
Fast Parallel and Adaptive
Updates for Dual-Decomposition Solvers

Özgür Sümer
osumer@cs.uchicago.edu

Department of Computer Science
University of Chicago, IL

Umut A. Acar∗
umut@mpi-sws.org

Max-Planck Institute for Software Systems
Germany

Alexander T. Ihler
ihler@ics.uci.edu

Information and Computer Science
University of California–Irvine

Ramgopal R. Mettu†
mettu@ecs.umass.edu

Department of Electrical and Computer Engineering
University of Massachusetts Amherst, MA

Abstract

Dual-decomposition (DD) methods are quickly becoming im-
portant tools for estimating the minimum energy state of a
graphical model. DD methods decompose a complex model
into a collection of simpler subproblems that can be solved
exactly (such as trees), that in combination provide upper and
lower bounds on the exact solution. Subproblem choice can
play a major role: larger subproblems tend to improve the
bound more per iteration, while smaller subproblems enable
highly parallel solvers and can benefit from re-using past so-
lutions when there are few changes between iterations.
We propose an algorithm that can balance many of these as-
pects to speed up convergence. Our method uses a cluster
tree data structure that has been proposed for adaptive ex-
act inference tasks, and we apply it in this paper to dual-
decomposition approximate inference. This approach allows
us to process large subproblems to improve the bounds at
each iteration, while allowing a high degree of parallelizabil-
ity and taking advantage of subproblems with sparse updates.
For both synthetic inputs and a real-world stereo matching
problem, we demonstrate that our algorithm is able to achieve
significant improvement in convergence time.

1 Introduction

As multi-core computers become commonplace, researchers
and practitioners are increasingly looking to parallelization
to assist with difficult inference tasks in a variety of applica-
tions, including computer vision, automated reasoning, and
computational biology. Thus, improving the efficiency of
approximate inference algorithms has the potential to ad-
vance research in each of these areas. In particular, dual de-
composition (DD) methods are starting to emerge as a pow-
erful set of tools for parallelizable approximate reasoning

∗U. A. Acar is supported by a gift from Intel and Microsoft
Research.

†R. R. Mettu is supported by a National Science Foundation
CAREER Award (IIS-0643768).
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in graphical models. At essence, DD methods decompose
a complex model into a collection of simpler models (sub-
graphs) that are forced to agree on their intersections. By
relaxing these constraints with Lagrange multipliers, one ob-
tains a bound on the optimal solution that can be iteratively
tightened. Since these simpler subproblems can be solved
independently in each iteration, this approach is a natural
choice for multi-core and parallel architectures.

However, parallelizing a dual decomposition solver can
often have a hidden cost in terms of the per-iteration perfor-
mance of the algorithm. In particular, choosing very small
subproblems leads to a highly parallel solver but can also
significantly reduce its progress at each iteration, leading to
less than the expected improvement in overall speed. On the
other hand, collections of larger subproblems often require
fewer iterations, but are less parallelizable.

In this paper, we present an approach to parallelizing dual-
decomposition solvers using tree contraction (Reif and Tate
1994; Acar et al. 2004; Acar, Blelloch, and Vittes 2005),
a well-known technique for parallel computation. Tree
contraction has been used to parallelize exact inference in
graphical models (Pennock 1998; Xia and Prasanna 2008;
Namasivayam, Pathak, and Prasanna 2006), has not been
applied to approximate inference methods. In particular, we
make use of the cluster tree data structure for adaptive infer-
ence (Acar et al. 2007; 2008; 2009a), and show that it can
be used in a way that combines the per-iteration advantages
of large subproblems while also enabling a high degree of
parallelism. The cluster-tree data structure can be obtained
by applying self-adjusting-computation (Acar et al. 2009b;
Hammer, Acar, and Chen 2009; Ley-Wild, Fluet, and Acar
2008) to tree contraction and have been previously used
to solve dynamic problems on trees (Acar et al. 2004;
Acar, Blelloch, and Vittes 2005) in the sequential, single-
processor, context. In addition to being highly paralleliz-
able, the adaptive properties of the cluster tree allow minor
changes to a model to be incorporated and re-solved in far
less time than required to solve from scratch. We show that
in DD solvers this adaptivity can be a major benefit, since of-

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1076

ten only small portions of the subproblems’ parameters are
modified at each iteration.

