Efficient Methods for Lifted Inference with Aggregate Factors

Jaesik Choi
Computer Science Department
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

Rodrigo de Salvo Braz and Hung H. Bui
Artificial Intelligence Center
SRI International
Menlo Park, CA 94025, USA

Abstract

Aggregate factors (that is, those based on aggregate functions such as SUM, AVERAGE, AND etc) in probabilistic relational models can compactly represent dependencies among a large number of relational random variables. However, propositional inference on a factor aggregating $n k$-valued random variables into an r-valued result random variable is $O\left(r k 2^{n}\right)$. Lifted methods can ameliorate this to $O\left(r n^{k}\right)$ in general and $O(r k \log n)$ for commutative associative aggregators. In this paper, we propose (a) an exact solution constant in n when $k=2$ for certain aggregate operations such as $A N D, O R$ and $S U M$, and (b) a close approximation for inference with aggregate factors with time complexity constant in n. This approximate inference involves an analytical solution for some operations when $k>2$. The approximation is based on the fact that the typically used aggregate functions can be represented by linear constraints in the standard $(k-1)$-simplex in \mathbb{R}^{k} where k is the number of possible values for random variables. This includes even aggregate functions that are commutative but not associative (e.g., the MODE operator that chooses the most frequent value). Our algorithm takes polynomial time in k (which is only 2 for binary variables) regardless of r and n, and the error decreases as n increases. Therefore, for most applications (in which a close approximation suffices) our algorithm is a much more efficient solution than existing algorithms. We present experimental results supporting these claims. We also present a (c) third contribution which further optimizes aggregations over multiple groups of random variables with distinct distributions.

1 Introduction

Relational models can compactly (that is, intensionally) represent graphical models involving a large number of random variables, each of them representing a relation between objects in a domain (Koller and Pfeffer 1997; Getoor et al. 2001; Milch et al. 2005; Richardson and Domingos 2006).

While it is possible to take advantage of compactness only for representation and expand the model into a propositional (extensional) form for inference, lifted inference

[^0]methods try to keep the representation as compact as possible even during inference, increasing efficiency (Poole 2003; de Salvo Braz, Amir, and Roth 2007; Milch et al. 2008; Singla and Domingos 2008).

The first proposed lifted inference solutions could deal only with factors on a fixed number of random variables. Aggregate parametric factors (based on aggregate functions such as $O R, M A X, A N D, S U M, A V E R A G E, M O D E$ and $M E-$ $D I A N$), which are defined on a varying, intensionally defined set of random variables, still needed to be treated propositionally, with cost exponential in the number n of random variables. (Kisynski and Poole 2009) introduced lifted methods for aggregate factors that reduce this complexity to $O(r k \log n)$ for commutative associative aggregate functions on $n k$-valued random variables being aggregated into an r-valued random variable (and even $O(r k)$ for $O R$ and $M A X)^{1}$. However, for general cases (such as the nonassociative function $M O D E$), their exact inference method has time $O\left(r n^{k}\right)$, that is, polynomial in n.

The contributions of this paper are threefold. We contribute an exact solution constant in n when $k=2$ for aggregate operations $A N D, O R, M A X$ and $S U M$. We also present an efficient (constant in n) approximate algorithm for inference with aggregate factors, for all typical aggregate functions. The potential of a aggregate factor for a valuation v of a set of random variables depends only on the histogram on the distribution of k values in V (in what (Milch et al. 2008) calls a counting formula). We show that the typical aggregate functions but for $X O R^{2}$ can be represented by linear constraints in the space of histograms (a $(k-1)$-simplex). Because aggregate factors' potentials on the space of histograms can be approximated by a normal distribution, we can approximately sums over them (which is the main inference operation) by computing the volume under normal distributions truncated by linear constraints. This holds even for $M O D E$, which is commutative but not associative.

This approximation can be computed analytically for all operations on binary random variables and for certain operations on multivalued ($k>2$) random variables such as $S U M$ and MEDIAN. Otherwise, it is computed by Gibbs sam-

[^1]pling with a limited number of iterations (Geweke 1991; Damien and Walker 2001). Finally, a third contribution is a further optimization for aggregations of multiple groups of random variables, each with its own distribution.

This paper is organized as follows. Section 2 defines relational models and our inference problem, AFM (Aggregation Factor Marginalization). Section 3 presents our lifted inference methods for aggregate factors followed by an extended algorithm for the generalized problems in Section 4. Section 5 provides the error bounds of the approximations. We present some empirical results in Section 6. We conclude in Section 7.

2 Background and Problem Definition

We are interested in inference problems over relational models with aggregate factors. We now revisit these concepts.

2.1 First-order Probabilistic Models

A factor f is a pair $\left(A_{f}, \phi_{f}\right)$ where A_{f} is a tuple of random variables and ϕ_{f} is a potential function from the range of A_{f} to the nonnegative real numbers. Given a valuation v of random variables (rvs), the potential of f on v is $w_{f}(v)=$ $\phi_{f}\left(A_{f}\right)$.

