semantics

 shovel

shovel

mvDW

snow−blower

 shovel

goal

shovel

shovel

findObj

grab

findTrCan

drop

goal

mvDW

snow−blower

goal

Figure 1: Schematic representations of solution policies for trash-
collection (left) and snow problems (center & right).

of numeric variables and actions on those variables in the
original quantitative planning problem. In particular, an ac-
tion a that decreases a variable x is not only mapped to a
qualitative action that non-deterministically maps the literal
x �= 0 into either x = 0 or x �= 0, but is also constrained
by the semantics such that the first transition, from x �= 0
to x �= 0, is possible only finitely many times unless x is
increased infinitely often by another action.

On the other hand, actions in strong cyclic policies have
non-deterministic, stationary effects in the sense that all ac-
tion outcomes are equally possible, regardless of the number
of times that an action is applied. Consider a blocks world
scenario where the goal is to unstack a tower of blocks and
a tap action non-deterministically topples the entire tower
(assume that the stability of the tower is not disturbed when
it is not toppled). Repeatedly applying tap is a strong cyclic
plan, and also the only solution to this problem, but it is not
terminating in the context of this paper. If the domain also
includes an action to move the topmost block in a stack to
the table, a qualitative policy that maps the qstates with non-
zero heights to this unstacking action is terminating because
it always decreases the height of the tower. In a domain with
both actions, a strong cyclic planner will return a policy with
either the tap or the unstacking action, while our approach
will select the policy with the unstacking action.

6 Conclusions and Future Work

We presented a sound and complete method for solving
a new class of numeric planning problems where actions
have non-deterministic numeric effects and numeric vari-
ables are partially observable. Our solutions represent plans
with loops and are guaranteed to terminate in a finite number
of steps. Although other approaches have addressed plan-
ning with loops, this is the first framework that permits com-
plete methods for determining termination of plans with any
number of numeric variables and any class of loops. We also
showed how these methods can be employed during plan
generation and validated our theoretical results with a simple
generate and test planner. The resulting planning framework
is expressive enough to capture many interesting problems
that cannot be solved by existing approaches.

Although we only explored applications in planning,
these methods can also be applied to problems in qualita-
tive simulation and reasoning (Travé-Massuyès et al. 2004;
Kuipers 1994). Our approach can also be extended easily to
problems that include numeric as well as boolean variables.
These methods can be used to incorporate bounded count-

1015

ing. Scalability of our planner could be improved substan-
tially by using a strong cyclic planning algorithm to enu-
merate potential solution policies (the testing phase would
only require a termination check). A promising direction for
future work is to capture situations where variables can be
compared to a finite set of landmarks in operator precondi-
tions and goals. Another direction for research is to represent
finitely many scales of increase and decrease effects e.g. to
represent scenarios such as a robot that needs to make large
scale movements when it is far from its destination and finer
adjustments as it approaches the goal.

Acknowledgments

We would like to thank the anonymous reviewers for their
diligent reviews and helpful comments. Support for the first
three authors was provided in part by the National Sci-
ence Foundation under grants IIS-0915071, CCF-0541018,
and CCF-0830174. H. Geffner is partially supported by
grants TIN2009-10232, MICINN, Spain, and EC-7PM-
SpaceBook.

A Proofs of Auxiliary Results

We present some results to show that abstracted trajectories
capture the necessary features of solution policies for the
original quantitative planning problem.
Lemma 1. Any two qualitatively similar states have the
same set of abstracted trajectories.

Proof. If two states s1 and t1 are qualitatively similar, then
ã(s̃1) = ã(t̃1). Then, Theorem 1 implies that the possible
results s2 ∈ a(s1) and t2 ∈ a(t2) must also come from
the same set of qualitative states. The lemma follows by an
inductive application of this fact over the length of each ab-
stracted trajectory.

Lemma 2. A policy π solves a quantitative planning prob-
lem P = 〈X, I,G, 0〉 iff every abstracted trajectory for π
starting at sI is finite, and ends at a state satisfying the goal
condition.

Proof. The forward direction is straightforward, since if π
has an infinite abstracted trajectory, it must correspond to an
infinite ε-bounded trajectory for π.

