
Memory-Efficient Dynamic Programming for
Learning Optimal Bayesian Networks

Brandon Malone and Changhe Yuan and Eric A. Hansen
Department of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

bm542@msstate.edu, {cyuan, hansen}@cse.msstate.edu

Abstract

We describe a memory-efficient implementation of a
dynamic programming algorithm for learning the op-
timal structure of a Bayesian network from training
data. The algorithm leverages the layered structure of
the dynamic programming graphs representing the re-
cursive decomposition of the problem to reduce the
memory requirements of the algorithm from O(n2n) to
O(C(n, n/2)), where C(n, n/2) is the binomial coeffi-
cient. Experimental results show that the approach runs
up to an order of magnitude faster and scales to datasets
with more variables than previous approaches.

Introduction
We consider the combinatorial problem of finding the
highest-scoring Bayesian network structure from data.
Given n random variables and a set of N observations of
each of the n variables, the problem is to infer a directed
acyclic graph on the n variables such that the implied joint
probability distribution best explains the set of observations.
The problem is known to be NP-hard (Chickering 1996).

Several exact algorithms based on dynamic programming
have been developed for learning the optimal structure of
a Bayesian network (Koivisto and Sood 2004; Singh and
Moore 2005; Silander and Myllymaki 2006). In the dynamic
programming approach, the basic idea is to find small opti-
mal subnetworks and use them to find larger optimal subnet-
works until an optimal network for all of the variables has
been found. Both the time and space complexity of the ap-
proach is O(n2n). But in practice, it is the space complexity
that primarily limits scalability.

There are other exact approaches to the structure-learning
problem. For example, de Campos et al. (2009) recently pro-
posed a systematic search algorithm to identify optimal net-
work structures. The algorithm begins by calculating opti-
mal parent sets for all variables. These sets are represented
as a directed graph that may have cycles. Cycles are then
repeatedly broken by removing one edge at a time. The al-
gorithm terminates with an optimal Bayesian network, but it
is often less efficient than dynamic programming.

In this paper, we show how to improve the efficiency of
the dynamic programming approach. In particular, we show

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

how to leverage the layered structure of the problem to re-
duce the memory requirement of the dynamic programming
algorithm from O(n2n) to O(C(n, n/2)). We also show that
theoretical properties of the MDL scoring function can be
used to reduce the average runtime necessary to find an op-
timal structure by up to an order of magnitude compared to
the previous best approach.

Background

A Bayesian network consists of a directed acyclic graph
(DAG) structure and a set of parameters. Each vertex in the
DAG corresponds to a random variable, X1, X2, ..., Xn. If
Xi is a parent of Xj , then Xj depends directly on Xi. The
parents of Xj are referred to as PAj . A variable is condi-
tionally independent of its non-descendants given its par-
ents. The parameters of the network specify a conditional
probability distribution, P (Xj |PAj) for each Xj .

Given a dataset D = {D1, ..., DN}, where each Di is an
instantiation of all variables V = {X1, ..., Xn}, the struc-
ture learning problem consists of finding a network DAG
structure over the variables that best fits D (Heckerman
1995). The fit of a structure to the dataset can be mea-
sured using a scoring function, such as the minimum de-
scription length (MDL) score (Rissanen 1978). The MDL
scoring function captures the tradeoff between fit to data
and network complexity with two terms. The first is an
entropy-based term, while the second penalizes more com-
plex structures. Let ri be the number of states of the variable
Xi, let Npai be the number of data records consistent with
PAi = pai, and let Nxi,pai be the number of data records
consistent with PAi = pai and Xi = xi. Then the MDL
score for a structure G is defined as follows (Rissanen 1978),

MDL(G) =
∑

i

MDL(Xi|PAi), (1)

where

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1057

MDL(Xi|PAi) = H(Xi|PAi) +
logN

2
K(Xi|PAi),

H(Xi|PAi) = −
∑

xi,pai

Nxi,pai
log

Nxi,pai

Npai

,

K(Xi|PAi) = (ri − 1)
∏

Xl∈PAi

rl .

MDL is decomposable (Heckerman 1995); that is, the
score for the entire structure is calculated by summing over
each variable. Our algorithms can be adapted to use any de-
composable scoring function. The following theorems due
to Tian (2000) and de Campos et al. (2009) provide a ba-
sis for ignoring some sets of parents when searching for an
optimal set of parents for a variable with the MDL scoring
function.