The joint probability defined by a set F of factors on a valuation v of random variables is the normalization of $\prod_{f \in F} w_{f}(v)$. If each factor in F is a conditional probability of a child random variable given the value of its parent random variables, and there are no directed cycles in the graph formed by directed edges from parents to children, then the model defines a Bayesian network. Otherwise it is an undirected model.

We can have parameterized (indexed) random variables by using predicates, which are functions mapping parameter values (indices) to random variables. A relational atom is an application of a predicate, possibly with free variables. For example, a predicate friends is used in atoms friends (X, Y), friends $(X, b o b)$ and friends (john, bob), where X and Y are free variables and $j o h n$ and bob possible parameter values. friends $(j o h n, b o b)$ is a ground atom and directly corresponds to a random variable.

A parfactor is a tuple (L, C, A, ϕ) composed of a set of parameters (also called logical variables) L, a constraint C on L, a tuple of atoms A, and a potential function ϕ. Let a substitution θ be an assignment to L and $A \theta$ the relational atom (possibly ground) resulting from replacing logical variables by their values in θ. A parfactor g stands for the set of factors $\operatorname{gr}(g)$ with elements $(A \theta, \phi)$ for every assignment θ to the parameters L that satisfies the constraint C. A Firstorder Probabilistic Model (FOPM) is a compact, or intensional, representation of a graphical model. It is composed by a domain, which is the set of possible parameter values (referred to as domain objects) and a set of parfactors. The corresponding graphical model is the one defined by all instantiated factors. The joint probability of a valuation v according to a set of parfactors G is

$$
\begin{equation*}
P(v)=1 / Z \prod_{g \in G} \prod_{f \in g r(g)} w_{f}(v) \tag{1}
\end{equation*}
$$

can be compactly represented by the aggregate parfactor (i, T, V(i), MODE, Winner). More general aggregation cases (for example, with aggregated random variables sets including more than one predicate) can be normalized to this type of aggregated parfactor, as detailed in (Kisynski and Poole 2009).

2.3 Inference with Aggregate Parfactors

We are interested in the inference problem of marginalizing a set of rvs in an FOPM with aggregate factors to determine the marginal density of others. As shown by (Kisynski and Poole 2009), this can be done by using C-FOVE (Milch et al. 2008) extended with a lifted operation for summing random variables out of an aggregate parfactor. These summations can be reduced to the Aggregate Factor Marginalization (AFM) calculation:

$$
\phi_{\mathbf{y}}^{\prime}(y)=\sum_{x_{1},, x_{n}}\left(\phi_{\otimes}\left(y, x_{1}, \ldots, x_{n}\right) \prod_{1 \leq i \leq n} \phi_{\mathbf{x}}\left(x_{i}\right)\right)
$$

where $\phi_{\mathbf{x}}$ is the (same for all i) potential product of all other factors in the model that have X_{i} as an argument, and $\phi_{\mathbf{y}}^{\prime}$ is the resulting potential on y alone. This subproblem is also one that needs to be solved in extending Lifted Belief Propagation (Singla and Domingos 2008) to deal with aggregate factors.
(Kisynski and Poole 2009) shows how, when different x_{i} have different potential functions on them, the problem can be normalized (by splitting and using auxiliary variables) to multiple such sums in which this uniformity holds. Similarly, we can separate the case in which only some x_{i} need to be summed out into two different aggregate parfactors, one for all aggregate random variables being summed out, and another for the remaining ones.

A direct computation of AFM is exponential in n. (Kisynski and Poole 2009) shows lifted operations that can be done in time polynomial or logarithmic in n (depending on certain conditions explained below). In Section 3 we present two lifted methods, one exact and one approximate, with time constant in n.

2.4 Inference Problems with Inequality

We define aggregate factors with inequality constraints by using

$$
\phi_{\otimes_{\leq}}\left(y, x_{1}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if } y \leq x_{1} \otimes \cdots \otimes x_{n} \\ 0 & \text { otherwise }\end{cases}
$$

with the corresponding problem $\mathbf{A F M}[\leq]$ defined as

$$
\sum_{x_{1}, \ldots, x_{n}}\left(\phi_{\otimes \leq}\left(y, x_{1}, \ldots, x_{n}\right) \cdot \prod_{1 \leq i \leq n} \phi_{\mathbf{x}}\left(x_{i}\right)\right)
$$

$\phi_{\otimes \geq}$ and $\mathbf{A F M}[\geq]$ are defined analogously.

