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Abstract

Coarse-to-fine approaches use sequences of increasingly fine
approximations to control the complexity of inference and
learning. These techniques are often used in NLP and vision
applications. However, no coarse-to-fine inference or learn-
ing methods have been developed for general first-order prob-
abilistic domains, where the potential gains are even higher.
We present our Coarse-to-Fine Probabilistic Inference (CFPI)
framework for general coarse-to-fine inference for first-order
probabilistic models, which leverages a given or induced type
hierarchy over objects in the domain. Starting by considering
the inference problem at the coarsest type level, our approach
performs inference at successively finer grains, pruning high-
and low-probability atoms before refining. CFPI can be ap-
plied with any probabilistic inference method and can be used
in both propositional and relational domains. CFPI provides
theoretical guarantees on the errors incurred, and these guar-
antees can be tightened when CFPI is applied to specific infer-
ence algorithms. We also show how to learn parameters in a
coarse-to-fine manner to maximize the efficiency of CFPI. We
evaluate CFPI with the lifted belief propagation algorithm on
social network link prediction and biomolecular event predic-
tion tasks. These experiments show CFPI can greatly speed
up inference without sacrificing accuracy.

Introduction

Probabilistic inference in AI problems is often intractable.
Most widely used probabilistic representations in these
problems are propositional, but in the last decade, many
first-order probabilistic languages have been proposed
(Getoor and Taskar 2007). Inference in these languages can
be carried out by first converting to propositional form; how-
ever, more recently more efficient algorithms for lifted in-
ference have been developed (Poole 2003; de Salvo Braz,
Amir, and Roth 2007; Singla and Domingos 2008; Ker-
sting, Ahmadi, and Natarajan 2009; Kisynski and Poole
2009). While lifting can yield large speedups over propo-
sitionalized inference, the blowup in the combinations of
objects and relations still greatly limits its applicability.
One solution is to perform approximate lifting, by group-
ing objects that behave similarly, even if they are not ex-
actly alike (Singla 2009; Sen, Deshpande, and Getoor 2009;
de Salvo Braz et al. 2009).
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In this paper, we propose an approach to approximate lift-
ing that scales much better that previous approaches by ex-
ploiting coarse-to-fine domain structure. Coarse-to-fine ap-
proaches are becoming more prevalent as probabilistic infer-
ence problems grow into larger, richer domains. The coarse-
to-fine paradigm makes efficient inference possible while
minimizing loss of accuracy. A coarse-to-fine approach per-
forms inference at successively finer granularities. It uses
the results from the coarser stages, where inference is faster,
to guide and speed up inference at the more refined levels.
A wide range of methods under the coarse-to-fine paradigm
have been used in vision (e.g., Raphael (2001), Felzen-
szwalb and Huttenlocher (2006), Felzenszwalb, Girshick,
and McAllester (2010), Weiss and Taskar (2010)), NLP
(e.g., Petrov and Klein (2007), Carreras, Collins, and Koo
(2008), Weiss and Taskar (2010)), and other fields. How-
ever, despite the growing interest in coarse-to-fine methods
(e.g., Petrov et al. (2010)), no coarse-to-fine methods for
general first-order probabilistic models have been proposed
to date. Inference in these models could benefit greatly from
the coarse-to-fine paradigm; the domains of these models
tend to contain ontological structure where this type of ap-
proximation is applicable. The use of ontological informa-
tion has been studied extensively, but almost entirely in the
context of purely logical inference (Staab and Studer 2004).
However, the need for it is arguably even greater in proba-
bilistic inference.

Our Coarse-to-Fine Probabilistic Inference (CFPI) ap-
proach generalizes previous coarse-to-fine approaches in
NLP etc., but also opens up many new applications. Given
a type hierarchy, CFPI first performs inference using the
coarsest type information, prunes atoms that are close to
certain, then performs inference at the next finer level and
repeats until the finest level is reached or the full query has
been decided. (Alternatively, the type hierarchy itself could
be induced from data.) CFPI is most efficient for models
where pruning decisions can be made as early as possible.
We describe our coarse-to-fine learning method that learns
models optimized for CFPI by utilizing the type hierarchy;
the lower levels refine the parameters at the higher levels,
maximizing the gains.

