
Efficient Methods for Lifted Inference with Aggregate Factors

Jaesik Choi
Computer Science Department

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

Rodrigo de Salvo Braz and Hung H. Bui
Artificial Intelligence Center

SRI International
Menlo Park, CA 94025, USA

Abstract

Aggregate factors (that is, those based on aggregate
functions such as SUM, AVERAGE, AND etc) in proba-
bilistic relational models can compactly represent de-
pendencies among a large number of relational ran-
dom variables. However, propositional inference on a
factor aggregating n k-valued random variables into
an r-valued result random variable is O(rk2n). Lifted
methods can ameliorate this to O(rnk) in general and
O(rk log n) for commutative associative aggregators.
In this paper, we propose (a) an exact solution constant
in n when k=2 for certain aggregate operations such
as AND, OR and SUM, and (b) a close approximation
for inference with aggregate factors with time complex-
ity constant in n. This approximate inference involves
an analytical solution for some operations when k>2.
The approximation is based on the fact that the typ-
ically used aggregate functions can be represented by
linear constraints in the standard (k−1)-simplex in R

k

where k is the number of possible values for random
variables. This includes even aggregate functions that
are commutative but not associative (e.g., the MODE
operator that chooses the most frequent value). Our al-
gorithm takes polynomial time in k (which is only 2 for
binary variables) regardless of r and n, and the error
decreases as n increases. Therefore, for most applica-
tions (in which a close approximation suffices) our al-
gorithm is a much more efficient solution than existing
algorithms. We present experimental results support-
ing these claims. We also present a (c) third contribu-
tion which further optimizes aggregations over multiple
groups of random variables with distinct distributions.

1 Introduction
Relational models can compactly (that is, intensionally) rep-
resent graphical models involving a large number of random
variables, each of them representing a relation between ob-
jects in a domain (Koller and Pfeffer 1997; Getoor et al.
2001; Milch et al. 2005; Richardson and Domingos 2006).

While it is possible to take advantage of compactness
only for representation and expand the model into a propo-
sitional (extensional) form for inference, lifted inference
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methods try to keep the representation as compact as possi-
ble even during inference, increasing efficiency (Poole 2003;
de Salvo Braz, Amir, and Roth 2007; Milch et al. 2008;
Singla and Domingos 2008).

The first proposed lifted inference solutions could deal
only with factors on a fixed number of random variables.
Aggregate parametric factors (based on aggregate functions
such as OR, MAX, AND, SUM, AVERAGE, MODE and ME-
DIAN), which are defined on a varying, intensionally de-
fined set of random variables, still needed to be treated
propositionally, with cost exponential in the number n of
random variables. (Kisynski and Poole 2009) introduced
lifted methods for aggregate factors that reduce this com-
plexity to O(rk log n) for commutative associative aggre-
gate functions on n k-valued random variables being aggre-
gated into an r-valued random variable (and even O(rk) for
OR and MAX)1. However, for general cases (such as the non-
associative function MODE), their exact inference method
has time O(rnk), that is, polynomial in n.

The contributions of this paper are threefold. We con-
tribute an exact solution constant in n when k = 2 for aggre-
gate operations AND, OR, MAX and SUM. We also present
an efficient (constant in n) approximate algorithm for infer-
ence with aggregate factors, for all typical aggregate func-
tions. The potential of a aggregate factor for a valuation v of
a set of random variables depends only on the histogram on
the distribution of k values in V (in what (Milch et al. 2008)
calls a counting formula). We show that the typical aggre-
gate functions but for XOR2 can be represented by linear
constraints in the space of histograms (a (k−1)-simplex).
Because aggregate factors’ potentials on the space of his-
tograms can be approximated by a normal distribution, we
can approximately sums over them (which is the main in-
ference operation) by computing the volume under normal
distributions truncated by linear constraints. This holds even
for MODE, which is commutative but not associative.

