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Abstract

We present a novel approach for identifying exact and ap-
proximate behavioral equivalence between models of agents.
This is significant because both decision making and game
play in multiagent settings must contend with behavioral
models of other agents in order to predict their actions. One
approach that reduces the complexity of the model space is
to group models that are behaviorally equivalent. Identify-
ing equivalence between models requires solving them and
comparing entire policy trees. Because the trees grow expo-
nentially with the horizon, our approach is to focus on partial
policy trees for comparison and determining the distance be-
tween updated beliefs at the leaves of the trees. We propose
a principled way to determine how much of the policy trees
to consider, which trades off solution quality for efficiency.
We investigate this approach in the context of the interactive
dynamic influence diagram and evaluate its performance.

Introduction

Several areas of multiagent systems such as decision mak-
ing and game playing benefit from modeling other agents
sharing the environment, in order to predict their ac-
tions (Schadd, Bakkes, & Spronck 2007; Del Giudice, Gmy-
trasiewicz & Bryan 2009). If we do not constrain the pos-
sible behaviors of others, the general space of these models
is very large. In this context, a promising approach is to
group together behaviorally equivalent (BE) models (Dekel,
Fudenberg, & Morris 2006; Pynadath & Marsella 2007) in
order to reduce the number of candidate models. Models
that are BE prescribe identical behavior, and these may be
grouped because it is the prescriptive aspects of the models
and not the descriptive that matter to the decision maker. Es-
sentially, we cluster BE models of other agents and select a
representative model for each cluster.

One particular decision-making framework for which BE
has received much attention is the interactive dynamic influ-
ence diagram (I-DID) (Doshi, Zeng, & Chen 2009). I-DIDs
are graphical models for sequential decision making in un-
certain multiagent settings. I-DIDs concisely represent the
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problem of how an agent should act in an uncertain environ-
ment shared with others of unknown types. They generalize
DIDs (Tatman & Shachter 1990) to multiagent settings. Ex-
pectedly, solving I-DIDs tends to be computationally very
complex. This is because the state space in I-DIDs includes
the models of other agents in addition to the traditional phys-
ical states. As the agents act, observe, and update beliefs, I-
DIDs must track the evolution of the models over time. The
exponential growth in the number of models over time also
further contributes to the dimensionality of the state space.
This is complicated by the nested nature of the space.

Previously, I-DID solutions mainly exploit BE to re-
duce the dimensionality of the state space (Doshi, Zeng, &
Chen 2009; Doshi & Zeng 2009). For example, Doshi and
Zeng (2009) minimize the model space by updating only
those models that lead to behaviorally distinct models at the
next time step. While this approach speeds up solutions of
I-DID considerably, it does not scale desirably to large hori-
zons. This is because: (a) models are compared for BE
using their solutions which are typically policy trees. As the
horizon increases, the size of the policy tree increases ex-
ponentially; (b) the condition for BE is strict: entire policy
trees of two models must match exactly.

Progress could be made by efficiently determining if two
models are BE and by grouping models that are approxi-
mately BE. We expect the latter to result in lesser numbers
of classes each containing more models, thereby producing
less representatives at the cost of prediction error. In this
paper, we seek to address both these issues. We determine
BE between two models by comparing their partial policy
trees and the updated beliefs at the leaves of the policy trees.
This leads to significant savings in memory as we do not
store entire policy trees. Furthermore, we may group mod-
els whose partial policy trees are identical but the updated
beliefs diverge by small amounts. This defines an approxi-
mate measure of BE that could group more models together.

We use the insight that the divergence between the up-
dated beliefs at the leaves of the two policy trees will not
be greater than the divergence between the initial beliefs.
Boyen and Koller (1998) show that the change in the di-
vergence is a contraction controlled by a rate parameter, γ.
We show how we may calculate γ in our context and use
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it to obtain the depth of the partial policy tree to use for a
given approximate measure of BE. We bound the prediction
error due to grouping models that could be approximately
BE. Finally, we evaluate the empirical performance of this
approach in the context of multiple problem domains, and
demonstrate that it allows us to scale the solution of I-DIDs
significantly more than previous techniques.