We demonstrate that a DD solver using our cluster tree
approach can improve its time to convergence significantly
over other approaches. For random grid-like graphs we ob-
tain one to two orders of magnitude speedup. We also use
our solver for a real-world stereo matching problem, and
over a number of data sets show a factor of about 2 improve-
ment over other approaches.

2 Background

Graphical models give a formalism for describing factor-
ization structure within a probability distribution or energy
function over variables V = {x1, . . . , xn}. For notational
simplicity we consider pairwise models where for a graph
G = (V,E), the energy function EP decomposes into a col-
lection of singleton and pairwise functions:

EP =
∑
i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj).

which are nonzero over neighboring pairs, (i, j) ∈ E. A
common task is to find the optimal assignment to the vari-
ables that minimizes EP ; this corresponds to the “most
probable explanation” or MPE estimate.

Dual decomposition (DD) methods further split the en-
ergy function into an additive set of “subproblems”

ED =
∑
t

[∑
i∈V

θti(x
t
i) +

∑
(i,j)∈E

θtij(x
t
i, x

t
j)
]

where we require that θi(xi) =
∑

t θ
t
i(xi) and θij(xi, xj) =∑

t θ
t
ij(xi, xj) for all i, j. The values of θtij are chosen to be

non-zero on a strictly simpler graph than G (for example, a
tree), so that each subproblem t can be solved easily by dy-
namic programming (or equivalently variable elimination).

If all copies xt
i of each variable xi are forced to be equal,

both problems are equivalent. However, by relaxing this
constraint and enforcing it with Lagrange multipliers, we
obtain a collection of simpler problems that when solved in-
dividually, lower bounds the original energy (a Lagrangian
dual function). Typical DD solvers maximize this dual lower
bound using a projected subgradient update. Suppose that
{xt

i} are the copies of variable xi, with optimal assignments
{ati} for t = 1 . . . T . Then we modify θti as

θti(x) = θti(x)− γ
(
δ(x = ati)−

1

T

∑
u

δ(x = aui)
)

(1)

where δ(·) is the Kronecker delta function and γ is a step-
size constant. It is easy to see that this update maintains the
constraints on the θti . If at any point a solution is found in
which all variable copies share the same value, this configu-
ration must be the MPE.

Dual decomposition solvers are closely related to LP-
based loopy message passing algorithms (Wainwright,
Jaakkola, and Willsky 2005; Globerson and Jaakkola 2007),
which solve the same dual using a coordinate ascent fixed
point update. However, these algorithms can have sub-
optimal fixed points, so gradient and “accelerated” gradi-
ent methods (Johnson, Malioutov, and Willsky 2007; Jojic,

x1 x2 x3
x4

x5
x6 x7x8x9

(a)

x6

x4 x8

x2 x5 x7 x9
x1 x3

(b)

Figure 1: (a) A Markov chain subproblem. (b)
A cluster tree formed by eliminating in the order:
x1, x3, x2, x5, x7, x9, x4, x8, x6. The depth of the cluster
tree is O(log n) whereas the depth of the original chain is
O(n).

Gould, and Koller 2010) are often preferred. In this paper
we focus on the standard projected subgradient method.

DD methods leave the choice of subproblems to the
user. All problem collections that include equivalent sets
of cliques (for example, any collection of trees that cov-
ers all edges of G) can be shown to have the same dual-
optimal bound, but the actual choice of problems can signif-
icantly affect convergence speed. For example, one simple
option is to include one subproblem per edge in the orig-
inal graph; this leads to a large number of simple prob-
lems, which can then be easily parallelized. However, as ob-
served in (Komodakis, Paragios, and Tziritas 2007), choos-
ing larger subproblems can often improve the convergence
rate (i.e., the increase in the lower bound per iteration) at
the possible expense of parallelization. For example, single-
subproblem models (Johnson, Malioutov, and Willsky 2007;
Yarkony, Fowlkes, and Ihler 2010) create a single “cover-
ing” tree over several copies of each variable. This ap-
proach provides good convergence properties but is not eas-
ily amenable to parallelization.