This approximation can be computed analytically for all
operations on binary random variables and for certain oper-
ations on multivalued (k>2) random variables such as SUM
and MEDIAN. Otherwise, it is computed by Gibbs sam-

1Note that r=n for aggregate functions such as SUM of n bi-
naray variables.

2XOR has its own simple solution.
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pling with a limited number of iterations (Geweke 1991;
Damien and Walker 2001). Finally, a third contribution is
a further optimization for aggregations of multiple groups
of random variables, each with its own distribution.

This paper is organized as follows. Section 2 defines re-
lational models and our inference problem, AFM (Aggrega-
tion Factor Marginalization). Section 3 presents our lifted
inference methods for aggregate factors followed by an ex-
tended algorithm for the generalized problems in Section 4.
Section 5 provides the error bounds of the approximations.
We present some empirical results in Section 6. We conclude
in Section 7.

2 Background and Problem Definition
We are interested in inference problems over relational mod-
els with aggregate factors. We now revisit these concepts.

2.1 First-order Probabilistic Models
A factor f is a pair (Af , φf ) where Af is a tuple of random
variables and φf is a potential function from the range of
Af to the nonnegative real numbers. Given a valuation v of
random variables (rvs), the potential of f on v is wf (v) =
φf (Af ).

The joint probability defined by a set F of factors on
a valuation v of random variables is the normalization of∏

f∈F wf (v). If each factor in F is a conditional probability
of a child random variable given the value of its parent ran-
dom variables, and there are no directed cycles in the graph
formed by directed edges from parents to children, then the
model defines a Bayesian network. Otherwise it is an undi-
rected model.

We can have parameterized (indexed) random variables
by using predicates, which are functions mapping parame-
ter values (indices) to random variables. A relational atom
is an application of a predicate, possibly with free vari-
ables. For example, a predicate friends is used in atoms
friends(X,Y ), friends(X, bob) and friends(john, bob),
where X and Y are free variables and john and bob possi-
ble parameter values. friends(john, bob) is a ground atom
and directly corresponds to a random variable.

A parfactor is a tuple (L,C,A, φ) composed of a set of
parameters (also called logical variables) L, a constraint C
on L, a tuple of atoms A, and a potential function φ. Let a
substitution θ be an assignment to L and Aθ the relational
atom (possibly ground) resulting from replacing logical vari-
ables by their values in θ. A parfactor g stands for the set of
factors gr(g) with elements (Aθ, φ) for every assignment θ
to the parameters L that satisfies the constraint C. A First-
order Probabilistic Model (FOPM) is a compact, or inten-
sional, representation of a graphical model. It is composed
by a domain, which is the set of possible parameter val-
ues (referred to as domain objects) and a set of parfactors.
The corresponding graphical model is the one defined by all
instantiated factors. The joint probability of a valuation v
according to a set of parfactors G is

P (v) = 1/Z
∏
g∈G

∏
f∈gr(g)

wf (v), (1)

where Z is a normalization constant.
Example: The dependence between political ads and votes

in the example in Figure 1 can be compactly represented
by the parfactor ({i},�, (V (i), Ads), P (V (i)|Ads)) with a
domain formed by the set of voters (� represents a tautol-
ogy, so no constraints are posed on i and instances are gen-
erated for all voters). The figure uses the more traditional
notation Vi, equivalent to V (i).

Figure 1: Graphical model on the domain of the election of
one of two parties A and B. The random variable Ads indi-
cates which party has the most ads in the media. The vari-
ables Vi indicate the vote of each person in a population,
modeled as a dependence of ad exposure. The Winner vari-
able indicates the winner and it is determined by the majority
(MODE) of votes. We would like to estimate the probability
of each party winning the election given this model.

.