In the other direction, suppose all abstracted trajectories
for π are finite. The only way an ε-bounded trajectory can
be non-terminating is if it remains in a single qstate for an
unbounded number of steps. In other words, the qstate where
this happens must be such that s̃ ∈ ã(s̃), where a is the ac-
tion that is being repeated. If there is no other state in ã(s̃),
and s̃ is not a goal state, then this abstracted trajectory, and
all the ε-bounded trajectories corresponding to it can only
end at the non-goal state s̃. This is given to be false. Thus,
there must be another qstate s̃1 ∈ ã(s̃). This implies that
ã must have a qualitative dec operation, because this is the
only operation in the qualitative formulation that leads to
multiple results. Finally, if there is a qualitative dec(x) oper-
ation in ã, then any ε-bounded trajectory can only execute a
and stay in s̃ a finite number of times before it makes x zero.
This shows that any ε-bounded instantiated trajectory of this
trajectory must terminate after a finite number of steps.

Corollary 1. Let P be a quantitative planning problem and
P̃ its qualitative abstraction. A qualitative policy π̃ solves P̃
iff the natural quantitative translation π of π̃ solves P .

Proof. If π̃ is a solution to P̃ , then π solves every quantita-
tive instance P by Def. 6.

On the other hand, if any essentially qualitative policy π
solves a problem P , then every abstracted trajectory for π,
starting at sI must be finite and terminate at a state satisfy-
ing the goal condition (by Lemma 2). By Lemma 1, we get
that the abstracted trajectories for π starting from any s′I that
is qualitatively similar to sI , must be finite and terminate at
a goal state. Using the converse in Lemma 2, we get that the
policy π in fact solves any problem instance with a state s′I
that is qualitatively similar to sI , and therefore, any quanti-
tative instance of P̃ . Thus, π̃ is a solution for P̃ .

Lemma 3. If a policy π solves a qualitative planning prob-
lem P̃ then it must be goal-closed.

Proof. If a policy is not goal-closed, then there must be a
non-goal terminal qstate t̃ ∈ ts(π, s̃I). This implies, by an
inductive application of the completeness of action applica-
tion (Theorem 1) over the finite path from s̃I to t̃, that it is
possible to execute π and terminate at a non-goal t0 ∈ γ(t̃)
from any member si ∈ γ(s̃I).

References
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic deriva-
tion of memoryless policies and finite-state controllers using classi-
cal planners. In Proc. of the 19th Intl. Conf. on Automated Planning
and Scheduling, 34–41.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003. Weak,
strong, and strong cyclic planning via symbolic model checking.
Artificial Intelligence 147(1-2):35–84.
Helmert, M. 2002. Decidability and undecidability results for plan-
ning with numerical state variables. In Proc. of the 6th Intl. Conf.
on Automated Planning and Scheduling, 303–312.
Hu, Y., and Levesque, H. J. 2010. A correctness result for reasoning
about one-dimensional planning problems. In Proc. of The 12th
Intl. Conf. on Knowledge Representation and Reasoning.
Kuipers, B. 1994. Qualitative reasoning: modeling and simulation
with incomplete knowledge. MIT Press.
Levesque, H. J. 2005. Planning with loops. In Proc. of the 19th
International Joint Conference on Artificial Intelligence, 509–515.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008. Learning
generalized plans using abstract counting. In Proc. of the 23rd
Conf. on AI, 991–997.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2010. Computing
applicability conditions for plans with loops. In Proc. of the 20th
Intl. Conf. on Automated Planning and Scheduling, 161–168.
Tarjan, R. E. 1972. Depth-first search and linear graph algorithms.
SIAM Journal of Computing 1(2):146–160.
Travé-Massuyès, L.; Ironi, L.; and Dague, P. 2004. Mathematical
foundations of qualitative reasoning. AI Magazine 24:91–106.
Winner, E., and Veloso, M. 2007. LoopDISTILL: Learning
domain-specific planners from example plans. In Workshop on AI
Planning and Learning, in conjunction with ICAPS.

1016