Another advantage we propose for small subproblems is
their ability to be adaptive, or more specifically to re-use
previous iteration’s solution. The subgradient update (1) de-
pends only on the solution at of each subproblem t; if all
parameters of a subproblem are unchanged, its solution re-
mains valid and we need not re-solve it. We show in Sections
4 and 5 that this can lead to considerable computational ad-
vantages. However, although this is common in very small
subproblems (such as individual edges), for larger problems
with better convergence rates it becomes less likely that the
problem will not be modified.

Thus, collections of small problems have significant
speed (time per iteration) advantages, but larger problems
have typically better convergence rates, or fewer iterations
required. The focus of the remainder of this paper is to
present a new framework that captures both the convergence
properties of single-subproblem approaches, and the update
speed of many, small subproblems.

3 Cluster tree data structure

Parallel calculation of tree-structured formulas has been
studied in the algorithms community using a technique
called tree contraction (Reif and Tate 1994). Algorithms

1077

xj

xi xj xk

xk

θj θkθjk

θi θij
θj θkθjk

λj

λj

λj = min
xj

θj + θjk +
∑

λs∈Cj

λs

λj = min
xj

θj + θij + θjk +
∑

λs∈Cj

λs

Figure 2: Eliminating xj computes a message λj as shown,
where Cj is the set of messages attached to xj or any of its
incident edges.

based on this idea have been applied to speed up exact
inference tasks in a variety of settings (Pennock 1998;
Xia and Prasanna 2008; Acar et al. 2008; 2009a; Namasi-
vayam, Pathak, and Prasanna 2006); here we give a brief
summary of one such data structure called a cluster tree,
and show how it can be applied effectively to improve DD
solvers in Section 4.

As a motivating example, consider a subproblem that con-
sists of a single Markov chain (Figure 1a). A standard solver
for this model works by dynamic programming, sequen-
tially eliminating each xi from leaves to root and comput-
ing a message λi, interpreted as a “cost to go” function, then
back-solving from root to leaves for an optimal configura-
tion {ai}. This process is hard to parallelize, since any exact
solver must propagate information from x1 to x9 and thus
requires a sequence of O(n) operations in this framework.

The cluster tree data structure is based on the observation
that the lack of effective parallelism is due to the “unbal-
anced” nature of the chain. By also “clustering” (i.e., elimi-
nating) non-leaf variables in the model, specifically degree-
two nodes, we create a balanced elimination ordering whose
operations can more easily parallelized. The new partial or-
dering is shown in Figure 1b. Degree-two eliminations intro-
duce some ambiguity to the notion of “messages”, since we
cannot determine the direction (recipient) of the message λj

when xj is eliminated. Instead, we simply create a new edge
joining its neighbors xi, xk and attach λj to the edge. It also
results in a small additional overhead; for variables of size
d, degree-two eliminations require O(d3) cost compared to
O(d2) for leaf-only eliminations, but we shall see that the
framework has advantages that can outweigh this cost. An
illustration and equations for λj are given in Figure 2.

Concretely, the cluster tree is a rooted tree where xj is
a parent of xi if xi’s message λi is used during compu-
tation of λj . This data structure tracks the dependency
among messages; that is, computation of a parent mes-
sage requires all child messages be computed beforehand.
The set of messages passed by xj’s children in the clus-
ter tree is denoted Cj . Moreover, for each xj , we also
store the set Ej of its neighbors at the time of its elimi-
nation. For example in Figure 2 when a leaf node xj is
eliminated, Ej = {xk}, while for a degree-2 node Ej =
{xi, xk}. Previous work shows that, with respect to the
number of variables, the cluster tree can be constructed in
linear time, and has logarithmic depth (Acar et al. 2008;
2009a). Moreover, the balanced shape of the cluster tree

x1
x2 x3

x4x5

x6 x7

x8x9

x′2

x′3x′4

x′5 x′6

x′7x′8

(a)

x6

x4 x8

x2 x5 x7 x9

x1 x3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

serial

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

parallel

(b)

Figure 3: (a) Dual-decomposition using independent edges
is highly parallelizable but slow to converge. (b) The clus-
ter tree is also easily parallelizable, but since the underlying
model is a covering tree, convergence is not compromised.

means that many branches can be computed in parallel; see
Section 4. Using similar ideas, (Pennock 1998) showed that,
with a sufficient number of processors, parallel exact infer-
ence requires O(log n) time.