2.2 Aggregate Factors and Parfactors
An aggregate factor is a factor ((X1, . . . , Xn, Y, φ⊗))
where φ⊗ establishes that the valuation y of Y must be
the result of an aggregation function ⊗ over the valuation
x1, . . . , xn of X1, . . . , Xn:

φ⊗(x1, . . . , xn, y) =

{
1 if y =

⊗
i=1,...,n

xi

0 otherwise
. (2)

We consider the aggregate functions OR, MAX, AND, XOR,
SUM, AVERAGE, MODE and MEDIAN. Noisy versions
such as Noisy-OR can be represented by adding an extra fac-
tor on xi.3

An aggregate parfactor g = (L,C,X,⊗, Y ), where X
and Y are now relational atoms, can be used by FOPMs to
compactly represent a set of aggregate factors. The set gr(g)
of ground factors instantiated from g comprises the aggre-
gate factors ((Xθ0θ1, . . . , Xθ0θn, Y θ0), φ⊗), for each sub-
stitution θ0 on the logical variables in Y consistent with con-
straint C, and substitutions θ1, . . . , θn on the logical vari-
ables in X but not in Y consistent with C. For the ex-
ample in Figure 1, the conditional probability of Winner

3Our definitions are based on (Kisynski and Poole 2009) but
differ from theirs in this aspect; while our aggregate factors are
deterministic, theirs include an extra potential for noisy versions.
As explained, we can do the same with an extra factor/parfactor.
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can be compactly represented by the aggregate parfactor
(i,�, V (i),MODE,Winner). More general aggregation
cases (for example, with aggregated random variables sets
including more than one predicate) can be normalized to this
type of aggregated parfactor, as detailed in (Kisynski and
Poole 2009).

2.3 Inference with Aggregate Parfactors
We are interested in the inference problem of marginalizing
a set of rvs in an FOPM with aggregate factors to determine
the marginal density of others. As shown by (Kisynski and
Poole 2009), this can be done by using C-FOVE (Milch et
al. 2008) extended with a lifted operation for summing ran-
dom variables out of an aggregate parfactor. These summa-
tions can be reduced to the Aggregate Factor Marginaliza-
tion (AFM) calculation:

φ′
y(y) =

∑
x1,,xn

⎛⎝φ⊗(y, x1, . . . , xn)
∏

1≤i≤n

φx(xi)

⎞⎠ .

where φx is the (same for all i) potential product of all other
factors in the model that have Xi as an argument, and φ′

y is
the resulting potential on y alone. This subproblem is also
one that needs to be solved in extending Lifted Belief Prop-
agation (Singla and Domingos 2008) to deal with aggregate
factors.

(Kisynski and Poole 2009) shows how, when different xi

have different potential functions on them, the problem can
be normalized (by splitting and using auxiliary variables) to
multiple such sums in which this uniformity holds. Simi-
larly, we can separate the case in which only some xi need
to be summed out into two different aggregate parfactors,
one for all aggregate random variables being summed out,
and another for the remaining ones.

A direct computation of AFM is exponential in n. (Kisyn-
ski and Poole 2009) shows lifted operations that can be done
in time polynomial or logarithmic in n (depending on certain
conditions explained below). In Section 3 we present two
lifted methods, one exact and one approximate, with time
constant in n.

2.4 Inference Problems with Inequality
We define aggregate factors with inequality constraints by
using

φ⊗≤(y, x1, . . . , xn) =

{
1 if y ≤ x1 ⊗ · · · ⊗ xn

0 otherwise

with the corresponding problem AFM[≤] defined as

∑
x1,...,xn

⎛⎝φ⊗≤(y, x1, . . . , xn) ·
∏

1≤i≤n

φx(xi)

⎞⎠ .

φ⊗≥ and AFM[≥] are defined analogously.