Theorem 1. In an optimal Bayesian network based on the
MDL scoring function, each variable has at most log(2N

logN)

parents, where N is the number of records.

Theorem 2. Let U ⊂ V and X /∈ U. If
BestMDL(X,U) < BestMDL(X,V), V cannot be the
optimal parent set for X .

Dynamic programming

Dynamic programming algorithms find an optimal Bayesian
network structure in O(n2n) time and memory (Koivisto
and Sood 2004; Singh and Moore 2005; Silander and Myl-
lymaki 2006). The algorithms derive from the observation
that the optimal network structure is a DAG. Therefore, it
consists of an optimal leaf vertex with its parents plus an
optimal subnetwork. This subnetwork is also a DAG. The
algorithm recursively finds optimal leaves of subnetworks
to find the optimal network structure. The following recur-
rence expresses this procedure for the MDL scoring function
and variables V (Singh and Moore 2005).

MDL(V) = min
X∈V

{MDL(V \ {X}) +
BestMDL(X,V \ {X})},

where

BestMDL(X,V \ {X}) = min
PAX⊆V\{X}

MDL(X|PAX).

While this recurrence does suggest an algorithm, a more
computationally amenable formulation (Silander and Myl-
lymaki 2006) begins with a 0-variable subnetwork. Leaves
are recursively added to the subnetworks until all variables
have been added and the optimal network has been found.

These algorithms require solving two distinct tasks. First,
for the set of candidate parent variables for each variable, the
optimal subset of the parent variables must be calculated.
Second, the sets of optimal parents are then used to iden-
tify optimal subnetwork structures until the optimal structure
over all variables is identified.

Figure 1: An order graph of four variables

Order graph and parent graphs

We can use two kinds of graphs to represent the recursive de-
composition of the problem of finding the optimal network
structure using dynamic programming. First consider what
we call an order graph. For a problem with n variables, the
order graph has 2n nodes representing all subsets of the vari-
ables. Figure 1 shows an order graph for a problem with n
variables. Each node of the graph represents the subproblem
of finding an optimal network for the subset of variables cor-
responding to that node. Note that the order graph is a lattice
that organizes the nodes into layers. All nodes in the same
layer correspond to subnetworks of the same size. All nodes
in layer l have l predecessors in the previous layer. Layer l
has C(n, l) nodes where C(n, k) is the binomial coefficient.
The second layer of the order graph (l = 1) consists of one
single node subnetwork for each variable. The variable has
no parents, and its score is equal to the score for the variable
given no parents, MDL(Xi|{}).

Each node in the order graph chooses its predecessor
which optimizes the MDL score for that subnetwork. Thus
to evaluate the node for variables O in the order graph,
we try each X ∈ V \ O as a leaf and O as the subnet-
work. The score for the new subnetwork, MDL(O∪X), is
MDL(O) + BestMDL(X,O). The optimal leaf, its par-
ents and score are kept for each subnetwork. After consider-
ing all of node O’s predecessors in the order graph, the node
contains the optimal subnetwork for the corresponding set
of variables.

We call it an order graph because a path from the root of
the order graph to its single leaf node represents an order in
which variables are added to an initially empty network to
create a network over all variables. This ordering partially
determines the structure of a network. The rest of the struc-
ture is determined by the set of parents for each node. To
find the optimal set of parents for a node, we use what we

1058

Figure 2: Parent graph for candidate parents {X2, X3, X4}

call a parent graph to calculate BestMDL(X,U). There is
one parent graph for each variable. Figure 2 shows an ex-
ample of a parent graph for variable X1. The graph, which
is also a lattice, contains all subsets of all n − 1 other vari-
ables. Thus, it contains 2n−1 nodes. Each node in the parent
graph represents a mapping from a candidate set of parents
to the subset of those variables which optimizes the score
of Xi, as well as that score. The lattice organizes the nodes
naturally into layers. All nodes in the same layer consider
the same number of possible parents. Additionally, all nodes
in layer l have l predecessors in the previous layer. Layer l
has C(n − 1, l) nodes. At the first layer of the construction
(l = 0), the score of Xi given no parents is computed using
the MDL scoring function. Trivially, this is the best score Xi

can attain with no parents. Thus the graph contains a node
which maps from the set with no variables to the score.