Another major advantage of the cluster tree is its adap-
tivity, when it is used to compute an optimal configuration
similarly to dynamic programming. Having computed the
messages λi, we perform a downward pass (root to leaves)
to select an optimal configuration for each variable. When
this downward pass reaches variable xj , we choose the opti-
mal configuration using

x∗
j = argmin

xj

θj +
∑

xk∈Ej

θjkδ(xk = x∗
k) +

∑
λs∈Cj

λs. (2)

We shall see in Section 4 that the cluster tree structure also
allows us to efficiently update our solutions at each iteration,
giving an additional speed-up.

4 Parallelism without sacrifice
As previously discussed, the benefit of parallelizing dual-
decomposition inference methods can be lost if the subprob-
lems are not chosen appropriately. For a concrete example,
consider again the Markov chain of Figure 1a. A decomposi-
tion into edges (Figure 3a) achieves high parallel efficiency:
each edge is optimized independently in parallel and dis-
agreements are successively resolved by parallel indepen-
dent projected subgradient updates. Given enough proces-
sors, each iteration in this setup requires constant time, but
overall inference still requires Ω(n) iterations for this proce-
dure to converge. Thus there is no substantial gain from par-
allelizing inference on even this simple model, since in the
sequential case we reach the solution in O(n) time. Thus,
we must balance the degree of parallelism and the converge
rate to achieve the best possible speedup. In the remainder
of this section, we discuss how the cluster tree data struc-
ture permits us to achieve this balance, and how its adaptive
properties provide an additional speedup near convergence.

Parallelization with a Cluster Tree

A cluster tree structure can manage both long-range influ-
ence in each iteration (improving convergence rate) as well

1078

●

●

●
●

●

●

●

●

● ● ●

●
●

●
●

●

●

● ● ●

number of iterations

%
 o

f m
od

ifi
ed

 n
od

es

500 1000 1500 2000

0.
05

%
0.

2%
1%

5%

Figure 4: The number of changes made to the parameters
by the projected subgradient updates, measured on a stereo
matching example (Venus) from the experimental section.

as parallelization obtained by exploiting its balanced nature.
To perform parallel computations in a cluster tree with n
nodes, we split the tree into a set of parallel trees and a se-
rial tree, as shown in Figure 3. For bottom-up computations,
we can assign a processor to each parallel tree. When these
computations are complete, the remainder of the bottom-up
computation is performed on a single processor. Top-down
computations are performed analogously, except that they
start with the serial tree and then continue in parallel on the
parallel trees. The number of parallel trees defines both the
level of parallelism as well as the depth of the serial tree,
and thus these two choices must be balanced. In practice we
choose the depth of the serial tree to be half of the depth of
the cluster tree, to keep synchronization costs low. Then, for
a cluster tree with n nodes we achieve parallelism of

√
n,

while preserving a high convergence rate.

Adaptivity for subgradient updates

Another major source of improvement in speed is obtained
by judiciously reusing solutions at the previous iteration. In
particular, the subgradient update (1) depends only on the
optimal configuration at of each subproblem t, and modifies
only those subproblems that do not share the optimal value
of some xi. Many θti , then, are not modified from iteration to
iteration; the updates become sparse. This behavior is com-
mon in many real-world models: Figure 4 illustrates for a
stereo matching problem, showing that in practice the num-
ber of updates diminishes significantly near convergence.
The standard approach recomputes the optimal values for
every variable in an updated subproblem θt.

This observation motivates an adaptive subgradient cal-
culation, in which we leverage the previous iteration’s so-
lution to speed up the next. In collections of very small
subproblems, this is easily accomplished: we can simply

preserve the solution of any subproblem whose potentials
θt were not modified at all. While this may appear hard to
use in a cover tree representation (in which all variables are
present), in this section we show how to use the cluster tree
data structure to leverage update sparsity and give further
speedup even if the underlying subproblem is a cover tree.