2.5 Existing Methods for AFM Problems
MAX and its special case OR (as well as their noisy ver-
sions) allow factorizations leading to lifted marginalization

constant in n (Dı́ez and Galán 2003). These operators can be
decomposed into the product of n potentials:4∑

x1,...,xn

φ⊗(y, x1, . . . , xn) ·
n∏

i=1

φx(xi)

=
∑
y′

∑
x1,...,xn

n∏
i=1

φy′,y(y
′, y) · φy′,x(y

′, xi)

=
∑
y′

(
φy′,y(y

′, y)
n∏

i=1

∑
xi

φy′,x(y
′, xi)

)
. (3)

Because the product is over a term independent of n, we can com-
pute it once and exponentiate in time constant in n:

=
∑
y′

(
φy′,y(y

′, y)

(∑
x′

φy′,x(y
′, x′)

)n )
.

For other aggregate functions that happen to be commuta-
tive and associative, AFM can be computed by a recursive
decomposition (Kisynski and Poole 2009) into a subprob-
lem with half the number of aggregated random variables,
and therefore in time O(r2k log n) when n is a power of 2:∑
x1,...,xn

φ⊗(y, x1, . . . , xn) ·
n∏

i=1

φx(xi)

=
∑

y=y′⊗y′′

⎛⎜⎝ ∑
x1,...,xn

2

φ⊗(y
′, x1, . . . , xn

2
) ·

n
2∏

i=1

φx(xi)

⎞⎟⎠
·

⎛⎜⎝ ∑
xn

2
+1,...,xn

φ⊗(y
′′, xn

2
+1, . . . , xn) ·

n∏
i=n

2
+1

φx(xi)

⎞⎟⎠ ,

where φ⊗(y, xi) =

{
1 if y = xi

0 otherwise .

Note that the two decomposition halves are the same prob-
lem up to variable renaming and thus computed in time
O(k log n), r2 times (once per value of y′ or y′′ and an-
other per value of y). (Kisynski and Poole 2009) describes
the minor adjustments needed when n is not a power of 2.

3 Efficient Methods for AFM Problems
We now present our solutions for AFM problems. The ex-
act solutions presented in the previous section are efficient.
However, their applicability is limited to some operations
(Dı́ez and Galán 2003), or their computational complex-
ity still depends on the number of rvs (Kisynski and Poole
2009). Here, we propose an exact solution for some cases,
and new efficient approximate marginalizations that are ap-
plicable to more aggregate functions.

3.1 Normal Distribution with Linear Constraints
(Kisynski and Poole 2009) shows how the potential of an ag-
gregate parfactor depends only on the value histogram of its
aggregated random variables (histograms were introduced in
Counting Elimination (de Salvo Braz, Amir, and Roth 2007)
and used as counting formulas in (Milch et al. 2008)).

4See (Dı́ez and Galán 2003) for details on φy′,y and φy′,x.
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Given values x1, . . . , xn for n rvs with the same range,
the value histogram of x is a vector h with hu = |{i :
xi = u}| for each u in the rvs’ range. When a potential
function on x1, . . . , xn depends on the histogram alone, as
in the case of aggregate factors, then there is a function φh

on histograms such that φ(y, x1, . . . , xn) = φh(y, h) and
φ⊗(y, x1, . . . , xn) = φ⊗

h(y, h). In what follows, we de-
scribe the binomial case (range of xi equal to 2) for clarity,
but it applies to the multinomial case as well. We can write∑

x1,...,xn

φ(y, x1, . . . , xn)
∏
i

φx(xi)

=
∑
h

(
n

h1

)
φh(y, h)p

h1
1 pn−h1

0 , (4)

where p0, p1 are the normalizations of φx. This corresponds
to grouping assignments on x into their corresponding his-
tograms h, and iterating over the histograms (which are ex-
ponentially less many), taking into account that each his-
togram corresponds to

(
n
h1

)
assignments.