CFPI treats coarse-to-fine inference as a succession of
finer and finer applications of approximate lifted inference
guided by a type hierarchy. CFPI can be applied with
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Weighted First-Order Logic Rules Evidence
1.4 TAs(x, c) ∧ Teaches(y, c) ⇒ Advises(y, x) TAs(Anna, AI101)
4.3 Publication(t, x) ∧ Advises(y, x) ⇒ Publication(t, y)

Table 1: Example of a Markov logic network and evidence. Free variables are implicitly universally quantified.

any probabilistic inference algorithm. Our framework uses
and generalizes hierarchical models, which are widespread
in machine learning and statistics (e.g., Gelman and Hill
(2006), Pfeffer et al. (1999)). Our approach also incor-
porates many of the advantages of lazy inference (Poon,
Domingos, and Sumner 2008).

Our algorithms are formulated in terms of Markov logic
(Domingos and Lowd 2009). The generality and simplic-
ity of Markov logic make it an attractive foundation for a
coarse-to-fine inference and learning framework. In partic-
ular, our approach directly applies to all representations that
are special cases of Markov logic, including standard graph-
ical models, probabilistic context-free grammars, relational
models, etc. However, our framework could also be formu-
lated using other relational probabilistic languages.

We begin with necessary background, present the frame-
work, and then provide bounds on the approximation error.
We then report our experiments on two real-world domains
(a social network one and a molecular biology one) apply-
ing CFPI with lifted belief propagation. Our results show
that our approach can be more effective compared to lifted
belief propagation without CFPI.

Background

Graphical models compactly represent the joint distribution
of a set of variables X = (X1, X2, . . . , Xn) ∈ X as a
product of factors (Pearl 1988): P (X=x) = 1

Z

∏
k fk(xk),

where each factor fk is a non-negative function of a sub-
set of the variables xk, and Z is a normalization constant.
If P (X=x) > 0 for all x, the distribution can be equiv-
alently represented as a log-linear model: P (X=x) =
1
Z exp (

∑
i wigi(x)), where the features gi(x) are arbitrary

functions of (a subset of) the state. The factor graph rep-
resentation of a graphical model is a bipartite graph with a
node for each variable and factor in the model (Kschischang,
Frey, and Loeliger 2001). (For convenience, we consider
one factor fi(x) = exp(wigi(x)) per feature gi(x), i.e., we
do not aggregate features over the same variables into a sin-
gle factor.) Undirected edges connect variables with the ap-
propriate factors. The main inference task in graphical mod-
els is to compute the conditional probability of some vari-
ables (the query) given the values of others (the evidence),
by summing out the remaining variables. Inference methods
for graphical models include belief propagation and MCMC.

A first-order knowledge base (KB) is a set of sentences or
formulas in first-order logic. Constants represent objects in
the domain of interest (e.g., people: Amy, Bob, etc.). Vari-
ables range over the set of constants. A predicate is a symbol
that represents a relation among objects (e.g., Advises) or
an attribute of an object (e.g., Student) and its arity (num-
ber of arguments it takes). An atom is a predicate applied

to a tuple of variables or objects (e.g., Advises(Amy, y)) of
the proper arity. A clause is a disjunction of atoms, each of
which can either be negated or not. A ground atom is an
atom with only constants as arguments. A ground clause is
a disjunction of ground atoms or their negations.

First-order probabilistic languages combine graphical
models with elements of first-order logic by defining tem-
plate features that apply to whole classes of objects at
once. A simple and powerful such language is Markov
logic (Domingos and Lowd 2009). A Markov logic network
(MLN) is a set of weighted first-order clauses. Given a set
of constants, an MLN defines a Markov network with one
node per ground atom and one feature per ground clause.
The weight of a feature is the weight of the first-order clause
that originated it. The probability of a state x is given by
P (x) = 1

Z exp (
∑

i wigi(x)), where wi is the weight of the
ith clause, gi = 1 if the ith clause is true, and gi = 0 oth-
erwise. Table 1 shows an example of a simple MLN repre-
senting an academia model. An example of a ground atom,
given as evidence, is shown. States of the world where more
advisees TA for their advisors, and advisees and their advi-
sors coauthor publications, are more probable. Inference in
Markov logic can be carried out by creating and running in-
ference over the ground network, but this can be extremely
inefficient because the size of the ground network is O(dc),
where d is the number of objects in the domain and c is
the highest clause arity. Lifted inference establishes a more
compact version of the ground network in order to make in-
ference more efficient. In lifted belief propagation (LBP),
subsets of components in the ground network are identified
that will send and receive identical messages during belief
propagation (Singla and Domingos 2008).