2.5 Existing Methods for AFM Problems

$M A X$ and its special case $O R$ (as well as their noisy versions) allow factorizations leading to lifted marginalization
constant in n (Díez and Galán 2003). These operators can be decomposed into the product of n potentials: ${ }^{4}$

$$
\begin{align*}
& \sum_{x_{1}, \ldots, x_{n}} \phi_{\otimes}\left(y, x_{1}, \ldots, x_{n}\right) \cdot \prod_{i=1}^{n} \phi_{\mathbf{x}}\left(x_{i}\right) \\
& =\sum_{y^{\prime}} \sum_{x_{1}, \ldots, x_{n}} \prod_{i=1}^{n} \phi_{\mathbf{y}^{\prime}, \mathbf{y}}\left(y^{\prime}, y\right) \cdot \phi_{\mathbf{y}^{\prime}, \mathbf{x}}\left(y^{\prime}, x_{i}\right) \\
& =\quad \sum_{y^{\prime}}\left(\phi_{\mathbf{y}^{\prime}, \mathbf{y}}\left(y^{\prime}, y\right) \prod_{i=1}^{n} \sum_{x_{i}} \phi_{\mathbf{y}^{\prime}, \mathbf{x}}\left(y^{\prime}, x_{i}\right)\right) . \tag{3}
\end{align*}
$$

Because the product is over a term independent of n, we can compute it once and exponentiate in time constant in n :

$$
=\quad \sum_{y^{\prime}}\left(\phi_{\mathbf{y}^{\prime}, \mathbf{y}}\left(y^{\prime}, y\right)\left(\sum_{x^{\prime}} \phi_{\mathbf{y}^{\prime}, \mathbf{x}}\left(y^{\prime}, x^{\prime}\right)\right)^{n}\right)
$$

For other aggregate functions that happen to be commutative and associative, AFM can be computed by a recursive decomposition (Kisynski and Poole 2009) into a subproblem with half the number of aggregated random variables, and therefore in time $O\left(r^{2} k \log n\right)$ when n is a power of 2 :

$$
\begin{aligned}
& \sum_{x_{1}, \ldots, x_{n}} \phi_{\otimes}\left(y, x_{1}, \ldots, x_{n}\right) \cdot \prod_{i=1}^{n} \phi_{\mathbf{x}}\left(x_{i}\right) \\
& =\sum_{y=y^{\prime} \otimes y^{\prime \prime}}\left(\sum_{x_{1}, \ldots, x_{\frac{n}{2}}} \phi_{\otimes}\left(y^{\prime}, x_{1}, \ldots, x_{\frac{n}{2}}\right) \cdot \prod_{i=1}^{\frac{n}{2}} \phi_{\mathbf{x}}\left(x_{i}\right)\right) \\
& \quad\left(\sum_{x_{\frac{n}{2}+1, \ldots, x_{n}}} \phi_{\otimes}\left(y^{\prime \prime}, x_{\frac{n}{2}+1}, \ldots, x_{n}\right) \cdot \prod_{i=\frac{n}{2}+1}^{n} \phi_{\mathbf{x}}\left(x_{i}\right)\right)
\end{aligned}
$$

where $\phi_{\otimes}\left(y, x_{i}\right)=\left\{\begin{array}{ll}1 & \text { if } y=x_{i} \\ 0 & \text { otherwise }\end{array}\right.$.
Note that the two decomposition halves are the same problem up to variable renaming and thus computed in time $O(k \log n), r^{2}$ times (once per value of y^{\prime} or $y^{\prime \prime}$ and another per value of y). (Kisynski and Poole 2009) describes the minor adjustments needed when n is not a power of 2 .

3 Efficient Methods for AFM Problems

We now present our solutions for AFM problems. The exact solutions presented in the previous section are efficient. However, their applicability is limited to some operations (Díez and Galán 2003), or their computational complexity still depends on the number of rvs (Kisynski and Poole 2009). Here, we propose an exact solution for some cases, and new efficient approximate marginalizations that are applicable to more aggregate functions.

3.1 Normal Distribution with Linear Constraints

(Kisynski and Poole 2009) shows how the potential of an aggregate parfactor depends only on the value histogram of its aggregated random variables (histograms were introduced in Counting Elimination (de Salvo Braz, Amir, and Roth 2007) and used as counting formulas in (Milch et al. 2008)).

[^2]Given values x_{1}, \ldots, x_{n} for n rvs with the same range, the value histogram of x is a vector h with $h_{u}=\mid\{i:$ $\left.x_{i}=u\right\} \mid$ for each u in the rvs' range. When a potential function on x_{1}, \ldots, x_{n} depends on the histogram alone, as in the case of aggregate factors, then there is a function $\phi_{\mathbf{h}}$ on histograms such that $\phi\left(y, x_{1}, \ldots, x_{n}\right)=\phi_{\mathbf{h}}(y, h)$ and $\phi_{\otimes}\left(y, x_{1}, \ldots, x_{n}\right)=\phi_{\otimes \mathbf{h}}(y, h)$. In what follows, we describe the binomial case (range of x_{i} equal to 2) for clarity, but it applies to the multinomial case as well. We can write

$$
\begin{align*}
& \sum_{x_{1}, \ldots, x_{n}} \phi\left(y, x_{1}, \ldots, x_{n}\right) \prod_{i} \phi_{\mathbf{x}}\left(x_{i}\right) \\
&=\sum_{h}\binom{n}{h_{1}} \phi_{\mathbf{h}}(y, h) p_{1}^{h_{1}} p_{0}^{n-h_{1}} \tag{4}
\end{align*}
$$

where p_{0}, p_{1} are the normalizations of $\phi_{\mathbf{x}}$. This corresponds to grouping assignments on x into their corresponding histograms h, and iterating over the histograms (which are exponentially less many), taking into account that each histogram corresponds to $\binom{n}{h_{1}}$ assignments.