We now observe that functions φh(y, h) coming from ag-
gregate factors always evaluate to 0 or 1. Moreover, the set
of histograms for which they evaluate to 1 can be described
by linear constraints on the histogram components. For ex-
ample, φMODE(y, h) will only be 1 if hy≥hy′ for all y′ �=y.
Given φh and y, let Cy be the set of histograms h such that
φh(y, h)=1. Then (4) can be rewritten as∑

h∈Cy

(
n

h1

)
ph1
1 pn−h1

0 ,

which is the probability of a set of h1 values under a bino-
mial distribution. For large n, according to the Central Limit
Theorem (Rice 2006), the binomial distribution is approxi-
mated by the normal distribution N(np1, np1p0) with den-
sity function f . Then∑

h∈Cy

(
n

h1

)
ph1
1 pn−h1

0 ≈
∫

h′∈C′
y

f(h′) dh′,

where C ′
y is a continuous region in the (k−1)-simplex cor-

responding to Cy (which is defined in discrete space). Table
1 lists Cy and an appropriate C ′

y for the several aggregate
factor potentials, for both AFM and AFM[≥].

Let’s see two examples. For AFM on MODE on binary
variables, y = 1, and histograms with h(1) = t, Cy is h1 ≥
h0 and C ′

y is t ∈ [⌊
n
2

⌋
+ 0.5, n+ 0.5

]
5, so we compute

n+0.5∫
t=	n

2 
+0.5

f(t) dt,

which can be done in constant time. Let us also consider
AFM and AFM[≥] on SUM with n=100 rvs representing
ratings of 100 people who watch a movie. Each person gives

5Here, +0.5 and −0.5 are continuity corrections for accurate
approximations.

ratings of either 0 (negative) or 1 (positive), with probabili-
ties 0.55 and 0.45, respectively (p0=0.55). We are interested
in the summation of those votes (r=100). Figure 2 shows the
probability density of the number of positive ratings. The
bars in red in (a) and (b) panels show the area corresponding
to the result for AFM and AFM[≥], respectively, for y=50.
The former can have the exact binomial distribution form
computed in constant time, while the latter can have the nor-
mal distribution approximation computed in constant time.
Therefore, the marginal on Y can be approximated in O(r).
(Kisynski and Poole 2009)’s algorithm, on the other hand,
takes O(r log n), and (Dı́ez and Galán 2003) is not applica-
ble.

Figure 2: Histogram with a binomial distribution with (a)
equality and (b) inequality constraints.

We now explain the method in more detail for two differ-
ent cases: aggregated binary random variables (k=2), which
can be dealt with analytically, and aggregated multivalued
random variables (k>2).

3.2 Binary Variables Case
AFM Problem For AND, OR, MIN, MAX and SUM, an
exact solution with time constant in n for AFM for the bi-
nary case can be computed, for the appropriate choices of p0
and p1, as

φ′
y(y) =

(
n

y

)
pn−y
0 · p1y.

AVERAGE can be solved by using φ′
y obtained from SUM

on y/n. This solution follows from the fact that, for the
above cases, one needs the potential of a single histogram.

For MODE and MEDIAN, exact solutions for AFM are of
the following form, with time linear in n:

φ′
y(TRUE) =

n∑
i=�n

2 �+1

(
n

i

)
pn−i
0 · p1i.

Such solutions are more expensive because they measure
the density of a region of histograms. They can be approxi-
mated by the Normal distribution in the following way:

φ′
y(TRUE) ≈

n+0.5∫
t=�n

2 �+0.5

exp
(
− (t−np1)

2

2·np1(1−p1)

)
√

2π · np1(1− p1)
dt.