To evaluate the node for candidate parents P of X , we
consider BestMDL(X,P \ {Y }) for each Y ∈ P, as
well as MDL(X|P). The best of these is the score for the
new node, BestMDL(X,P). MDL(�|�) is stored in a score
cache, either in a hash table in RAM or written to disk in an
order which allows quick access depending upon available
memory resources. The minimum score is kept for each can-
didate parent set. This follows from Theorem 2. After con-
sidering all of a node P’s predecessors, it contains the sub-
set of variables which minimize the score of X from among
those candidate parents.

Memory-Efficient Dynamic Programming

We next make the observation that, because the parent and
order graphs naturally partition into layers, only a limited
amount of information is needed to evaluate each layer.
Evaluating a layer in the parent graph requires the previous
layer of the parent graph, while evaluating a layer in the or-
der graph requires the previous layer of the order graph and
the current layer of the parent graphs. Because the scores and
optimal parent information are propagated from one layer
to the next, a layer can be deleted once its successor layer
has been evaluated. Thus we do not need to keep the en-
tire graphs in memory. The layers of a graph can be gen-
erated as needed and then deleted from memory when no
longer needed. Reconstructing the network structure simply
requires we store the leaf, its optimal parent set and a pointer
to its predecessor for each order graph node.

Algorithm 1 Memory-Efficient Dynamic Programming
1: procedure GENERATELAYER(orderGraph)
2: for each parentGraph pg do
3: generateParentLayer(pg)
4: end for
5: for each node O ∈ prev do
6: for each v ∈ V − O do
7: pg ← parentGraphs[v].readNode()
8: score ← pg.score + O.score
9: if score < curr[O ∪ v].score then

10: curr[O∪ v]← {O.pars∪pg.pars,score}
11: end if
12: if v = Y1 then write(curr[O ∪ v])
13: end for[each v]
14: end for[each node O]
15: prev ← curr
16: curr ← new HashTable
17: end procedure

18: procedure GENERATEPARENTLAYER(pg)
19: for each node P ∈ prev do
20: for each v ∈ V − P and v �= pg.v do
21: if curr[P ∪ v] is null then
22: curr[P ∪ v]←{P ∪ v, score(P ∪ v)}
23: end if
24: if P.score < curr[P ∪ v}.score then
25: curr[P ∪ v]← P
26: end if
27: if v = p1 then write(curr[P ∪ v])
28: end for[each v]
29: end for[each node P]
30: prev ← currentLayer
31: curr ← new HashTable
32: end procedure

33: procedure MAIN
34: for l = 1 → n do
35: generateLayer(orderGraph)
36: end for
37: end procedure

Algorithm 1 gives pseudocode for a memory-efficient
layered dynamic programming algorithm. The main idea
is to generate one layer of the parent and order graphs
at a time and delete old layers when they are no longer
needed. By storing only one layer at a time, we reduce
the memory requirement for the algorithm from O(n2n) to
O(C(n, n/2)) plus the portion of the order graph necessary
for network reconstruction. However, the memory require-
ment can still grow quickly. We resort to external memory
to further lighten the burden on RAM. Note that evaluating
order graph node O ∪ X requires BestMDL(X,O). This
score is stored in node O of the parent graph for X . Once
O∪X has been evaluated, BestMDL(X,O) is not used in
any other calculations, so it can be deleted.

Naively, this step would still require the current layer of
all of the parent graphs as well as the previous and current

1059

Figure 3: Generating successors of a node in the order graph.
The top half of the order graph nodes (in white) is the sub-
network; the bottom half is the score of that subnetwork.
The top half of the parent graph nodes (shaded) is the vari-
able and the candidate set of parents; the bottom half is
BestMDL for that variable and candidate parent set. (a)
The starting queues. (b) The popped off nodes. (c) The gen-
erated successors which are stored in the next layer. (d) The
new queues.

layers of the order graph in RAM at once in order to quickly
look up the scores for the predecessor nodes of O. By care-
fully arranging the nodes in the order and parent graphs, only
the current layer of the order graph must reside in RAM. Ev-
erything else can be stored on disk.