Representation

The standard definition of an MLN assumes an undifferenti-
ated set of constants. We begin by extending it to allow for
a hierarchy of constant types.

Definition 1 A type is a set of constants t = {k1, . . . , kn}.
A type t is a subtype of another type t′ iff t ⊂ t′. A type t
is a supertype of another type t′ iff t′ ⊂ t. A refinement of a
type t is a set of types {t1, . . . , tm} such that ∀i,j ti∩ tj = ∅
and t = t1 ∪ t2 ∪ · · · ∪ tm.

Definition 2 A typed predicate is a tuple a = (a0, t1, . . . ,
tn), where a0 is a predicate, n is a0’s arity, and ti is the
type of a0’s ith argument. A typed atom is a typed predicate
applied to a tuple of variables or objects of the proper arity
and types. A typed clause is a tuple c = (c0, t1, . . . , tn),
where c0 is a first-order clause, n is the number of unique
variables in c0, and ti is the type of the ith variable in c0. The
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Figure 1: Example type hierarchy for an academia domain.

set of types in a typed predicate, atom, or clause is referred
to as the predicate’s, atom’s, or clause’s type signature.

Definition 3 A typed MLN M is a set of weighted typed
clauses, {(ci, wi)}. It defines a ground Markov network
with one node for each possible grounding of each typed
atom in M, and one feature for each possible grounding of
each typed clause in M with constants from the correspond-
ing types. The weight of a feature is the weight of the typed
clause that originated it.

Definition 4 Given a set of types T, ti ∈ T is a direct sub-
type of tj ∈ T iff ti ⊂ tj and �t ∈ T such that ti ⊂ t ⊂ tj .
{t1, t2, . . . , tm} ⊂ T is a direct refinement of t ∈ T iff
it is a refinement of t and t1, . . . , tm are direct subtypes of
t. A set of types T is a type hierarchy iff within T, each
type has no subtypes or exactly one direct refinement, and
∀i,j (ti ∩ tj = ∅)∨ (ti ⊂ tj)∨ (tj ⊂ ti). A root type has no
supertypes; a leaf type has no subtypes.

A type hierarchy is a forest of types. It may be a tree, but
an all-encompassing root type will usually be too general to
be useful for inference. Figure 1 depicts an example type
hierarchy for an academia domain.

Coarse-to-Fine Inference

Algorithm 1 shows pseudocode for the CFPI algorithm. It
takes as input a type hierarchy T, a typed MLN MT over
types in T, a database of evidence E, and a pruning thresh-
old γ. CFPI begins by choosing an MLN M containing the
weighted clauses in MT whose type signatures are com-
posed exclusively of the coarsest level types. These could
be root types or a set of types from any cut of the type hi-
erarchy. For example, in an academia domain, it may make
more sense to consider students and professors separately
from the start. CFPI then calls a pre-specified lifted proba-
bilistic inference algorithm to compute the marginals of all
the non-evidence ground atoms based on M, the constants in
T, and the evidence E. Ground atoms whose marginals are
at most γ are added to the evidence as false, and those whose
marginals are at least 1− γ are added as true. The marginal
probabilities of these pruned ground atoms are stored and
returned in the output of CFPI. Any clauses now valid or
unsatisfiable given the expanded evidence will not affect the
results of subsequent inferences and are removed from M.