Note that MODE is not solved by either (Dı́ez and Galán
2003)’s factorization or (Kisynski and Poole 2009)’s loga-
rithmic algorithm, while our approach can compute an ap-
proximation in constant time. For n is 100, p1 = 0.45, the
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Operator Problem y Cy C ′
y

AND AFM TRUE hTRUE = n not needed (cheap exact solution)
OR AFM FALSE hFALSE = n not needed (cheap exact solution)
SUM AFM y

∑
i i× hi = y y − 0.5 ≤∑

i i× hi ≤ y + 0.5
SUM AFM[≥] y

∑
i i× hi ≤ y

∑
i i× hi ≤ y − 0.5

MAX AFM y hy > 0 and ∀i>y hi = 0 hy > 0.5 and ∀i>y −0.5 ≤ hi ≤ 0.5
MAX AFM[≥] y ∀i>y hi = 0 ∀i>y −0.5 ≤ hi ≤ 0.5
MODE AFM y ∀i �=y hy > hi ∀i �=y hy > hi

MEDIAN AFM y
∑y−1

i=1 h(i) < n
2 ≤

∑n
i=y h(i)

∑y−1
i=1 h(i) + 0.5 ≤ 	n2 
 ≤

∑n
i=y h(i)− 0.5

MEDIAN AFM[≥] y
∑y−1

i=1 h(i) ≥ n
2

∑y−1
i=1 h(i)− 0.5 ≥ 	n2 


Table 1: Constraints to be used in binomial (multinomial) distribution exact calculations (Cy) and (multivariate) Normal dis-
tribution approximations (C ′

y). The table does not exhaust all combinations. However those omitted are easily obtained from
the presented ones. For example, φOR(T, x) = 1− φOR(F, x), φAV ERAGE(y, x) = φSUM (y × n, x), and φMODE≥(y, x) =∑

y′≤y φMODE(y
′, x).

exact solution is about 0.18272. Our approximate solution is
about 0.18286. Thus, the error is less than 0.1% of the exact
solution.

AFM[≤] and AFM[≥] Problems For binary aggregated
random variables, these problems are different from AFM
only for the SUM (and thus, AVERAGE) case. For SUM we
can use the approximation

φ′
y(y) =

n∑
i=y

(
n

i

)
pi1(1− p1)

n−i≈
n+0.5∫

t=y−0.5

exp
(
− (t−np1)

2

2·np1(1−p1)

)
√

2π · np1(1− p1)
dt.

3.3 Multivalued Variables Case
In the multivalued (k>2) case, there is a need to com-
pute the probability of a linearly constrained region of his-
tograms, which motivates us to consider approximate solu-
tions with the multivariate Normal distribution. Consider the
following example: suppose that the aggregation function is
SUM. There are 100 rvs representing ratings of 100 peo-
ple who watch a movie. Each person gives ratings among
0, 1 and 2 (0 is lowest and 2 is highest). We want to cal-
culate the sum of ratings from 100 people when each per-
son gives a rating 0 with 0.35 (p(xi=r0)=0.35), 1 with
0.35 (p(xi=r1)=0.35), and 2 with 0.3 (p(xi=r2)=0.3). The
probability of histograms is provided by the multinomial
distribution, as shown in Figure 3. The colored bars in (a)
represent the probability of the ratings sum being exactly
100. If instead we wish to determine the probability of the
ratings sum exceeding 100, we have an AFM[≥] instance,
with a probability corresponding to the colored bars in the
(b) panel. In both cases, we need to compute the volume of
a histogram region.

As in the previous section, the multinomial distribution
can be approximated by the multivariate normal distribution.
Suppose that each rv may have three values with probability
p0, p1 and p2 (p0 + p1 + p2 = 1), respectively. Then the
multinomial distribution of h0, h1 and h2 chosen from n rvs
is(

n

h0 h1 h2

)
· ph0

0 · ph1
1 · ph2

2 =
n!

h0!h1!h2!
· ph0

0 · ph1
1 · ph2

2 .

Figure 3: Histogram space for multinomial distributions
with (a) equality and (b) inequality constraints.

The corresponding bivariate (i.e. (3-1) multivariate) normal
distribution of X = [h0 h1] chosen from n rvs is as follows
(Note that h2 = n− h1 − h2),

1

(2π)2/2|Σ|1/2 · exp
(
−1

2
(X− μ)Σ−1(X− μ)′

)
,

when the μ and Σ are

μ = [np0 np1], Σ =

(
np0(1− p0) np1p2

np2p1 np2(1− p2)

)
.