Background: Interactive DID and BE

We briefly describe interactive influence diagrams (I-IDs)
for two-agent interactions followed by their extensions to
dynamic settings, I-DIDs, and refer the reader to (Doshi,
Zeng, & Chen 2009) for more details.

Syntax

I-IDs include a new type of node called the model node
(hexagonal shaded node, Mj,l−1, in Fig. 1(a)). The prob-
ability distribution over the chance node, S, and the model
node together represents agent i’s belief over its interactive
state space. In addition to the model node, I-IDs have a
chance node, Aj , that represents the distribution over the
other agent’s actions, and a dashed link, called a policy link.
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Figure 1: (a) A generic level l > 0 I-ID for agent i situated
with one other agent j. The hexagon is the model node (Mj,l−1)
and the dashed arrow is the policy link. (b) Representing the model
node and policy link using chance nodes and dependencies between
them. The decision nodes of the lower-level I-IDs or IDs (m1

j,l−1,
m2

j,l−1) are mapped to the corresponding chance nodes (A1
j , A2

j ).

The model node contains as its values the candidate com-
putational models ascribed by i to the other agent. We de-
note the set of these models by Mj,l−1. A model in the
model node may itself be an I-ID or ID, and the recur-
sion terminates when a model is an ID or a simple proba-
bility distribution over the actions. Formally, we denote a
model of j as, mj,l−1 = 〈bj,l−1, θ̂j〉, where bj,l−1 is the
level l − 1 belief, and θ̂j is the agent’s frame encompassing
the action, observation, and utility nodes. We observe that
the model node and the dashed policy link that connects it
to the chance node, Aj , could be represented as shown in
Fig. 1(b). The decision node of each level l−1 I-ID is trans-
formed into a chance node. Specifically, if OPT is the set
of optimal actions obtained by solving the I-ID (or ID), then
Pr(aj ∈ A1

j ) = 1
|OPT | if aj ∈ OPT , 0 otherwise. The

conditional probability table (CPT) of the chance node, Aj ,
is a multiplexer, that assumes the distribution of each of the

action nodes (A1
j , A

2
j ) depending on the value of Mod[Mj ].

The distribution over Mod[Mj ] is i’s belief over j’s models
given the state. For more than two agents, we add a model
node and a chance node linked together using a policy link,
for each other agent.
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Figure 2: A generic two time-slice level l I-DID for agent i. The
dotted model update link denotes the update of j’s models and of
the distribution over the models, over time.

I-DIDs extend I-IDs to allow sequential decision making
over several time steps. We depict a general two time-slice I-
DID in Fig. 2. In addition to the model nodes and the dashed
policy link, what differentiates an I-DID from a DID is the
model update link shown as a dotted arrow in Fig. 2.
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Figure 3: Semantics of the model update link. Notice the growth
in the number of models in the model node at t+ 1 shown in bold.

The update of the model node over time involves two
steps: First, given the models at time t, we identify the up-
dated set of models that reside in the model node at time
t+1. Because the agents act and receive observations, their
models are updated to reflect their changed beliefs. Since
the set of optimal actions for a model could include all the
actions, and the agent may receive any one of |Ωj | possible
observations, the updated set at time step t + 1 will have
up to |Mt

j,l−1||Aj ||Ωj | models. Here, |Mt
j,l−1| is the num-

ber of models at time step t, |Aj | and |Ωj | are the largest
spaces of actions and observations respectively, among all
the models. The CPT of Mod[M t+1

j,l−1] encodes the func-
tion, τ(btj,l−1, a

t
j , o

t+1
j , bt+1

j,l−1) which is 1 if the belief btj,l−1

in the model mt
j,l−1 using the action atj and observation ot+1

j

updates to bt+1
j,l−1 in a model mt+1

j,l−1; otherwise it is 0. Sec-
ond, we compute the new distribution over the updated mod-
els, given the original distribution and the probability of the
agent performing the action and receiving the observation
that led to the updated model. The dotted model update
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link in the I-DID may be implemented using standard de-
pendency links and chance nodes as shown in Fig. 3, trans-
forming it into a flat DID.