CFPI then refines M, replacing every clause c in M with
the set of clauses obtained by direct refinement of the types
in c’s type signature. If v is a variable in c, v’s type in a
refined clause is a direct subtype of its type in c, and there

Algorithm 1 Coarse-to-Fine Probabilistic Inference
inputs: MT, a typed Markov logic network

T, a type hierarchy
E, a set of ground literals
γ, pruning threshold

calls: Infer(), a probabilistic inference algorithm
Refine(), a type refinement algorithm

M ← Coarsest(MT)
repeat
P (x|E) ← Infer(M,T,E)
for each atom xi

if P (xi|E) ≤ γ then E ← E ∪ {¬xi}
else if P (xi|E) ≥ 1− γ then E ← E ∪ {xi}

M ← M \ {valid and unsatisfiable clauses under E}
M ← Refine(M,MT)

until Refine(M,MT) = M
P (x|E) ← Infer(M,T,E)

is a refined clause for each possible combination of direct
subtypes for the variables in c. Any leaf types are left un-
refined. In general, it might be useful to refine some types
and leave others unrefined, but this substantially increases
the complexity of the algorithm and is left for future work.
The clauses returned are the direct clause refinements of the
clause c. The process ends when no more direct clause re-
finements are possible on the clauses in M or all ground
atoms have been pruned; in either case, Refine(M,MT) re-
turns M.

Previous coarse-to-fine approaches can be cast into this
general framework. For example, in Petrov and Klein
(2007), the type hierarchy is the hierarchy of nonterminals,
the refinement procedure is the reverse projection of the
set of coarse-to-fine grammars, and inference is the inside-
outside algorithm.

At every step, the MLN grows by refining clauses, but
also shrinks by pruning. The goal is to contain the complex-
ity of inference, while keeping it focused on where it is most
needed: the ground atoms we are most uncertain about. The
following theorem bounds the approximation error incurred
by this process, relative to exact inference.
Theorem 1 Let γ be the CFPI pruning threshold, nk be the
number of atoms pruned at level k, m be the total number
of features, Δkw be the maximum error in weights at level
k, δ be the maximum absolute error in the marginal prob-
abilities returned by Infer(), P (xi|E) be the true marginal
probability of xi given evidence E, P̂k(xi|E) be the approx-
imate marginal probability of xi returned by CFPI at level k
given evidence E, and K be the level at which CFPI stops.
If xi is pruned at level k, the error in the probability of xi,
ε(xi) = |P̂k(xi|E)− P (xi|E)|, is bounded by

ε(xi) ≤ (γ + δ)

(
e2mΔkw +

k−1∑
i=1

nie
2mΔiw

)
.

If xi is not pruned,

ε(xi) ≤ (γ + δ)

(
K−1∑
i=1

nie
2mΔiw(1 + P̂K(xi|E))

)
.
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(Proofs of theorems are provided in the appendix.) When
atoms are pruned, the set of possible worlds shrinks and
the probabilities of the remaining possible worlds must be
renormalized. Intuitively, errors stem from pruning possi-
ble worlds that have non-zero probability (or pruning worlds
where P (x) �= 1 for the high-probability case). We can
bound the probability mass of pruned worlds based on
weight approximations and the number of previously pruned
atoms. In turn, we can use those bounds to bound errors in
atom marginals.

Infer() can be any lifted probabilistic inference algorithm
(or even propositionalization followed by ground inference,
although this is unlikely to scale even in the context of
CFPI). If the inference algorithm is exact (e.g., FOVE (de
Salvo Braz, Amir, and Roth 2007)), the error δ = 0 in the
above bound. However, realistic domains generally require
approximate inference.

In this paper, we use lifted belief propagation (Singla and
Domingos 2008). We call CFPI applied to lifted belief prop-
agation CFLBP (Coarse-to-Fine Lifted Belief Propagation).
We now provide an error bound for CFLBP. While Theorem
1 provides an intuitive error bound that is independent of
the inference method used with CFPI, Theorem 2 provides a
tighter bound when the error is calculated concurrently with
inference. We base our algorithm on Theorem 15 of Ihler et
al. (2005) that bounds errors on atom marginals due to mul-
tiplicative errors in the messages passed during BP. Since
lifted BP computes the same marginals as ground BP, for
the purposes of a proof, the former can be treated as the lat-
ter. We can view the errors in the messages passed during
BP in level k of CFLBP as multiplicative errors on the mes-
sages from factors to nodes at each step of BP, due to weight
approximations at that level and the loss of pruned atoms.