Analytical Solution for Operators with a Single Linear
Constraint As in the previous section, we set p0, p1 and
p2 as 0.35, 0.35 and 0.3 respectively and y as 100. Any oper-
ator with a single linear constraint (e.g. AFM, AFM[≤] and
AFM[≥] on SUM, and AFM[≤] and AFM[≥] on MEDIAN)
allows an analytical solution because there is a linear trans-
formation from X = [h0 h1] to y. Consider the following
linear transform y = 0·h0+1·h1+2·h2 = 200−2·h0−h1.
When we represent the transform as y = AX + B, the new
distribution of y is given by the 1-D Normal distribution:

1√
2πΣy

· exp
(
− (y−μy)

2

2Σy

)
,

where μy = Aμ + B and Σy = AΣAT are scalars. From
the transformation the solution of AFM for y=100 can be
calculated in the following way:

1√
2πΣy

100+0.5∫
y=100−0.5

exp

(
− (y−μy)

2

2Σy

)
dy.
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The solutions of AFM[≤] and AFM[≥] for y=100 can be
calculated in similar ways.

Sampling for Remaining Operators In general, integra-
tion of a multivariate truncated normal does not allow an
analytical solution. Fortunately, efficient Gibbs sampling
methods (e.g. (Geweke 1991; Damien and Walker 2001)) are
applicable to the truncated normal in straightforward ways,
even with several linear constraints. This immediately feeds
to an approximation with time complexity not depending on
n, the number of rvs.

4 Aggregate Factor with Multiple Atoms
We now consider a generalized situation. Previous sections
assume that all rvs in a relational atom have the same distri-
bution. Here, we deal with the issue of aggregating J distinct
groups of random variables, each represented by a relational
atom Xj with nj groundings and a distinct potential φxj

, for
1≤j≤J .

y =
⊗

1<j<J
1<i<nj

xj,i.

This problem, AFM-M, is an extension of the AFM. The
AFM-M is to calculate a marginal∑
x1,1,···,xJ,nJ

φ⊗(y, x1,1, · · · , xJ,nJ
)

J∏
j=1

∏
1≤i≤nj

φxj
(xj,i).

One approach is to compute an aggregate y0j per atom j,
and then combine each pair yij and yij+1 into yi+1

�j/2� until they
are all aggregated. This will have complexity O(J log J) but
works only for associative operators. For non-associative op-
erators, we need to calculate the marginal for each Xj inde-
pendently:∑
h1,···,hJ

φ⊗
h(y,h)

((
n1

h1
1

)
p
h1
0

1,0p
h1
1

1,1· · ·
(
nJ

hJ
1

)
p
hJ
0

J,0p
hJ
1

J,1

)
,

where pj,0 and pj,1 are the normalization of φxj
(0) and

φxj
(1); hj is a histogram for atom j, and h is the combined

histogram. The complexity of this approach is O(exp(J)).
Another approach is to make use of the representation of

the aggregation operator as a set of linear constraints (Ta-
ble 1). Note that hj is approximately Normal when nj is
large, and hi and hj are independent when i �=j. Thus, the
all-group histogram vector h is also approximately Normal
distributed because it is the Normal sum (hi =

∑
j h

j
i ).

Any linear constraint in Table 1 can be re-expressed as a
linear constraint using elements of h, and the multinomial-
Normal approximation can be used to yield a similar approx-
imate solution in time constant n, the total number of rvs.

For example, for binary random variables, the Normal ap-
proximation of the all-group histogram is:

N

⎛⎝ J∑
j=1

njpj,1,

J∑
j=1

njpj,1pj,0

⎞⎠ .

This way, the time complexity is only O(J) instead of
O(J log J) (or O(exp(J)) for non-associative operators).