We now observe that functions $\phi_{\mathbf{h}}(y, h)$ coming from aggregate factors always evaluate to 0 or 1 . Moreover, the set of histograms for which they evaluate to 1 can be described by linear constraints on the histogram components. For example, $\phi_{M O D E}(y, h)$ will only be 1 if $h_{y} \geq h_{y^{\prime}}$ for all $y^{\prime} \neq y$. Given $\phi_{\mathbf{h}}$ and y, let C_{y} be the set of histograms h such that $\phi_{\mathbf{h}}(y, h)=1$. Then (4) can be rewritten as

$$
\sum_{h \in C_{y}}\binom{n}{h_{1}} p_{1}^{h_{1}} p_{0}^{n-h_{1}}
$$

which is the probability of a set of h_{1} values under a binomial distribution. For large n, according to the Central Limit Theorem (Rice 2006), the binomial distribution is approximated by the normal distribution $N\left(n p_{1}, n p_{1} p_{0}\right)$ with density function f. Then

$$
\sum_{h \in C_{y}}\binom{n}{h_{1}} p_{1}^{h_{1}} p_{0}^{n-h_{1}} \approx \int_{h^{\prime} \in C_{y}^{\prime}} f\left(h^{\prime}\right) d h^{\prime}
$$

where C_{y}^{\prime} is a continuous region in the $(k-1)$-simplex corresponding to C_{y} (which is defined in discrete space). Table 1 lists C_{y} and an appropriate C_{y}^{\prime} for the several aggregate factor potentials, for both AFM and AFM $[\geq]$.

Let's see two examples. For AFM on $M O D E$ on binary variables, $y=1$, and histograms with $h(1)=t, C_{y}$ is $h_{1} \geq$ h_{0} and C_{y}^{\prime} is $t \in\left[\left\lfloor\frac{n}{2}\right\rfloor+0.5, n+0.5\right]^{5}$, so we compute

$$
=\int_{\left\lfloor\frac{n}{2}\right\rfloor+0.5}^{n+0.5} f(t) d t
$$

which can be done in constant time. Let us also consider AFM and AFM $[\geq]$ on $S U M$ with $n=100$ rvs representing ratings of 100 people who watch a movie. Each person gives

[^3]ratings of either 0 (negative) or 1 (positive), with probabilities 0.55 and 0.45 , respectively ($p_{0}=0.55$). We are interested in the summation of those votes $(r=100)$. Figure 2 shows the probability density of the number of positive ratings. The bars in red in (a) and (b) panels show the area corresponding to the result for AFM and $\mathbf{A F M}[\geq]$, respectively, for $y=50$. The former can have the exact binomial distribution form computed in constant time, while the latter can have the normal distribution approximation computed in constant time. Therefore, the marginal on Y can be approximated in $O(r)$. (Kisynski and Poole 2009)'s algorithm, on the other hand, takes $O(r \log n)$, and (Díez and Galán 2003) is not applicable.

Figure 2: Histogram with a binomial distribution with (a) equality and (b) inequality constraints.

We now explain the method in more detail for two different cases: aggregated binary random variables $(k=2)$, which can be dealt with analytically, and aggregated multivalued random variables ($k>2$).

3.2 Binary Variables Case

AFM Problem For $A N D, O R, M I N, M A X$ and $S U M$, an exact solution with time constant in n for AFM for the binary case can be computed, for the appropriate choices of p_{0} and p_{1}, as

$$
\phi_{\mathbf{y}}^{\prime}(y)=\binom{n}{y} p_{0}^{n-y} \cdot p_{1}{ }^{y}
$$

AVERAGE can be solved by using $\phi_{\mathbf{y}}^{\prime}$ obtained from $S U M$ on y / n. This solution follows from the fact that, for the above cases, one needs the potential of a single histogram.