Theorem 2 For the network at level k of CFPI, let pkx be the
probability estimated by BP at convergence, p̂kx be the prob-
ability estimated by CFLBP after n iterations of BP, σ− and
σ+ be the sets of low- and high-probability atoms pruned in
CFLBP’s previous k − 1 runs of BP, αk

f be the difference in
weight of factor f between level k and the final level K, and
γ be the pruning threshold. For a binary node x, pkx can be
bounded as follows:
For x ∈ σ−: 0 ≤ pkx ≤ γ
For x ∈ σ+: 1− γ ≤ pkx ≤ 1
And for x �∈ σ− ∪ σ+:

pkx ≥ 1

(ξk,nx )2[(1/p̂kx)− 1] + 1
= lb(pkx) and

pkx ≤ 1

(1/ξk,nx )2[(1/p̂kx)− 1] + 1
= ub(pkx),

where

log ξk,nx =
∑

f∈nb(x)

log νk,nf,x ,

νk,1x,f = d(f)2,

log νk,i+1
x,f =

∑
h∈nb(x)\{f}

log νk,ih,x,

log νk,i+1
f,x = log

d(f)2τk,if,x + 1

d(f)2 + τk,if,x

+ log d(εkf,x),

log τk,if,x =
∑

y∈nb(f)\{x}
log νk,iy,f ,

d(εkf,x) = γ− 1
2 |σ−f |(1− γ)−

1
2 |σ+

f |e
1
2α

k
f ,

and nodes are only pruned at level k′ when either ub(pk
′

x ) ≤
γ or lb(pk

′
x ) ≥ 1− γ.

Although Theorem 2 does not have a particularly intuitive
form, it yields much tighter bounds than Theorem 1 if we
perform the bound computations as we run BP. If no atoms
are pruned at previous levels, the fixed point beliefs returned
from CFLBP on its kth level of BP after n iterations will be
equivalent to those returned by BP after n iterations on the
network at that level.

Coarse-to-Fine Learning

The critical assumption invoked by the inference frame-
work is that objects of the same type tend to act in simi-
lar manners. In terms of a typed MLN, stronger weights
on clauses over coarser types allow pruning decisions to
be made earlier, which speeds up later iterations of infer-
ence. To achieve models of this type, we learn weights in
a coarse-to-fine manner through a series of successive re-
finements of clauses. The weights for clauses at each iter-
ation of learning are learned with all weights learned from
preceding iterations held fixed. The effect is that a weight
learned for a typed clause is the additional weight given to
a clause grounding based on having that new type informa-
tion. As the weights are learned for clauses over finer and
finer type signatures, these weights should become succes-
sively smaller as the extra type information is less important.
A benefit of this coarse-to-fine approach to learning is that
as soon as refining a typed clause does not give any new in-
formation (e.g., all direct refinements of a clause are learned
to have 0 weight), the typed clause need not be refined fur-
ther. The result is a sparser model that will correspond to
fewer possible refinements during the inference process and
therefore more efficient inference.

Proposition 1 For a typed MLN MT learned in the
coarse-to-fine framework, there is an equivalent typed-
flattened MLN M′

T such that no clause c ∈ M′
T can be

obtained through a series of direct clause refinements of any
other clause c′ ∈ M′

T.
When Refine(M,MT) replaces a clause c in M by its di-

rect clause refinements, the weight of each new typed clause
c′i added to M is w + w′

i, where w is the weight of c in M
and w′

i is the weight of c′i in MT. When there are no more
refinements, the resulting typed MLN will be a subset of the
type-flattened MLN M′

T, accounting for pruned clauses.
Coarse-to-fine learning is not essential, but it greatly im-

proves the efficiency of coarse-to-fine inference. By design
it yields a model that is equivalent to the type-flattened one,
and so incurs no loss in accuracy. We note that using regu-
larization while learning causes the typed MLN to only be
approximately equivalent to the type-flattened MLN but can
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Figure 2: Total runtime of algorithms over (a) the UW CSE and (b) the GENIA data sets.