External-Memory Dynamic Programming

We arrange the nodes of each layer of the order and parent
graphs in sorted files to ensure we never require random ac-
cess to nodes during node expansions. We treat the files as
queues in which the sequence of nodes is coordinated such
that when a node O is removed from the order graph queue,
the node at the head of each parent graph queue X ∈ V \O
is the node for candidate parents O. That is, the head of each
of those parent graph queues is BestMDL(X,O), while
the head of the order graph queue is MDL(O). Given these
assumptions, we generate the successors of O in the next
layer of the order graph by removing it and the head of each
of the parent graphs in V\O from their respective queues.
Each parent graph node is used to generate a successor of

O. Figure 3 shows an example of generating successors of
an order graph node. The generated successors are stored
in the next layer, while the remaining queues are used to
generate successors for the other order graph nodes in the
current layer. After all successors have been generated for a
layer, we write the nodes to disk according to the ordering.
An analogous approach can be used to generate the parent
graphs. The RAM usage for layer l is O(C(n, l)) for storing
the order graph layer.

Lexicographic Ordering of Sets of Combinations

The lexicographic ordering of subsets of V with size l
is one sequence that ensures all of the necessary par-
ent graph queues have the correct node at the head of
their queue at layer l when O is removed from the or-
der graph queue (file). For example, the ordering for
4 variables of size 2 is {{X1, X2}, {X1, X3}, {X2, X3},
{X1, X4}, {X2, X4}, {X3, X4}}. Thus, the order graph
queue for layer 2 with 4 variables should be arranged in
that sequence. Knuth (2009) describes an algorithm for ef-
ficient generation of this sequence. The parent graph queue
for variable Xi should have the same sequence as the order
graph, but without subsets containing Xi. The sequence of
the parent graph queue for variable X1 from the example
is {{X2, X3}, {X2, X4}, {X3, X4}} (the same as the order
graph queue, but without subsets containing variable X1).

The sequence has two other very helpful properties for
further minimizing RAM usage. First, the optimal score
and network for subnetwork {X1...Xl} have been calcu-
lated after computing the score using X1 as the leaf of
the subnetwork. This is because the last predecessor used
to generate that subnetwork in the ordering contains vari-
ables {X2 . . . Xl}. Second, the nodes in layer l of a graph
are completed in the correct lexicographic order. A node is
completed after expanding its last predecessor. As a result, a
node can be written to disk and removed from RAM once it
is completed, and the next layer will be sorted correctly.

Reconstructing the Optimal Network Structure

In order to reconstruct the optimal network structure, we per-
manently store a portion of each order graph node, including
the subnetwork variables, the leaf variable and its parents,
on disk. Solution reconstruction works as follows. The goal
node contains the final leaf variable X and its optimal parent
set. Its predecessor in the shortest path is O = V\{X}. This
predecessor is retrieved from the file for layer |O|. Recur-
sively, the optimal leaves and parent sets are retrieved until
reconstructing the entire network structure.

Advantages of Memory-Efficient Dynamic
Programming

Our layered version of dynamic programming is more
memory-efficient and faster than other approaches, such as
those presented by Singh and Moore (2005) or Silander and
Myllymaki (2006), for two key reasons.

First, the layered structure we impose on the parent and
order graphs ensures that we never need more than two lay-
ers of any of the graphs in memory, RAM or files on disk,

1060

at once. None of the existing algorithms take advantage of
the structure in the parent and order graphs when calculat-
ing BestMDL(X,V) or MDL(V). Singh uses a depth-
first search ordering to generate the necessary scores and
variable sets, while Silander uses the lexicographic ordering
over all of the variables. (We use the lexicographic ordering
only within each layer, not over all of the variables.) The
depth-first approach does not generate nodes in one layer at
a time. The lexicographic ordering also does not generate all
nodes in one layer at a time. Consider the first four nodes in
the lexicographic order: {X1}, {X2}, {X1, X2} and {X3}.
Two nodes from layer 1 are generated, then a node in layer
2; however, the next node generated is again in layer 1. Sim-
ilarly, the seventh node generated is {X1, X2, X3} while the
eighth node is {X4}. In contrast to the ordering we propose,
this ordering expands {X1, X2} before expanding {X3}.
Because generation of nodes from different layers is inter-
leaved, these orderings require the entire graphs remain in
memory (either in RAM or on disk). In contrast, our dy-
namic programming algorithm generates nodes one layer at
a time and thus needs at most two layers of the graphs in
memory, plus the extra information to reconstruct the path.
Previous layers can safely be deleted.