For MODE and MEDIAN, exact solutions for AFM are of the following form, with time linear in n :

$$
\phi_{\mathbf{y}}^{\prime}(T R U E)=\sum_{i=\left\lfloor\frac{n}{2}\right\rfloor+1}^{n}\binom{n}{i} p_{0}^{n-i} \cdot p_{1}{ }^{i}
$$

Such solutions are more expensive because they measure the density of a region of histograms. They can be approximated by the Normal distribution in the following way:

$$
\phi_{\mathbf{y}}^{\prime}(T R U E) \approx \int_{t=\left\lfloor\frac{n}{2}\right\rfloor+0.5}^{n+0.5} \frac{\exp \left(-\frac{\left(t-n p_{1}\right)^{2}}{2 \cdot n p_{1}\left(1-p_{1}\right)}\right)}{\sqrt{2 \pi \cdot n p_{1}\left(1-p_{1}\right)}} d t .
$$

Note that $M O D E$ is not solved by either (Díez and Galán 2003)'s factorization or (Kisynski and Poole 2009)'s logarithmic algorithm, while our approach can compute an approximation in constant time. For n is $100, p_{1}=0.45$, the

Operator	Problem	y	C_{y}	C_{y}^{\prime}
$A N D$	AFM	$T R U E$	$h_{T R U E}=n$	not needed (cheap exact solution)
$O R$	AFM	$F A L S E$	$h_{F A L S E}=n$	not needed (cheap exact solution)
$S U M$	AFM	y	$\sum_{i} i \times h_{i}=y$	$y-0.5 \leq \sum_{i} i \times h_{i} \leq y+0.5$
$S U M$	AFM $[\geq]$	y	$\sum_{i} i \times h_{i} \leq y$	$\sum_{i} i \times h_{i} \leq y-0.5$
$M A X$	AFM	y	$h_{y}>0$ and $\forall i>y \quad h_{i}=0$	$h_{y}>0.5$ and $\forall i>y-0.5 \leq h_{i} \leq 0.5$
MAX	AFM $[\geq]$	y	$\forall i>y h_{i}=0$	$\forall i>y-0.5 \leq h_{i} \leq 0.5$
MODE	AFM	y	$\forall i \neq y h_{y}>h_{i}$	$\forall i \neq y h_{y}>h_{i}$
MEDIAN	AFM	y	$\sum_{i=1}^{y-1} h(i)<\frac{n}{2} \leq \sum_{i=y}^{n} h(i)$	$\sum_{i=1}^{y-1} h(i)+0.5 \leq\left\lfloor\frac{n}{2}\right\rfloor \leq \sum_{i=y}^{n} h(i)-0.5$
MEDIAN	AFM $[\geq]$	y	$\sum_{i=1}^{y-1} h(i) \geq \frac{n}{2}$	$\sum_{i=1}^{y-1} h(i)-0.5 \geq\left\lfloor\frac{n}{2}\right\rfloor$

Table 1: Constraints to be used in binomial (multinomial) distribution exact calculations (C_{y}) and (multivariate) Normal distribution approximations $\left(C_{y}^{\prime}\right)$. The table does not exhaust all combinations. However those omitted are easily obtained from the presented ones. For example, $\phi_{O R}(T, x)=1-\phi_{O R}(F, x), \phi_{A V E R A G E}(y, x)=\phi_{S U M}(y \times n, x)$, and $\phi_{M O D E \geq}(y, x)=$ $\sum_{y^{\prime} \leq y} \phi_{M O D E}\left(y^{\prime}, x\right)$.
exact solution is about 0.18272 . Our approximate solution is about 0.18286 . Thus, the error is less than 0.1% of the exact solution.

AFM $[\leq]$ and AFM $[\geq]$ Problems For binary aggregated random variables, these problems are different from AFM only for the SUM (and thus, AVERAGE) case. For SUM we can use the approximation
$\phi_{\mathbf{y}}^{\prime}(y)=\sum_{i=y}^{n}\binom{n}{i} p_{1}^{i}\left(1-p_{1}\right)^{n-i} \approx \int_{t=y-0.5}^{n+0.5} \frac{\exp \left(-\frac{\left(t-n p_{1}\right)^{2}}{2 \cdot n p_{1}\left(1-p_{1}\right)}\right)}{\sqrt{2 \pi \cdot n p_{1}\left(1-p_{1}\right)}} d t$.

3.3 Multivalued Variables Case

In the multivalued ($k>2$) case, there is a need to compute the probability of a linearly constrained region of histograms, which motivates us to consider approximate solutions with the multivariate Normal distribution. Consider the following example: suppose that the aggregation function is SUM. There are 100 rvs representing ratings of 100 people who watch a movie. Each person gives ratings among 0,1 and 2 (0 is lowest and 2 is highest). We want to calculate the sum of ratings from 100 people when each person gives a rating 0 with $0.35\left(p\left(x_{i}=r 0\right)=0.35\right)$, 1 with $0.35\left(p\left(x_{i}=r 1\right)=0.35\right)$, and 2 with $0.3\left(p\left(x_{i}=r 2\right)=0.3\right)$. The probability of histograms is provided by the multinomial distribution, as shown in Figure 3. The colored bars in (a) represent the probability of the ratings sum being exactly 100. If instead we wish to determine the probability of the ratings sum exceeding 100 , we have an $\mathbf{A F M}[\geq]$ instance, with a probability corresponding to the colored bars in the (b) panel. In both cases, we need to compute the volume of a histogram region.