UW-CSE data set
Algorithm Pruning Threshold Init Infer Prune Avg. CLL # Superfeatures

LBP N/A 3441.59 2457.34 N/A -0.00433 8.2 million
CFLBP 0.001 2172.45 208.59 0.99 -0.00433 485, 507
CFLBP 0.01 537.93 2.08 1.15 -0.00431 10, 328

GENIA data set
Algorithm Pruning Threshold Init Infer Prune Avg. CLL # Superfeatures

LBP N/A 1305.08 846.21 N/A -0.01062 8.5 million
CFLBP 0.01 415.31 0.40 0.36 -0.01102 3,478

Table 2: Results for the full UW-CSE data set and GENIA data set over 150 abstracts. For CFLBP, number of superfeatures
counts the most used during any level. Init, Infer, and Prune times given in seconds.

improve accuracy in the same way that hierarchical smooth-
ing does.

Experiments
We experimented on a link prediction task in a social net-
working domain and an event prediction task in a molecular
biology domain to compare the running time and accuracy
of lifted belief propagation (LBP) applied with and with-
out the CFPI framework. In both tasks, we assumed that all
type information was known. That is, given a type hierarchy
T, each object is assigned a set of types {t1, . . . , tn} ⊂ T
where t1 is a root type, ti is a direct subtype of ti−1 for all
i > 1, and tn is a leaf type. CFPI can be applied in cases
with incomplete type information, an experiment left for fu-
ture work. We implemented CFLBP as an extension of the
open-source Alchemy system (Kok et al. 2007). Currently,
Alchemy does not allow for duplicate clauses with differ-
ent type signatures. Instead we added type predicates to the
formulas in our model to denote the correct type signatures.
We compared running CFLBP over a typed MLN to running
LBP over the equivalent type-flattened MLN. We ran each
algorithm until either it converged or the number of itera-
tions exceeded 100. We did not require each algorithm to
run for the full 100 iterations since the network shrinkage
that occurs with CFLBP may allow it to converge faster and
is an integral part of its efficiency.

In our experiments, we used regularization when learning
the models. We used L1-regularization when learning the

model for the the link prediction task and L2-regularization
when learning the event prediction task’s model; future work
will include a more thorough analysis of how using different
regularization techniques during learning affects the speed
and accuracy of CFPI.

Link Prediction

The ability to predict connections between objects is very
important in a variety of domains such as social network
analysis, bibliometrics, and micro-biology protein inter-
actions. We experimented on the link prediction task
of Richardson and Domingos (2009), using the UW-CSE
database that is publicly available on the Alchemy project
website.1 The task is to predict the AdvisedBy relation given
evidence on teaching assignments, publication records, etc.
We manually created a type hierarchy that corresponded
well to the domain. The Person type is split into a Pro-
fessor and a Student type, both of which are split further
by area (e.g., AI, Systems); the Student type is split fur-
ther by point in the graduate program (e.g., Pre-Quals, Post-
Generals). The Class type is split by area followed by level.
We tested on 43 of the 94 formulas in the UW-CSE MLN;
we removed formulas with existential quantifiers and dupli-
cates that remained after the removal of “type” predicates
such as Student(x). The type-flattened MLN had 10,150
typed clauses from matching the 43 formulas with varying

1http://alchemy.cs.washington.edu
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type signatures. The full database contains ∼4,000 predicate
groundings, including type predicates. To evaluate inference
over different numbers of objects in the domain, we ran-
domly selected graph cuts of various sizes from the domain.
Figure 2(a) shows a comparison of the runtimes of CFLBP
and LBP for different sized cuts of the UW-CSE data set.
We ran CFLBP with pruning thresholds of γ = 0.01 and
γ = 0.001. The time is the sum of both initialization of the
network and the inference itself; the times for CFLBP also
include the refinement times after each level. For each cut of
the UW-CSE data set, the average conditional log likelihood
(CLL) of the results returned by CFLBP with either pruning
threshold were virtually the same as the average conditional
log likelihood returned by LBP. Table 2 summarizes the re-
sults of the UW-CSE link prediction experiment over the full
UW CSE data set. The full data set contained 815 objects,
including 265 people, and 3833 evidence predicates. With
γ = 0.01, we achieve an order of magnitude speedup.