Second, Theorem 1 coupled with an AD-tree search
ensures that scores for large parent sets are never re-
quired. We calculate scores using a top-down, AD-tree-like
method (Moore and Lee 1998). For example, we calculate
the score of a variable given no parents before the score of
a variable given one parent. Because of this approach and
Theorem 1, we never need to calculate the scores, or even
the counts, of large sets of variables. In fact, for a vari-
able set with n variables and N records, we compute and
store n(2log

2N
log N) scores. In contrast, methods that compute

scores using a bottom-up approach must score all n2n−1

possible parent sets. Even if these methods do employ The-
orem 1, they must still consider all of the possible sets to
calculate the counts required for the smaller parent sets.

Experiments

Memory-efficient dynamic programming (MEDP) imple-
mented in Java was compared to an efficient implementation
of dynamic programming which uses external memory writ-
ten in C (Silander and Myllymaki 2006). We downloaded
Silander’s source code from http://b-course.hiit.fi/bene and
refer to it as SM. Previous results (Silander and Mylly-
maki 2006) have shown SM is much more efficient than
previous dynamic programming implementations. The al-
gorithms were tested on benchmark datasets from the UCI
repository (Frank and Asuncion 2010). The largest datasets
have up to 30 variables and over 30,000 records. We dis-
cretized all continuous variables and discrete variables with
more than four states into two states around the mean values;
Records with missing values were removed. All algorithms
were given a maximum running time of one day (86,400 sec-
onds) and a maximum hard disk space of 150 gigabytes.

Although SM uses BIC instead of MDL, the calculations
are equivalent and the learned networks were always equiv-
alent. The experiments were performed on a 2.66 GHz Intel

Xeon with 16 gigabytes of RAM running SUSE version 10.
We evaluated both the space and time requirements of the

algorithms. We compared the size of the full order and par-
ent graphs, which a typical dynamic programming imple-
mentation must store, to the maximum sizes of the graphs
with MEDP. We also measured the running time of the algo-
rithms. Table 1 gives the timing and space results.

The memory comparisons highlight the advantages of
MEDP. Comparison between the sizes of the external files
shows that the layered algorithm typically stores an order
of magnitude less information on disk than SM. This also
agrees with the theoretical behavior of working with only a
layer at a time instead of the entire graph. The layered ap-
proach of MEDP permits deletion of files for old layers, so
the external-memory version never uses as much disk space
as SM. Because dynamic programming is systematic, the
maximum size of the files stored by MEDP is the same for a
given n. Thus, memory usage is unaffected by N .

We used the wdbc dataset to test the scalability of the al-
gorithms to larger sets of variables. The total dataset has 31
variables. We began by taking a subset of all of the variables
in the dataset and learning optimal networks. We then added
one variable at a time to the subset and again learned optimal
networks. The first n variables of the full dataset were used.

As the scalability results show, MEDP always learns the
optimal network with the time and space constraints; how-
ever, for 28 and 29 variables, SM ran for a day without find-
ing it. Additionally, for 30 variables, SM consumed more
than the available 150gb of hard disk space.

The timing results show that MEDP usually runs several
times faster than SM. SM does run faster on two of the
datasets with a large number of records and a modest num-
ber of variables. The larger number of records reduces the
effectiveness of the pruning offered by Theorem 1. MEDP
is faster when Theorem 1 can be applied more often. As the
number of variables increases, the record count affects run-
time less. For the segment (2,000 records) and mushroom
(8,000 records) datasets, MEDP runs faster than SM.

Conclusion

The graphical structure of the parent and order graphs make
them particularly well suited to our layered formulation
of the optimal Bayesian network structure learning prob-
lem. We take advantage of the regular and clearly defined
relationships between the layers of the graphs to reduce
the memory complexity of the problem from O(n2n) to
O(C(n, n/2)). In particular, the parent graphs require the
previous layer of the parent graph, while the order graph
needs both the previous layer of the order graph and the cur-
rent layer of the parent graphs to generate the next layer.
Hence, unnecessary layers can easily be deleted. Freeing the
memory increases the size of learnable networks. We also
apply theoretical properties of the MDL scoring function
and calculate scores in a top-down manner to significantly
improve the running time of the algorithm.