Behavioral Equivalence and Solution

Although the space of possible models is very large, not all
models need to be considered in the model node. Models
that are BE (Pynadath & Marsella 2007) – whose behav-
ioral predictions for the other agent are identical – could be
pruned and a single representative model considered. This
is because the solution of the subject agent’s I-DID is af-
fected by the behavior of the other agent only; thus we
need not distinguish between BE models. Let PruneBehav-
ioralEq (Mj,l−1) be the procedure that prunes BE models
fromMj,l−1 returning the representative models.

Solving an I-DID (and I-ID) proceeds in a bottom-up
manner, and is implemented recursively (Fig. 4). We start by
solving the level 0 models, which may be traditional DIDs.
Their solutions provide probability distributions which are
entered in the corresponding action nodes found in the
model node of the level 1 I-DID. The solution method uses
the standard look-ahead technique, and because agent i has a
belief over j’s models as well, the look-ahead includes find-
ing out the possible models that j could have in the future.
Consequently, each of j’s level 0 models represented using
a standard DID in the first time step must be solved to ob-
tain its optimal set of actions. These actions are combined
with the set of possible observations that j could make in
that model, resulting in an updated set of candidate models
(that include the updated beliefs) that could describe the be-
havior of j. SE(btj , aj , oj) is an abbreviation for the belief
update. The updated set is minimized by excluding the BE
models. Beliefs over these updated set of candidate models
are calculated using the standard inference methods through
the dependency links between the model nodes (Fig. 3). The
algorithm in Fig. 4 may be realized using the standard im-
plementations of DIDs such as Hugin API.

Approximating Behavioral Equivalence

Although BE represents an effective exact criteria to group
models, identifying BE models requires us to compare the
entire solutions of models – all paths in the policy trees
which grow exponentially over time. This is further compli-
cated by the number of candidate models of the other agents
in the model node growing exponentially over time. In or-
der to scale BE to large horizons, we seek to (a) reduce the
complexity of identifying BE by comparing partial policy
trees; and (b) group together more models that could be ap-
proximately BE. We do this by grouping models that have
identical partial policy trees of depth d and whose updated
beliefs at the leaves of the policy trees do not diverge much.

Revisiting BE

For the sake of clarity, we assume that the models of the
other agent j have identical frames (possibly different from
i’s) and differ only in their beliefs. We focus on the general
setting where a model, mj,l−1, is itself a DID or an I-DID,
in which case its solution could be represented as a policy

I-DID EXACT(level l ≥ 1 I-DID or level 0 DID, horizon T )
Expansion Phase
1. For t from 0 to T − 1 do
2. If l ≥ 1 then

Minimize M t
j,l−1

3. For each mt
j in Mt

j,l−1 do
4. Recursively call algorithm with the l − 1 I-DID

(or DID) that represents mt
j and horizon, T − t

5. Map the decision node of the solved I-DID (or DID),
OPT (mt

j), to the corresponding chance node Aj

6. Mt
j,l−1 ← PruneBehavioralEq(Mt

j,l−1)
Populate M t+1

j,l−1

7. For each mt
j in Mt

j,l−1 do

8. For each aj in OPT (mt
j) do

9. For each oj in Oj (part of mt
j) do

10. Update j’s belief, bt+1
j ← SE(btj , aj , oj)

11. mt+1
j ← New I-DID (or DID) with bt+1

j

as the initial belief
12. Mt+1

j,l−1

∪← {mt+1
j }

13. Add the model node, M t+1
j,l−1, and the model update link

between M t
j,l−1 and M t+1

j,l−1

14. Add the chance, decision, and utility nodes for
t+ 1 time slice and the dependency links between them

15. Establish the CPTs for each chance node and utility node
Solution Phase
16. Transform l ≥ 1 I-DID into a flat DID as in Fig. 3, and apply

standard look-ahead and backup method to solve the DID.