Biomolecular Event Prediction

As new biomedical literature accumulates at a rapid pace,
the importance of text mining systems tailored to the do-
main of molecular biology is increasing. One important task
is the identification and extraction of biomolecular events
from text. Event prediction is a challenging task (Kim et al.
2003) and is not the focus of this paper. Our simplified task
is to predict which entities are the causes and themes of iden-
tified events contained in the text, represented by two predi-
cates: Cause(event, entity) and Theme(event, entity).
We used the GENIA event corpus that marks linguistic ex-
pressions that identify biomedical events in scientific liter-
ature spanning 1,000 Medline abstracts; there are 36,114
events labeled, and the corpus contains a full type hierarchy
of 32 entity types and 28 event types (Kim, Ohta, and Tsu-
jii 2008). Our features include semantic co-occurrence and
direct semantic dependencies with a set of key stems (e.g.,
Subj(entity, stem, event)). We also learned global fea-
tures that represent the roles that certain entities tend to fill.
We used the Stanford parser,2 for dependency parsing and
a Porter stemmer to identify key stems.3 We restricted our
focus to events with one cause and one theme or no cause
and two themes where we could extract interesting seman-
tic information at our simple level. The model was learned
over half the GENIA event corpus and tested on the other
half; abstract samples of varying sizes were randomly gen-
erated. From 13 untyped clauses, the type-flattened MLN
had 38,020 clauses.

Figure 2(b) shows a comparison of the runtimes of
CFLBP with γ = 0.01 and LBP. For each test set where
both CFLBP and LBP finished, the average conditional log
likelihoods were almost identical. The largest difference in
average conditional log likelihood was 0.019 with a dataset
of 175 objects; in all other tests, the difference between the
averages was never more than 0.001. Table 2 summarizes
the results of the the largest GENIA event prediction experi-
ment where both LBP and CFLBP finished without running

2http://nlp.stanford.edu/software/lex-parser.shtml
3http://tartarus.org/∼martin/PorterStemmer

out of memory. This test set included 125 events and 164
entities.

Conclusion and Future Work

We presented a general framework for coarse-to-fine infer-
ence and learning. We provided bounds on the approxima-
tion error incurred by this framework. We also proposed a
simple weight learning method that maximizes the gains ob-
tainable by this type of inference. Experiments on two do-
mains show the benefits of our approach. Directions for fu-
ture work include: inducing the type hierarchy from data for
use in CFPI; broadening the types of type structure allowed
by CFPI (e.g., multiple inheritance); and applying CFPI to
other lifted probabilistic inference algorithms besides LBP.
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Appendix: Proofs of Theorems

Proof of Theorem 1

The probability of an atom is the probability of all the worlds
(e.g., atom assignments x) in which that atom is true:

P (xi) =
∑
x∈X

xiP (x)

where xi is 1 if xi is true in x and 0 otherwise. Assume that
xi is pruned at level k if its approximate marginal probabil-
ity, P̂k(xi), falls below γ after running inference at level k.
(We will consider pruning high-probability atoms later.) If
xi is pruned, then the probability of all the worlds where xi

is true is set to 0; these worlds are essentially pruned from
the set of possible worlds.

Let W be a set of worlds. Let P ′(xi) be the marginal
probability of xi given that the worlds in W have been
pruned (e.g., the probability of each world in W is set to
0). Then,

P ′(xi) =

∑
x∈X\W xie

∑
j wjfj(x)∑

x∈X\W e
∑

j wjfj(x)
.

At each level k, the weight wj is approximated by some ŵj

with at most difference Δkw:

|wj − ŵj | ≤ Δkw.

Assume now that W is the set of worlds that have been
pruned in levels 1 through k − 1. If xi is pruned at level
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k,

P ′(xi) ≤
∑

x∈X\W xie
∑

j(ŵj+Δkw)fj(x)∑
x∈X\W e

∑
j(ŵj−Δkw)fj(x)

≤
∑

x∈X\W xie
∑

j ŵjfj(x)∑
x∈X\W e

∑
j ŵjfj(x)

emΔkw

e−mΔkw

≤ P̂k(xi)e
2mΔkw

≤ γe2mΔkw = γk,

where m is the total number of features.
When atoms are pruned, worlds are pruned, and the prob-

ability of the unpruned worlds has to be renormalized to
compensate. Let Wk be the set of worlds pruned at level
k. If x is an unpruned world after inference at level k, the
new probability of x, P ′(x), is