Let G be the tree corresponding to the subproblem θt

and T be the associated cluster tree constructed as described
in Section 3. Suppose that the projected subgradient updates
modify singleton potentials θ1, θ2, . . . , θ�. For the next it-
eration, we must: (i) update the cluster tree given the new
potential values, and (ii) compute any changed entries in the
optimal configuration.

To perform (i), we update the cluster tree messages in a
bottom-up fashion, starting at nodes that correspond to the
changed potentials and updating their ancestors. For each
recomputation, we flag the messages as having been mod-
ified. Using a depth argument, this step recomputes only
O(� log n/�) many messages.

For part (ii), we efficiently compute a new optimal con-
figuration by traversing top-down. We begin by selecting an
optimal configuration for the root node xr of the cluster tree.
We then recursively proceed to any children xi for which ei-
ther any λj was modified for which xj ∈ Ci, or the optimal
configuration of the variables in Ei were modified. If the
projected subgradient update modifies k configurations, we
can solve the subproblem in O(k log n/k) time: potentially
much faster than doing the same updates in the original tree.
For illustration, consider Figure 4; between iterations 1700
and 2100, the re-computation required is about one 1000th

of the 1st iteration. This property alone can provide signifi-
cant speed-up near convergence.

5 Experiments

Our cluster tree representation combines the benefits of large
subproblems (faster convergence rates) with efficient paral-
lelization and effective solution re-use. To assess its effec-
tiveness, we compare our algorithm against several alterna-
tive subproblem representations on both synthetic and real-
world models. We focus on the general case of irregularly
connected graphs for our experiments.1

We compared our framework for performing dual-
decomposition against three different algorithms:
COVERTREE, EDGES and EDGES-ADP. COVERTREE
decomposes the graph using a cover tree and updates the
model without any parallelism or adaptivity. On the other
end of the DD spectrum, the EDGES and EDGES-ADP
algorithms decompose the graph into independent edges
and update them in parallel. EDGES-ADP is the trivially
adaptive version of the EDGES algorithm, in which only the
edges adjacent to an modified node are re-solved. We refer
to our algorithm as CLUSTERTREE; it uses the same cover

1On very regular graphs, it is often possible to hand-design
updates that are competitive with our approach; for example on
grid-structured graphs, the natural decomposition into rows and
columns that results in O(

√
n) parallel subproblems of length

O(
√
n) and will often attain a similar balance of adaptive, parallel

updates and good convergence rate.

1079

tree graph as COVERTREE in all of our experiments. All
algorithms were implemented in Cilk++ (Leiserson 2009)
without locks. For synchronization we used Cilk++ reducer
objects (variables that can be safely used by multiple strands
running in parallel). All experiments in this section were
performed on a 1.87Ghz 32-core Intel Xeon processor.

Synthetic Examples

We first test our approach on random, irregular graphical
models. We generated graphs over n variables x1, . . . , xn,
each with domain size d = 8. The graph edges were gen-
erated at random by iterating over variables x3, . . . , xn. For
node xi, we choose 2 random neighbors without replace-
ment from the previous nodes {xi−1, xi−2, . . . , x1} using
a geometric distribution with probabilities p = 1/2 and
q = 1/

√
n, respectively. With these settings, every node xi

is expected to have two neighbors whose indices are close to
i and two neighbors whose indices are roughly i − √n and
i +

√
n. Although highly irregular, the generated graph has

characteristics similar to a grid with raster ordering, where
each node xi inside the grid has four neighbors indexed
xi−1, xi+1, xi−√

n and xi+
√
n. Node potentials θi(xi) are

drawn from a Gaussian distribution with mean 0 and stan-
dard deviation σ = 4. Edge potentials θij(xi, xj) follow the
Potts model, so that θij(xi, xj) = δ(xi �= xj).

We ran our algorithms for graph sizes ranging from 500
to 100, 000. To control for step size effects, γ was opti-
mized for each algorithm and each problem instance. All al-
gorithms were run until agreement between variable copies
(indicating an exact solution). For COVERTREE and CLUS-
TERTREE, we used a breadth-first search tree as the cover
tree. Figure 5a–c gives a comparison of convergence results
for a representative model with n = 20000.