Figure 4: Algorithm for exactly solving a level l ≥ 1 I-DID or
level 0 DID expanded over T time steps.
tree. We denote the policy tree of horizon, T , as πT

mj,l−1
;

therefore OPT (mj,l−1)
�
= πT

mj,l−1
. Recall that two models

of j are BE if they produce identical behaviors for j.
Definition 1 (BE) Formally, models mj,l−1, m̂j,l−1 ∈
Mj,l−1 are BE if and only if πT

mj,l−1
= πT

m̂j,l−1
.

Each path in the policy tree from the root to the leaf
is an action-observation sequence denoted by, hT−1

j =

{atj , ot+1
j }T−1

t=0 , where oTj is null. If atj ∈ Aj and ot+1
j ∈

Ωj , where Aj and Ωj are agent j’s action and observation
sets respectively, then the set of all T − 1-length paths is,
HT−1

j = ΠT−1
1 (Aj ×Ωj)×Aj . Without loss of generality,

we may impose an ordering on a policy tree by assuming
some order for the observations, which guard the arcs in the
tree. Furthermore, if b0j,l−1 is the initial belief in the model,
mj,l−1, then let bdj,l−1 be the belief on updating it using the
action-observation path of length d, hd

j . Let Bd
mj,l−1

be the
ordered set of beliefs that obtain on updating the initial belief
using all d-length paths in the ordered policy tree of model,
mj,l−1. Therefore, a belief in Bd

mj,l−1
has an index, k, such

that k ≤ |Ωj |d. These are the updated beliefs at the leaves
of the ordered policy tree. Finally, let DKL[p||q] denote the
KL divergence (Cover & Thomas 1991) between probability
distributions, p and q.

Now, we may redefine BE between models as follows:
Proposition 1 (Revisiting BE) Two models of agent j,
mj,l−1 and m̂j,l−1, are BE if their depth-d policy trees,
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d ≤ T−1, are identical, πd
mj,l−1

= πd
m̂j,l−1

, and if d < T−1
then beliefs at the leaves of the two ordered policy trees do
not diverge: DKL[b

d,k
mj,l−1

||bd,km̂j,l−1
] = 0 ∀k = 1 . . .|Ωj |d,

where bd,kmj,l−1
∈ Bd

mj,l−1
, bd,km̂j,l−1

∈ Bd
m̂j,l−1

.

Proposition 1 holds because of the well-known fact that
beliefs updated using an action-observation sequence in a
partially observable stochastic process is a sufficient statis-
tic for the history. Consequently, future behavior is pred-
icated only on the beliefs. Therefore, pairs of models
that satisfy the two conditions in Prop. 1 for some d will
necessarily conform to Def. 1. Furthermore, Prop. 1 is
not particularly sensitive to the measure of divergence be-
tween distributions that we utilize. While it holds because
DKL[b

d,k
mj,l−1

||bd,km̂j,l−1
] = 0 if and only if the two distribu-

tions are equal, the same is also true for, say, the L1 dis-
tance. However, KL divergence has some desirable proper-
ties lacked by other norms, which we will exploit later.

Notice that the redefinition produces the same grouping of
BE models as previously for the case d = T − 1 because it
collapses into Def. 1. For the case of d < T−1, it may group
less models in a BE class because belief sets that do diverge
could still result in the same set of policy trees. Hence, it
may lead to more BE classes than needed.