5 Error Analysis
Here, we discuss error bounds for the multinomial-Normal
approximations. In general, the Berry-Esseen theorem (Es-
seen 1942) gives an upper bound on the error. Suppose that
φy(y) and φ̃y(y) represent the probability mass of a bi-
nomial distribution and density of its normal approxima-
tion, respectively. Furthermore, we represent the cumulative
probabilties as Φy(y) and Φ̃y(y)

6. Then, given any y, the
error between the two cumulative probabilities is bounded
(Esseen 1942):∣∣∣Φy(y)− Φ̃y(y)

∣∣∣ < c · p
2 + (1− p)2√
np(1− p)

,

where c is a small (< 1) constant. Thus, the asymptotic error
bound is O(1/

√
n), and this extends to probability on any

interval.
For k-valued multinomials, suppose that ΦY(A) and

Φ̃Y(A) represent the probability of a multinomial distribu-
tion and its multivariate normal approximation over a mea-
surable convex set A in Rk. Then, the approximation error
is bounded (Gotze 1991):

supA

∣∣∣ΦY(A)− Φ̃Y(A)
∣∣∣ < c · k√

n
,

where c depends only on the multinomial parameters and
not on n. In our problem, A is determined by linear con-
straints, hence is convex. Thus, the asymptotic error bound
is O(k/

√
n).

6 Experimental Results
We provide experimental results on the example in Figure 1
(which uses the MODE aggregate function) which give us an
insight on when to use the approximate algorithm instead of
the generally applicable exact algorithm based on Counting
Formulas (the logarithmic method in (Kisynski and Poole
2009) does not apply to MODE).

We compute the utility of any of the methods tested, ap-
proximations or exact inference alike, in the following man-
ner. We assume a typical application in which the utility of
an error is an inverse quadratic function U(err) = 1−err2.
The utility of a method obtaining error err is normalized by
the time t it takes to run, so U(err, t) = U(err)/t. For sam-
pling methods, t is the time to convergence. Finally, we plot
the ratio between the utility of our methods and the utility
of the exact inference method.

Therefore, a method is advantageous over the exact infer-
ence method when this ratio is greater than 1.

We run an experiment comparing our approximations and
the exact inference algorithm for the model in Figure 1. For
k = 2, we run both the analytical and the sampling method.
Given k and n, we randomly choose the potentials, and
record the error and the convergence time. Then, we aver-
age them over 100 trials to calculate the utility, UApprox.

As shown in Figure 4, our approximate algorithm has
much higher utility than the exact method for larger k and n.
However, when k = 2 (binary variables), the exact method

6That is, Φy(y) =
y∑

i=0

φy(i), and Φ̃y(y) =
y∫

t=−∞
φ̃y(t) dt.
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Figure 4: Ratios of utilities of approximate algorithms and
exact method (histogram based counting).

has higher utility than sampling for relatively large n (e.g.
n = 10240). In this case, we can use the efficient analytic
integration which applies for k = 2. We also show in Figure
5 how the error decreases for different values of k and n.

Figure 5: Error curves for different values of k and n.

In addition, we have observed that the convergence time
stays flat for various k and n. However, the error of sampling
method is noticeable for small n. For example, when k = 4,
the error is 3.07% with n = 40 and 1.82% with n = 80. For
larger n, this issue is resolved. The error becomes less than
1% when n = 320 and negligible when n > 5120. These
observations are consistent for various k from 2 to 6.

7 Conclusion
Processing aggregate parfactors efficiently is an important
problem since they involve functions commonly used in
writing models. Our contribution adds efficient exact meth-
ods for the binary case k=2, as well as efficient approxima-
tions for the cases in which the sets of aggregated variables
are large, which is precisely the situation in which we are
more likely to use aggregate factors in the first place. It will
therefore be an important part of practical applications of
relational graphical models.
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