As expected, the cover tree has a better convergence
rate than using independent edges as subproblems (see Fig-
ure 5a). When the algorithms were executed serially (see
Figure 5b), although initally slower CLUSTERTREE catches
up to finish faster than COVERTREE (due to adaptivity),
and remains faster than EDGES-ADP (due to a better con-
vergence rate). With parallel execution, we observe a
speedup of roughly 20× for CLUSTERTREE, EDGES-ADP
and EDGES; see Figure 5c. We can see that with paral-
lelism, although EDGES-ADP is preferable to COVERTREE,
CLUSTERTREE finishes roughly two orders of magnitude
faster than the other algorithms.

We also consider the convergence time of each algo-
rithm as the graph size increases (see Figure 6). For rela-
tively small graphs (e.g. n = 500) the difference is neg-
ligible; however, as we increase the number of nodes, the
CLUSTERTREE converges significantly more quickly than
the other algorithms.

Stereo matching with super-pixels

The stereo matching problem estimates the depth of objects
in a scene given two images, as if seen from a left and right
eye. This is done by estimating the disparity, or horizontal
shift in each object’s location between the two images.

It is common to assume that the disparity boundaries
coincide with color or image boundaries. Thus, one ap-

●
●

●

●
●

●

● ●

number of nodes

co
nv

er
ge

nc
e

tim
e

1000 5000 20K 100K

0.
01

s
0.

5s
10

s
50

0s

● ClusterTree
CoverTree
Edges−ADP
Edges

Figure 6: For randomly generated graphs, our algorithm
achieves a significant speedup as the model size increases.

proach estimating stereo depth is to first segment the im-
age into super-pixels, and then optimize a graphical model
representing the super-pixels; see (Hong and Chen 2004;
Trinh 2008). This approach allows stereo matching to be
performed on much larger images. We studied the perfor-
mance of our algorithm for the task of stereo matching using
a model constructed from a segmented image in this manner.

To define a graphical model G given super-pixels
{si, . . . , sn}, we define a node for each super-pixel and add
an edge (si, sj) if they contain adjacent pixels in the ref-
erence image. The node potentials are defined as the cu-
mulative truncated absolute color differences between cor-
responding pixels for each disparity:

θi(d) =
∑

(x,y)∈si

min {|IL(x, y)− IR(x− d, y)|, 20}

where IL and IR are the intensities of the left and right im-
age, respectively. The edge potentials are defined as

θij(d1, d2) = 5 · E(si, sj) ·min
{|d1 − d2|1.5, 5

}

where E(si, sj) is the number of adjacent pixel pairs (p, q)
where p ∈ si and q ∈ sj . This is a common energy function
for grids, applied to super-pixels by (Hong and Chen 2004;
Szeliski et al. 2008).

We tested our algorithm by constructing the above model
for four images (Tsukuba, Venus, Teddy and Cones) from
the Middlebury stereo data set (Scharstein and Szeliski
2001; Scharstein 2003), using the SLIC program (Achanta
et al. 2010) to segment each input image into 5000 super-
pixels. For COVERTREE and CLUSTERTREE, we used
the maximum-weight spanning tree of G (with weights
E(si, sj)) as part of the cover tree; this is a common choice
for stereo algorithms that use dynamic programming (Vek-
sler 2005). Since the model’s gap between distinct energies
is at least 1 the algorithms are considered converged when
their lower bound is within 1 of the optimal energy.

1080

10 50 100 500 1000 5000

40
60

80
10

0
12

0

number of iterations

du
al

 e
ne

rg
y

CoverTree
Edges

(a) Convergence rate

●

●

●
●●
●●

0.5 1.0 2.0 5.0 10.0 20.0 50.0 100.0 200.0

−
10

0
−

50
0

50
10

0

time (secs)

● ClusterTree
CoverTree
Edges−ADP
Edges

(b) Single-core convergence time

●

●

●
●● ● ● ●

0.05 0.10 0.20 0.50 1.00 2.00 5.00 10.00 20.00

80
90

10
0

11
0

12
0

time (secs)