The advantage of Prop. 1 is that we may elegantly gener-
alize it to the notion of approximate BE:

Definition 2 ((ε, d)-BE) Two models of agent j, mj,l−1 and
m̂j,l−1, are (ε,d)-BE, ε ≥ 0, d ≤ T − 1, if their depth-
d policy trees are identical, πd

mj,l−1
= πd

m̂j,l−1
, and if d <

T−1 then beliefs at the leaves of the two ordered policy trees
diverge by at most ε: max

k=1...|Ωj |d
DKL[b

d,k
mj,l−1

||bd,km̂j,l−1
] ≤ ε.

Intuitively, two models are (ε, d)-BE if their solutions
share an identical depth-d tree and the divergence of pairs
of the ordered beliefs at the leaves of the depth-d tree is not
larger than ε. As ε approaches zero, (ε, d)-BE converges to
Prop. 1. While the definition above is parameterized by the
depth d of the policy trees as well, we show in the next sec-
tion that d may be determined given some ε.

Depth of the Partial Policy

Definition 2 introduces a measure of approximate BE be-
tween two models. It is parameterized by both the amount
of approximation, ε, and the partialness of the comparison,
d. However, we show that the depth d may be uniquely de-
termined by the amount of approximation that is allowed be-
tween the equivalence of two models. We begin by review-
ing an important result for a Markov stochastic process.

While it is well known that a stochastic transition never
increases the KL divergence between two distributions over
the same state space in a Markov stochastic process (Cover
& Thomas 1991), Boyen and Koller (1998) show that the
KL divergence between the distributions contracts at a geo-
metric rate given a stochastic transition, and the rate of con-
traction is based on a mixing rate, γ.

In our context, we may apply this result to bound the di-
vergence between the beliefs of two models updated using

an action-observation sequence:

DKL(b
1,k
mj,l−1

||b1,km̂j,l−1
) ≤ (1−γFa,o

)DKL(b
0,k
mj,l−1

||b0,km̂j,l−1
)

(1)
where Fa,o(s

′|s) is the “stochastic transition” from state s
to s′ obtained by multiplying the state transition probability
due to action, a, and the likelihood of observation, o, for j.
γFa,o

is the minimum probability mass on some state due to
the transition, and is called the minimal mixing rate:

γFa,o = min
mj,l−1,m̂j,l−1

∑

s′∈S
min{Fa,o(s

′|smj,l−1), Fa,o(s
′|sm̂j,l−1)}

Next, we may extend Eq. 1 over an action-observation se-
quence of length d that corresponds to a path in a depth-d
policy tree:

DKL(b
d,k
mj,l−1

||bd,km̂j,l−1
) ≤ (1− γF )

dDKL(b
0,k
mj,l−1

||b0,km̂j,l−1
)

(2)
Here, because a path may involve different action and obser-
vation sequences, γF = min {γFa,o

|a ∈ Aj , o ∈ Ωj}.
The definition of approximate BE in the previous section

(Def. 2) limits the maximum divergence between any pair
of beliefs at the leaves of the partial policy trees to at most
ε. Because Eq. 2 bounds this divergence as well, we may
equate the bound to ε and obtain the following:

(1− γF )
dDKL(b

0,k
mj,l−1

||b0,km̂j,l−1
) = ε

In the above equation, the only unknown is d because γF
may be obtained as shown previously and b0,kmj,l−1

, b0,km̂j,l−1

are the given initial beliefs in the models. Therefore, we
may derive d for a given value of ε as:

d = min

{
T − 1,max{0, �

ln ε

DKL(b
0,k
mj,l−1

||b0,k
m̂j,l−1

)

ln(1−γF ) 	}
}
(3)

where γF ∈ (0, 1) and ε > 0. Eq. 3 gives the smallest depth
that we could use for comparing the policy trees. In general,
as ε increases, d reduces for a model pair until it becomes
zero when we compare just the initial beliefs in the models.

We note that the minimal mixing rate depending on the
function, Fa,o, may also assume two extreme values: γF =
1 and γF = 0. The former case implies that the updated
beliefs have all probability mass in the same state, and the
KL divergence of these distributions is zero after a transition.
Hence, we set d = 1. For the latter case, there is at least one
pair of states for which the updated beliefs do not agree at
all (one assigns zero mass). For this null mixing rate, the
KL divergence may not contract and d may not be derived.
Thus, we may arbitrarily select d ≤ T − 1.