Our work can be used to compare approximate structure
learning algorithms by using the learned optimal network
as a ”gold standard.” Structures learned using approximate

1061

Dataset Timing Results (s) Space Results (bytes)
dataset n N SM MEDP SM MEDP
wine 14 178 1 0 1.16E+07 4.57E+05
adult 14 30,162 4 15 1.16E+07 4.57E+05
zoo 17 101 4 2 4.81E+07 4.01E+06
houseVotes 17 435 16 4 4.81E+07 4.01E+06
letter 17 20,000 66 131 4.81E+07 4.01E+06
statlog 19 752 73 12 1.82E+08 1.67E+07
hepatitis 20 126 63 15 3.79E+08 3.34E+07
segment 20 2,310 70 36 3.79E+08 3.34E+07
meta 22 528 227 78 1.67E+09 1.39E+08
imports 22 205 315 75 1.67E+09 1.39E+08
horseColic 23 300 1,043 170 3.48E+09 2.88E+08
heart 23 267 1,024 171 3.48E+09 2.88E+08
mushroom 23 8,124 1,473 537 3.48E+09 2.88E+08
parkinsons 23 195 714 169 3.48E+09 2.88E+08
wdbc23 23 569 1,516 196 3.48E+09 2.88E+08
wdbc24 24 569 3,332 413 7.26E+09 5.76E+08
wdbc25 25 569 5,638 931 1.51E+10 1.19E+09
wdbc26 26 569 16,127 1,985 3.15E+10 2.38E+09
wdbc27 27 569 36,563 4,644 6.29E+10 4.91E+09
wdbc28 28 569 OT 11,924 - 9.83E+09
wdbc29 29 569 OT 24,350 - 1.97E+10
wdbc30 30 569 OM 78,055 - 3.93E+10

Table 1: A comparison on the running time (in seconds) for Silander’s dynamic programming implementation (SM) and our
memory-efficient dynamic programming algorithm (MEDP). The sizes of files written to hard disk are given. The size for SM
is calculated at the end of the search. The size for MEDP is calculated at the end of each layer; the maximum size is given.
Each line of the wdbc datasets shows the performance of the algorithms as the variable count is increased. The column headings
mean: ‘n’ is the number of variables; ‘N’ is the number of records; ‘OT’ means failure to find optimal solutions due to out of
time (more than 24 hours, or 86,400 seconds); ‘OM’ means out of memory (more than 150 gigabytes).

techniques can be compared to the optimal structure to as-
sess the quality of the approximate algorithms on smaller
datasets. We can then extrapolate which approximate algo-
rithms will learn better networks on larger sets of variables.

As the memory complexity analysis demonstrated, MEDP
requires the most memory and running time while process-
ing the middle layers. Future work could investigate meth-
ods to prune the order and parent graphs using an admissible
heuristic. Further reduction of the memory requirements will
continue to improve the scalability of the method and allow
the learning of even larger optimal networks.

Acknowledgements This work was supported by NSF
CAREER grant IIS-0953723 and EPSCoR grant EPS-
0903787.

References

Chickering, D. M. 1996. Learning bayesian networks is np-
complete. In Learning from Data: Artificial Intelligence and Statis-
tics V, 121–130. Springer-Verlag.

de Campos, C. P.; Zeng, Z.; and Ji, Q. 2009. Structure learning
of bayesian networks using constraints. In Proceedings of the 26th
Annual International Conference on Machine Learning, ICML ’09,
113–120. New York, NY, USA: ACM.

Frank, A., and Asuncion, A. 2010. UCI machine learning reposi-
tory.
Heckerman, D. 1995. A tutorial on learning bayesian networks.
Technical report, Microsoft Research.
Knuth, D. E. 2009. The Art of Computer Programming, Volume 4,
Fascicles 0-4. Addison-Wesley Professional, 1st edition.
Koivisto, M., and Sood, K. 2004. Exact bayesian structure discov-
ery in bayesian networks. 549–573–.
Moore, A., and Lee, M. S. 1998. Cached sufficient statistics for
efficient machine learning with large datasets. J. Artif. Int. Res.
8:67–91.
Rissanen, J. 1978. Modeling by shortest data description. Auto-
matica 14:465–471.
Silander, T., and Myllymaki, P. 2006. A simple approach for find-
ing the globally optimal bayesian network structure. In Proceed-
ings of the 22nd Annual Conference on Uncertainty in Artificial
Intelligence (UAI-06), –. Arlington, Virginia: AUAI Press.
Singh, A., and Moore, A. 2005. Finding optimal bayesian networks
by dynamic programming. Technical report, Carnegie Mellon Uni-
versity.
Tian, J. 2000. A branch-and-bound algorithm for mdl learning
bayesian networks.

1062