● ClusterTree
CoverTree
Edges−ADP
Edges

(c) 32-core convergence time

100 200 500 1000 2000 5000 10000

53
80

0
53

90
0

54
00

0
54

10
0

54
20

0
54

30
0

number of iterations

du
al

 e
ne

rg
y

CoverTree
Edges

(d) Convergence rate for Venus

5 10 20 50 100 200 500

53
80

0
53

90
0

54
00

0
54

10
0

54
20

0
54

30
0

time (secs)

●

●

●

● ●
●●●

●●●●●

● ClusterTree
CoverTree
Edges−ADP
Edges

(e) Single-core convergence time for Venus

0.5 1.0 2.0 5.0 10.0 20.0 50.0 100.0

54
00

0
54

10
0

54
20

0
54

30
0

time (secs)

●

●

● ●
●
●●
●●●●●

● ClusterTree
CoverTree
Edges−ADP
Edges

(f) 32-core convergence time for Venus

Figure 5: Representative convergence results on a random graph problem with 20000 nodes (a-c) and for stereo matching on
the “Venus” dataset (d-f). (Best viewed in color.)

●
●

●

●

co
nv

er
ge

nc
e

tim
e

Tsukuba Venus Teddy Cones

1s
10

s
10

0s
10

00
s

● ClusterTree
CoverTree
Edges−ADP
Edges

Figure 7: For images from the Middlebury dataset, our algo-
rithm is about twice as fast as EDGES-ADP.

As with synthetic graphs, for the image datasets we
observed that CLUSTERTREE inherits the improved con-
vergence rate of COVERTREE but parallelizes well and
thus gives much better overall performance than EDGES or
EDGES-ADP. Representative serial and parallel executions
of the algorithms are shown for the Venus dataset in Fig-
ure 5d–f, while convergence times are shown for all datasets

in Figure 7. While we still observe that COVERTREE has a
better convergence rate than EDGES, it is less dramatic than
in the synthetic models (Figure 5a vs. d); this is likely due to
the presence of strong local information in the model param-
eters θi. This fact, along with most modifications also be-
ing local, means that EDGES-ADP manages to outperform
COVERTREE in the serial case (Figure 5e). In the paral-
lel case, CLUSTERTREE remains ahead, with a speedup of
about 2× over EDGES-ADP.

6 Conclusion

We have introduced a novel framework for dual-
decomposition solvers that balances the intrinsic tradeoffs
between parallelism and convergence rate. For the choice
of subproblems, we use a cover tree to obtain rapid conver-
gence, but use a balanced cluster tree data structure to enable
efficient subgradient updates. The cluster tree is guaranteed
to have logarithmic depth, and so is amenable to a high de-
gree of parallelism. Moreover, it can be used to efficiently
update optimal configurations during each subgradient iter-
ation. For randomly generated models, our approach is up
to two orders of magnitude faster than other methods as the
model size becomes large. We also show that for the real-
world problem of stereo matching, our approach is roughly
twice as fast as other methods.