Computational Savings and Error Bound

Given that we may determine d using Eq. 3, the complexity
of identifying whether a pair of models are approximately
BE is dominated by the complexity of comparing two depth-
d trees. This is proportional to the number of comparisons
made as we traverse the policy trees. As there are a max-
imum of |Ωj |d leaf nodes in a depth-d tree, the following
proposition gives the complexity of identifying BE classes
in the model node of agent i’s I-DID at some time step.
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Proposition 2 (Complexity of BE) The asymptotic com-
plexity of the procedure for identifying all models that are
ε-BE is O(|Mj,l−1|2|Ωj |d) where |Mj,l−1| is the number
of models in the model node.

While the time complexity of comparing two partial pol-
icy trees is given by Prop. 2 (set |Mj,l−1| = 2), we maintain
at most 2(|Ωj |)d paths (d ≤ T−1) at each time step for each
pair of models that are being compared, with each path occu-
pying space proportional to d. This precludes storing entire
policy trees containing (|Ωj |)T−1 possible paths, leading to
significant savings in memory when d
 T .

We analyze the error in the value of j’s predicted behav-
ior. If ε = 0, grouped models are exactly BE and there is
no error. With increasing values of ε (resulting in small d
values), a behaviorally distinct model, mj,l−1, may be er-
roneously grouped with the model, m̂j,l−1. Let mj,l−1 be
the model associated with m̂j,l−1, resulting in the worst er-
ror. Let αT and α̂T be the exact entire policy trees obtained
by solving the two models, respectively. Then, the error is:
ρ = |αT · b0mj,l−1

−αT · b0m̂j,l−1)
|. Because the depth-d pol-

icy trees of the two models are identical (Def. 2), the error
becomes:
ρ = |αT−d · bdmj,l−1

− αT−d · bdm̂j,l−1
|

= |αT−d · bdmj,l−1
+ α̂T−d · bdmj,l−1

− α̂T−d · bdmj,l−1

−αT−d · bdm̂j,l−1
| (add zero)

≤ |αT−d · bdmj,l−1
+ α̂T−d · bdm̂j,l−1

− α̂T−d · bdmj,l−1

−αT−d · bdm̂j,l−1
| (α̂T−d · bdm̂j,l−1

≥ α̂T−d · bdmj,l−1
)

= |(αT−d − α̂T−d) · (bdmj,l−1
− bdm̂j,l−1

)|
≤ |αT−d − α̂T−d|∞ · |(bdmj,l−1

− bdm̂j,l−1
)|1 (Hölder’s)

≤ |αT−d − α̂T−d|∞ · 2DKL(b
d
mj,l−1

||bdm̂j,l−1
) (Pinsker’s)

≤ (Rmax
j −Rmin

j )(T − d) · 2ε (by definition)

Here, Rmax
j and Rmin

j are the maximum and minimum re-
wards of j, respectively. Of course, this error is tempered by
the probability that agent i assigns to the model, mj,l−1, in
the model node at time step, d.

Experimental Results
We implemented our approach of determining ε-BE between
models and use it to group models into a class. This is fol-
lowed by retaining the representative for each class while
pruning others, analogously to using exact BE. This proce-
dure now implements PruneBehaviorEq (line 6) in Fig. 4.