P ′(x) =
P (x)

1−∑k
l=1 P (Wl)

. (1)

Since 0 ≤ P (Wl) < 1, P ′(x) ≥ P (x).
By the union bound, the probability of Wk (e.g., the prob-

ability of the union of all worlds where at least one pruned
atom is true) is bounded by the sum of the probabilities of
each pruned atom:

P (Wk) ≤ P ′(Wk) ≤ nkγk

where nk is the number of atoms pruned at level k. There-
fore, using Equation 1 we bound P (x) as such:(

1−
k∑

l=1

nlγl

)
P ′(x) ≤ P (x) ≤ P ′(x).

Since this is true for any world x, it is also true for any set
of worlds. If xi is pruned at level k, 0 ≤ P̂k(xi) ≤ γ and

0 ≤ P (xi) ≤
∑

x∈X\W
xiP

′(x) +
∑
x∈W

xiP
′(x)

≤ γe2mΔkw +
k−1∑
i=1

niγe
2mΔiw.

Computing the bound for an atom pruned for having high
probability is the equivalent to computing the bound for
the negation of that atom for having low probability. If
P ′(x̄i) ≤ γk, P ′(xi) ≥ 1 − γk. While the computation
follows similarly, the error bound is slightly tighter than the
one for low-probability atoms. For simplicity, we provided
the tightest bound that covers both cases. After conditioning
everything on evidence E, factoring out the γ, and adding in
δ to take into account errors from the inference algorithm,
the first equation in Theorem 1 follows.

If an atom xi is not pruned during the course of CFPI, then
without bounding P̂K(xi), we use the same type of compu-
tation as we used for pruned atoms to get the second equa-
tion in Theorem 1. �

Proof of Theorem 2

The dynamic range of a function is defined as follows (Ihler,
Fisher, and Willsky 2005):

d(f) = sup
x,y

√
f(x)/f(y).

At each refinement level, the messages in BP have errors
introduced from the approximation of the factor weights
from the coarse type signature and from the loss of mes-
sages from pruned nodes at earlier levels of refinement. At
a level k, the difference between the weight of a factor f ,
wk

f , and the true weight of the factor, wK
f , at the finest level

is αk
f = wk

f − wK
f , the error in the outgoing message is

bounded by eα
k
f . The error reaches this bound when all pos-

sible states are compatible with the factor; in practice, the
error will be much smaller.

Assuming that in levels 1 through k − 1 we did not
prune any node whose true probability is outside the prun-
ing threshold γ. Then, the bound on the error of an incom-
ing message from a pruned low node is γ, and the bound on
the error of a message from a pruned high node is 1 − γ.
If σ−

f is the set of nodes neighboring a factor f that have
been pruned for having a low probability, and σ+

f is the set
of nodes neighboring f that were pruned for having a high
probability, the multiplicative error of the messages from a
factor f to a unpruned node x from the weight approxima-
tion and the pruned nodes is:

εkf,x = eα
k
f γ−|σ−f |(1− γ)−|σ+

f |.

Therefore, the dynamic range of the error is:

d(εkf,x) =

√
eα

k
f γ−|σ−f |(1− γ)−|σ+

f |/1

= γ− 1
2 |σ−f |(1− γ)−

1
2 |σ+

f |e
1
2α

k
f .

Theorem 15 of Ihler et al. (2005) implies that, for any
fixed point beliefs {Mx} found by BP, after n ≥ 1 iterations
of BP at level k of CFLBP resulting in beliefs {M̂k,n

x } we
have:

log d(Mx/M̂
k,n
x ) ≤

∑
f∈nb(x)

log νk,nf,x = log ξk,nx .

It follows that d(MxM̂
k,n
x ) ≤ ξk,nx , and therefore

Mx(1)/M̂
k,n
x (1)

Mx(0)/M̂
k,n
x (0)

≤ (ξk,nx )2 and (1 − p̂x)/p̂x ≤ (ξk,nx )2(1 −
px)/px, where px and p̂x are obtained by normalizing Mx

and M̂x. The upper bound follows, and the lower bound can
be obtained similarly. �
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