1081

References

Acar, U. A.; Blelloch, G.; Harper, R.; Vittes, J.; and Woo,
M. 2004. Dynamizing static algorithms with applications
to dynamic trees and history independence. In ACM-SIAM
Symposium on Discrite Algorithms (SODA), 531–540.
Acar, U.; Ihler, A. T.; Mettu, R. R.; and Sümer, O. 2007.
Adaptive Bayesian inference. In Advances in Neural Infor-
mation Processing Systems (NIPS). MIT Press.
Acar, U. A.; Ihler, A. T.; Mettu, R. R.; and Sümer, O. 2008.
Adaptive Bayesian inference in general graphs. In Proceed-
ings of the 24th Annual Conference on Uncertainty in Arti-
ficial Intelligence (UAI), 1–8.
Acar, U. A.; Ihler, A. T.; Mettu, R. R.; and Sümer, O. 2009a.
Adaptive updates for maintaining MAP configurations with
applications to bioinformatics. In Proceedings of the IEEE
Workshop on Statistical Signal Processing, 413–416.
Acar, U. A.; Blelloch, G. E.; Blume, M.; Harper, R.; and
Tangwongsan, K. 2009b. An experimental analysis of self-
adjusting computation. ACM Transactions on Programming
Languages and Systems (TOPLAS) 32(1):3:1–3:53.
Acar, U. A.; Blelloch, G. E.; and Vittes, J. L. 2005. An ex-
perimental analysis of change propagation in dynamic trees.
In Workshop on Algorithm Engineering and Experimenta-
tion.
Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; and
Süsstrunk, S. 2010. SLIC Superpixels. Technical report,
EPFL, École Polytechnique Fédérale De Lausanne.
Globerson, A., and Jaakkola, T. 2007. Fixing max-
product: Convergent message passing algorithms for MAP
LP-relaxations. In Advances in Neural Information Process-
ing Systems (NIPS).
Hammer, M. A.; Acar, U. A.; and Chen, Y. 2009. CEAL:
a C-based language for self-adjusting computation. In Pro-
ceedings of the 2009 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation.
Hong, L., and Chen, G. 2004. Segment-based stereo match-
ing using graph cuts. In Computer Vision and Pattern Recog-
nition (CVPR), 74–81.
Johnson, J. K.; Malioutov, D. M.; and Willsky, A. S.
2007. Lagrangian relaxation for MAP estimation in graphi-
cal models. In In Allerton Conference Communication, Con-
trol and Computing.
Jojic, V.; Gould, S.; and Koller, D. 2010. Fast and smooth:
Accelerated dual decomposition for MAP inference. In Pro-
ceedings of International Conference on Machine Learning
(ICML).
Komodakis, N.; Paragios, N.; and Tziritas, G. 2007. MRF
optimization via dual decomposition: Message-passing re-
visited. In International Conference on Computer Vision
(ICCV).
Leiserson, C. E. 2009. The cilk++ concurrency platform. In
Proceedings of the 46th Annual Design Automation Confer-
ence (DAC), 522–527. ACM.
Ley-Wild, R.; Fluet, M.; and Acar, U. A. 2008. Com-
piling self-adjusting programs with continuations. In Pro-

ceedings of the International Conference on Functional Pro-
gramming.
Namasivayam, V. K.; Pathak, A.; and Prasanna, V. K. 2006.
Scalable parallel implementation of bayesian network to
junction tree conversion for exact inference. In Informa-
tion Retrieval: Data Structures and Algorithms, 167–176.
Prentice-Hall PTR.
Pennock, D. M. 1998. Logarithmic time parallel Bayesian
inference. In Proceedings 14th Annual Conference on Un-
certainty in Artificial Intelligence (UAI), 431–438.
Reif, J. H., and Tate, S. R. 1994. Dynamic parallel tree con-
traction. In Proceedings 5th Annual ACM Symp. on Parallel
Algorithms and Architectures, 114–121.
Scharstein, D., and Szeliski, R. 2001. A taxonomy and
evaluation of dense two-frame stereo correspondence algo-
rithms. International Journal of Computer Vision 47:7–42.
Scharstein, D. 2003. High-accuracy stereo depth maps using
structured light. In Computer Vision and Pattern Recogni-
tion (CVPR), 195–202.
Szeliski, R.; Zabih, R.; Scharstein, D.; Veksler, O.; Kol-
mogorov, V.; Agarwala, A.; Tappen, M.; and Rother, C.
2008. A comparative study of energy minimization meth-
ods for Markov random fields with smoothness-based pri-
ors. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI) 30:1068–1080.
Trinh, H. 2008. Efficient stereo algorithm using multiscale
belief propagation on segmented images. In British Machine
Vision Conference (BMVC).
Veksler, O. 2005. Stereo correspondence by dynamic pro-
gramming on a tree. In Computer Vision and Pattern Recog-
nition (CVPR), CVPR ’05, 384–390. IEEE Computer Soci-
ety.
Wainwright, M.; Jaakkola, T.; and Willsky, A. 2005. MAP
estimation via agreement on (hyper)trees: message-passing
and linear programming approaches. IEEE Transactions on
Information Theory 51(11):3697–3717.
Xia, Y., and Prasanna, V. K. 2008. Junction tree decom-
position for parallel exact inference. In IEEE International
Parallel and Distributed Preocessing Symposium, 1–12.
Yarkony, J.; Fowlkes, C.; and Ihler, A. 2010. Covering trees
and lower-bounds on quadratic assignment. In Computer
Vision and Pattern Recognition (CVPR), 887–894.

1082