As in the previous section, the multinomial distribution can be approximated by the multivariate normal distribution. Suppose that each rv may have three values with probability p_{0}, p_{1} and $p_{2}\left(p_{0}+p_{1}+p_{2}=1\right)$, respectively. Then the multinomial distribution of h_{0}, h_{1} and h_{2} chosen from n rvs is

$$
\binom{n}{h_{0} h_{1} h_{2}} \cdot p_{0}^{h_{0}} \cdot p_{1}^{h_{1}} \cdot p_{2}^{h_{2}}=\frac{n!}{h_{0}!h_{1}!h_{2}!} \cdot p_{0}^{h_{0}} \cdot p_{1}^{h_{1}} \cdot p_{2}^{h_{2}}
$$

Figure 3: Histogram space for multinomial distributions with (a) equality and (b) inequality constraints.

The corresponding bivariate (i.e. (3-1) multivariate) normal distribution of $\mathbb{X}=\left[h_{0} h_{1}\right]$ chosen from n rvs is as follows (Note that $h_{2}=n-h_{1}-h_{2}$),

$$
\frac{1}{(2 \pi)^{2 / 2}|\Sigma|^{1 / 2}} \cdot \exp \left(-\frac{1}{2}(\mathbb{X}-\mu) \Sigma^{-1}(\mathbb{X}-\mu)^{\prime}\right)
$$

when the μ and Σ are
$\mu=\left[n p_{0} n p_{1}\right], \Sigma=\left(\begin{array}{cc}n p_{0}\left(1-p_{0}\right) & n p_{1} p_{2} \\ n p_{2} p_{1} & n p_{2}\left(1-p_{2}\right)\end{array}\right)$.
Analytical Solution for Operators with a Single Linear Constraint As in the previous section, we set p_{0}, p_{1} and p_{2} as $0.35,0.35$ and 0.3 respectively and y as 100 . Any operator with a single linear constraint (e.g. AFM, AFM $[\leq]$ and $\mathbf{A F M}[\geq]$ on $S U M$, and $\mathbf{A F M}[\leq]$ and $\mathbf{A F M}[\geq]$ on MEDIAN) allows an analytical solution because there is a linear transformation from $\mathbb{X}=\left[h_{0} h_{1}\right]$ to y. Consider the following linear transform $y=0 \cdot h_{0}+1 \cdot h_{1}+2 \cdot h_{2}=200-2 \cdot h_{0}-h_{1}$. When we represent the transform as $y=A \mathbb{X}+B$, the new distribution of y is given by the 1-D Normal distribution:

$$
\frac{1}{\sqrt{2 \pi \Sigma_{y}}} \cdot \exp \left(-\frac{\left(y-\mu_{y}\right)^{2}}{2 \Sigma_{y}}\right)
$$

where $\mu_{y}=A \mu+B$ and $\Sigma_{y}=A \Sigma A^{T}$ are scalars. From the transformation the solution of AFM for $y=100$ can be calculated in the following way:

$$
\frac{1}{\sqrt{2 \pi \Sigma_{y}}} \int_{y=100-0.5}^{100+0.5} \exp \left(-\frac{\left(y-\mu_{y}\right)^{2}}{2 \Sigma_{y}}\right) d y
$$

The solutions of $\mathbf{A F M}[\leq]$ and $\mathbf{A F M}[\geq]$ for $y=100$ can be calculated in similar ways.

Sampling for Remaining Operators In general, integration of a multivariate truncated normal does not allow an analytical solution. Fortunately, efficient Gibbs sampling methods (e.g. (Geweke 1991; Damien and Walker 2001)) are applicable to the truncated normal in straightforward ways, even with several linear constraints. This immediately feeds to an approximation with time complexity not depending on n, the number of rvs.

4 Aggregate Factor with Multiple Atoms

We now consider a generalized situation. Previous sections assume that all rvs in a relational atom have the same distribution. Here, we deal with the issue of aggregating J distinct groups of random variables, each represented by a relational atom X_{j} with n_{j} groundings and a distinct potential $\phi_{\mathbf{x}_{\mathrm{j}}}$, for $1 \leq j \leq J$.

$$
y=\bigotimes_{\substack{1<j<J \\ 1<i<n_{j}}} x_{j, i}
$$

This problem, AFM-M, is an extension of the AFM. The AFM-M is to calculate a marginal
$\sum_{x_{1,1}, \cdots, x_{J, n_{J}}} \phi_{\otimes}\left(y, x_{1,1}, \cdots, x_{J, n_{J}}\right) \prod_{j=1}^{J} \prod_{1 \leq i \leq n_{j}} \phi_{\mathbf{x}_{\mathbf{j}}}\left(x_{j, i}\right)$.
One approach is to compute an aggregate y_{j}^{0} per atom j, and then combine each pair y_{j}^{i} and y_{j+1}^{i} into $y_{\lfloor j / 2\rfloor}^{i+1}$ until they are all aggregated. This will have complexity $O(J \log J)$ but works only for associative operators. For non-associative operators, we need to calculate the marginal for each X_{j} independently:

$$
\sum_{h^{1}, \cdots, h^{J}} \phi_{\otimes \mathbf{h}}(y, \mathbf{h})\left(\binom{n_{1}}{h_{1}^{1}} p_{1,0}^{h_{0}^{1}} p_{1,1}^{h_{1}^{1}} \cdots\binom{n_{J}}{h_{1}^{J}} p_{J, 0}^{h_{0}^{J}} p_{J, 1}^{h_{1}^{J}}\right)
$$

where $p_{j, 0}$ and $p_{j, 1}$ are the normalization of $\phi_{\mathbf{x}_{\mathbf{j}}}(0)$ and $\phi_{\mathbf{x}_{\mathbf{j}}}(1) ; h^{j}$ is a histogram for atom j, and \mathbf{h} is the combined histogram. The complexity of this approach is $O(\exp (J))$.

Another approach is to make use of the representation of the aggregation operator as a set of linear constraints (Table 1). Note that h^{j} is approximately Normal when n_{j} is large, and h^{i} and h^{j} are independent when $i \neq j$. Thus, the all-group histogram vector \mathbf{h} is also approximately Normal distributed because it is the Normal sum $\left(\mathbf{h}_{i}=\sum_{j} h_{i}^{j}\right)$.

Any linear constraint in Table 1 can be re-expressed as a linear constraint using elements of \mathbf{h}, and the multinomialNormal approximation can be used to yield a similar approximate solution in time constant n, the total number of rvs.

For example, for binary random variables, the Normal approximation of the all-group histogram is:

$$
N\left(\sum_{j=1}^{J} n_{j} p_{j, 1}, \sum_{j=1}^{J} n_{j} p_{j, 1} p_{j, 0}\right)
$$

This way, the time complexity is only $O(J)$ instead of $O(J \log J)$ (or $O(\exp (J))$ for non-associative operators).

5 Error Analysis

Here, we discuss error bounds for the multinomial-Normal approximations. In general, the Berry-Esseen theorem (Esseen 1942) gives an upper bound on the error. Suppose that $\phi_{\mathbf{y}}(y)$ and $\widetilde{\phi}_{\mathbf{y}}(y)$ represent the probability mass of a binomial distribution and density of its normal approximation, respectively. Furthermore, we represent the cumulative probabilties as $\Phi_{\mathbf{y}}(y)$ and $\widetilde{\Phi}_{\mathbf{y}}(y)^{6}$. Then, given any y, the error between the two cumulative probabilities is bounded (Esseen 1942):

$$
\left|\Phi_{\mathbf{y}}(y)-\widetilde{\Phi}_{\mathbf{y}}(y)\right|<c \cdot \frac{p^{2}+(1-p)^{2}}{\sqrt{n p(1-p)}}
$$

where c is a small (<1) constant. Thus, the asymptotic error bound is $O(1 / \sqrt{n})$, and this extends to probability on any interval.

For k-valued multinomials, suppose that $\Phi_{\mathbf{Y}}(A)$ and $\widetilde{\Phi}_{\mathbf{Y}}(A)$ represent the probability of a multinomial distribution and its multivariate normal approximation over a measurable convex set A in R^{k}. Then, the approximation error is bounded (Gotze 1991):

$$
\sup _{A}\left|\Phi_{\mathbf{Y}}(A)-\widetilde{\Phi}_{\mathbf{Y}}(A)\right|<c \cdot \frac{k}{\sqrt{n}}
$$

where c depends only on the multinomial parameters and not on n. In our problem, A is determined by linear constraints, hence is convex. Thus, the asymptotic error bound is $O(k / \sqrt{n})$.

6 Experimental Results

We provide experimental results on the example in Figure 1 (which uses the $M O D E$ aggregate function) which give us an insight on when to use the approximate algorithm instead of the generally applicable exact algorithm based on Counting Formulas (the logarithmic method in (Kisynski and Poole 2009) does not apply to $M O D E$).

We compute the utility of any of the methods tested, approximations or exact inference alike, in the following manner. We assume a typical application in which the utility of an error is an inverse quadratic function $U(e r r)=1-e r r^{2}$. The utility of a method obtaining error err is normalized by the time t it takes to run, so $U(e r r, t)=U(e r r) / t$. For sampling methods, t is the time to convergence. Finally, we plot the ratio between the utility of our methods and the utility of the exact inference method.

Therefore, a method is advantageous over the exact inference method when this ratio is greater than 1.

We run an experiment comparing our approximations and the exact inference algorithm for the model in Figure 1. For $k=2$, we run both the analytical and the sampling method. Given k and n, we randomly choose the potentials, and record the error and the convergence time. Then, we average them over 100 trials to calculate the utility, $U_{\text {Approx }}$.

As shown in Figure 4, our approximate algorithm has much higher utility than the exact method for larger k and n. However, when $k=2$ (binary variables), the exact method

[^4]

Figure 4: Ratios of utilities of approximate algorithms and exact method (histogram based counting).
has higher utility than sampling for relatively large n (e.g. $n=10240$). In this case, we can use the efficient analytic integration which applies for $k=2$. We also show in Figure 5 how the error decreases for different values of k and n.