Because our approach is the first to formalize an approx-
imation of BE (to the best of our knowledge), we com-
pare it with the previous most efficient algorithm that ex-
ploits exact BE while solving I-DIDs. This technique (Doshi
& Zeng 2009) groups BE models using their entire pol-
icy trees and updates only those models that will be be-
haviorally distinct from existing ones; we label it as DMU.
We evaluate both using two standard problem domains
and a scalable multiagent testbed with practical implica-
tions: the two-agent tiger problem (|S|=2, |Ai|=|Aj |=3,
|Ωi|=6, |Ωj |=3) (Gmytrasiewicz & Doshi 2005), the multi-
agent version of the concert problem (|S|=2, |Ai|=|Aj |=3,
|Ωi|=4, |Ωj |=2) 1, and a much larger domain: the two-

1We adapt the single-agent concert problem from the POMDP
repository: http://www.cs.brown.edu/research/ai/pomdp/.

agent unmanned aerial vehicle (UAV) problem (|S|=25,
|Ai|=|Aj |=5, |Ωi|=|Ωj |=5) (Doshi & Sonu 2010).

We report on the performance of both techniques (ε-BE
and DMU) when used for solving level 1 I-DIDs of in-
creasing horizon in the context of the above three domains.
We show that the quality of the solution generated by ε-BE
converges to that of the exact DMU as ε decreases (with
the corresponding increase in d). However, the multiagent
tiger problem exhibits a minimal mixing rate of zero, due to
which the partial depth, d, is selected arbitrarily: we select
increasing d as ε reduces. In Fig. 5(a), we show the average
rewards gathered by simulating the solutions obtained for
decreasing ε for each of the three problem domains. We used
a horizon of 10 for the small domains, and 6 for the UAV.
Each data point is the average of 500 runs where the true
model of j is sampled according to i’s initial belief. For a
given number of initial models, Mj,0, the solutions improve
and converge toward the exact (DMU) as ε reduces. While
the derived partial depths varied from 0 up to the horizon mi-
nus 1 for extremely small ε, we point out that the solutions
converge to the exact for d < T−1, including the tiger prob-
lem (at d=3) despite the zero mixing rate. Fig. 5(b) shows
the best solution possible on average for a given time allo-
cation. Notice that ε-BE consistently produces better quality
solution than DMU. This is because it solves for a longer
horizon than DMU in the same time. Finally, Fig. 5(c) con-
firms our intuition that ε-BE leads to significantly less model
classes for large ε (small d), although more than DMU for
ε = 0. Importantly, comparing partial policy trees is suffi-
cient to obtain the same model space as in the exact case,
which is responsible for the early convergence to the exact
reward we observed in Fig. 5(a).

Level 1 T Time (s)

DMU ε-BE TopK
Concert 6 0.38 0.37 0.36

10 2.7 2.2 2.4
25 * 14.5 336.24

Tiger 6 0.38 0.25 0.31
8 1.6 0.42 3.7
20 * 3.5 218

UAV 6 13.6 9.6 10.1
8 186.7 26.4 111
10 * 57 462
20 * 96.1 *

Table 1: ε-BE shows scalability to a large horizon.

In Table 1, we compare different techniques based on the
time each takes to solve problems of increasing horizon.
We additionally include a heuristic approach (Zeng, Chen,
& Doshi 2011), labeled TopK, that samples K paths from
a policy tree that are approximately most likely to occur,
and uses just these paths to compare for equivalence. ε-BE
demonstrates significant scalability over DMU, solving for
much longer horizons than exactly possible. It shows signif-
icant run time speed up over TopK as well, which needs to
maintain complete paths that grow long. ε and K were var-
ied to get the same reward as DMU if appropriate, otherwise
until the model space stabilized.
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Figure 5: (a) Performance profiles; (b) Efficiency comparison; and (c) Model space partitions for ε-BE and DMU obtained by solving level
1 I-DIDs for the different problem domains. Experiments were run on a Linux platform with Intel Core2 2.4GHz with 4GB of memory.

Conclusion

In the face of an unconstrained model space, BE provides
a way to compact it. We showed how we may utilize par-
tial solutions of models to determine approximate BE and
applied it to significantly scale solutions of I-DIDs. Our in-
sight is that comparing partial solutions of models is likely
sufficient for grouping models similarly to using exact BE,
as our experiments indicate. While we use a principled tech-
nique to determine the partialness given the approximation
measure, not all problem domains may allow this.
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