Figure 5: Error curves for different values of k and n.

In addition, we have observed that the convergence time stays flat for various k and n. However, the error of sampling method is noticeable for small n. For example, when $k=4$, the error is 3.07% with $n=40$ and 1.82% with $n=80$. For larger n, this issue is resolved. The error becomes less than 1% when $n=320$ and negligible when $n>5120$. These observations are consistent for various k from 2 to 6 .

7 Conclusion

Processing aggregate parfactors efficiently is an important problem since they involve functions commonly used in writing models. Our contribution adds efficient exact methods for the binary case $k=2$, as well as efficient approximations for the cases in which the sets of aggregated variables are large, which is precisely the situation in which we are more likely to use aggregate factors in the first place. It will therefore be an important part of practical applications of relational graphical models.

8 Acknowledgements

We wish to thank Tuyen Ngoc Huynh, David Israel and the anonymous reviewers for their valuable comments.

This material is based upon work supported by the DARPA Machine Reading Program under Air Force Research Laboratory (AFRL) prime contract no. FA8750-09-C-0181. Any opinions, findings, and conclusion or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the view of DARPA, the Air Force Research Laboratory (AFRL) or the US government. In the event permission is required, DARPA is authorized to reproduce the copyrighted material for use as an exhibit or handout at DARPA-sponsored events and/or to post the material on the DARPA website.

References

Damien, P., and Walker, S. G. 2001. Sampling truncated normal, beta, and gamma densities. Journal of Computational and Graphical Statistics 10(2):206-215.
de Salvo Braz, R.; Amir, E.; and Roth, D. 2007. Lifted first-order probabilistic inference. In Getoor, L., and Taskar, B., eds., An Introduction to Statistical Relational Learning. MIT Press. 433-451.
Díez, F. J., and Galán, S. F. 2003. Efficient computation for the noisy MAX. International Journal of Approximate Reasoning 18:165-177.
Esseen, C.-G. 1942. On the liapunoff limit of error in the theory of probability. Arkiv foer Matematik, Astronomi, och Fysik A28(9):119.

Getoor, L.; Friedman, N.; Koller, D.; and Pfeffer, A. 2001. Learning probabilistic relational models. In Džeroski, S., and Lavrac, N., eds., Relational Data Mining. Springer-Verlag. 307-335.
Geweke, J. 1991. Efficient simulation from the multivariate normal and student-t distributions subject to linear constraints and the evaluation of constraint probabilities. In Computer Sciences and Statistics Proceedings the 23rd Symposium on the Interface between, 571-578.
Gotze, F. 1991. On the rate of convergence in the multivariate clt. The Annals of Probability 19(2):724-739.
Kisynski, J., and Poole, D. 2009. Lifted aggregation in directed first-order probabilistic models. In Proceedings of the 21st international joint conference on Artificial intelligence, 1922-1929.
Koller, D., and Pfeffer, A. 1997. Object-Oriented Bayesian Networks. In Proceedings Thirteenth Conference on Uncertainty in Artificial Intelligence, 302-313.
Milch, B.; Marthi, B.; Russell, S.; Sontag, D.; Ong, D. L.; and Kolobov, A. 2005. BLOG: probabilistic models with unknown objects. In Proceedings of the 19th international joint conference on Artificial intelligence, 1352-1359.
Milch, B.; Zettlemoyer, L.; Kersting, K.; Haimes, M.; and Kaelbling, L. P. 2008. Lifted probabilistic inference with counting formulas. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, 1062-1608.
Poole, D. 2003. First-order probabilistic inference. In Proceedings of the 18th International Joint Conference on Artificial Intelligence, 985-991.
Rice, J. A. 2006. Mathematical Statistics and Data Analysis. Duxbury Press.
Richardson, M., and Domingos, P. 2006. Markov logic networks. Machine Learning 62(1-2):107-136.
Singla, P., and Domingos, P. 2008. Lifted first-order belief propagation. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, 1094-1099.

[^0]: Copyright © 2011, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

[^1]: ${ }^{1}$ Note that $r=n$ for aggregate functions such as SUM of n binaray variables.
 ${ }^{2} \mathrm{XOR}$ has its own simple solution.

[^2]: ${ }^{4}$ See (Díez and Galán 2003) for details on $\phi_{\mathbf{y}^{\prime}, \mathbf{y}}$ and $\phi_{\mathbf{y}^{\prime}, \mathbf{x}}$.

[^3]: ${ }^{5}$ Here, +0.5 and -0.5 are continuity corrections for accurate approximations.

[^4]: ${ }^{6}$ That is, $\Phi_{\mathbf{y}}(y)=\sum_{i=0}^{y} \phi_{\mathbf{y}}(i)$, and $\widetilde{\Phi}_{\mathbf{y}}(y)=\int_{t=-\infty}^{y} \widetilde{\phi}_{\mathbf{y}}(t) d t$.

