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Abstract
Bagging is a simple, yet effective design which combines 
multiple base learners to form an ensemble for prediction. 
Despite its popular usage in many real-world applications, 
existing research is mainly concerned with studying 
unstable learners as the key to ensure the performance gain 
of a bagging predictor, with many key factors remaining
unclear. For example, it is not clear when a bagging 
predictor can outperform a single learner and what is the 
expected performance gain when different learning 
algorithms were used to form a bagging predictor. In this 
paper, we carry out comprehensive empirical studies to 
evaluate bagging predictors by using 12 different learning 
algorithms and 48 benchmark data-sets. Our analysis uses 
robustness and stability decompositions to characterize 
different learning algorithms, through which we rank all 
learning algorithms and comparatively study their  bagging 
predictors to draw conclusions. Our studies assert that both 
stability and robustness are key requirements to ensure the 
high performance for building a bagging predictor. In 
addition, our studies demonstrated that bagging is 
statistically superior to most single learners, except for KNN 
and Naïve Bayes (NB). Multi-layer perception (MLP), 
Naïve Bayes Trees (NBTree), and PART are the learning 
algorithms with the best bagging performance. 

Introduction
Bagging (Breiman 1966) is one of the most popular and 
effective ensemble learning methods. Bagging is a 
variance-reduction technique, so it is mostly applied to 
unstable, high variance algorithms (Tuv 2006). Many 
theories have been proposed on the effectiveness of 
bagging for classifications based on bias and variance 
decomposition (Opitz and Maclin 1999). Breiman 
suggested that instability is an important factor for
reducing variance for bagging to improve accuracy 
(Breiman 1996), while Bauer and Kohavi indicated that 
bagging also reduces the bias portion of the error (Bauer 
and Kohavi 1999). 
 Existing studies have demonstrated the effectiveness of 
the bagging predictor; however, a comprehensive study of 
bagging predictors with respect to different learning 
algorithms has not been undertaken. Given a large body of 
learning algorithms, existing research is limited in its
ability to answer practical questions such as (1) which 
learning algorithms are expected to achieve the maximum
accuracy gain? and (2) when should we expect a bagging
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predictor to outperform a single learner? Answering these
questions poses the following research challenges: (1) how 
to classify the base learners into different categories, and (2) 
how to conduct a fair and rigorous study to evaluate 
multiple algorithms over multiple data-sets (Demšar 2006).  

Designed Framework

Figure 1: Designed Framework

The designed framework is presented in Figure 1, and the 
evaluation is divided into three tasks: (1) employ 
robustness and stability decomposition to classify base 
learners, (2) compare bagging predictors with single 
learners: (a) the Wilcoxon signed ranks test is used to 
compare two learners to determine when bagging will 
outperform a single learner, and (b) a paired-difference 
cross-validated t-test is used to determine which bagging
predictor on average has the largest performance gain
across all the benchmark data-sets, (3) the Friedman test 
with the corresponding Post-hoc Nemenyi test is used to 
compare multiple learners to determine bagging predictors
with the best performance.
Base Learner Characterization
In order to investigate the bagging predictors with respect
to different learning algorithms, we propose characterizing
base learners using two-dimensional decomposition, 
robustness and stability, and then employing error rate and 
bias/variance decomposition to assess the learner 
performance.
Definition 1: Robustness refers to the ranking of the 
average performance of a base learner among a set of 
learners. For example, if we assume error rate is a 
performance measure, we rank all base learners according
to their prediction errors over all benchmark data-sets, and 
the ranking order of a learner is used to capture the 
robustness of a learner, with a smaller ranking number 
denoting a more robust learner.  
Definition 2: Stability refers to the ranking of the variance 
of a base learner in a set of learners. For example, if we 
assume variance of the error rate is a performance measure, 
we rank all base learners according to their variance over 
all benchmark data-sets, and the ranking order is used to 
capture a learner’s stability, with a smaller ranking number 
denoting a more stable learner.  
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Figure 2: Two dimensional decomposition of 
the base learner, where x-axis denotes the strong 
vs. weak characterization of the base learners,
and y-axis denotes the stable vs. unstable ability 
of the base learners.

Figure 3:  The improved accuracy between 
bagging predictors and  individual base 
learners on average over multiple data-sets. 
The error bars present a 95% confidence 
interval based on the cross-validated t test. 

Figure 2 demonstrates the Robustness vs. Stability 
decomposition in assessing base learners based on 0/1 loss
instance bias and variance as a performance measure. The 
average ranks of bias and variance were obtained as 
ranking orders of the robustness and stability of base 
learners. Normalized ascending rank orders of robustness
and stability were calculated for two-dimensional plotting. 
MLP and SVM with a smaller value of robustness denote a 
more robust learner, while NB and SVM with a smaller 
value of stability denote more stable learners.
  

Experimental Results
We use WEKA implementation of the 12 algorithms with 
default parameters settings in this empirical study (Witten 
and Frank 2005). In order to reduce uncertainty and obtain 
reliable experimental results, all the evaluations are
assessed under the same test conditions by using the same 
randomly selected bootstrap samples with replacements in 
each fold of 10-trial 10-folds cross-validation on each of 48 
data-sets.
  In Figure 2 we observe that MLP and Support Vector 
Machines (SVM), both having relatively lower variance, 
are similar to, and have more robustness than KNN and NB,
respectively.

Figure 3 demonstrates that bagging RandTree (RdTree)
gains nearly 6% improvement in Error Rate on average 
over 48 data-sets, while there is almost no gain for bagging
NB and KNN. These findings are consistent with 
Breiman’s theories. However, bagging MLP and SVM
receive better performance gain than bagging KNN and 
NB over 48 data-sets. According to Breiman’s theories, if
they have similar variance with KNN and NB, respectively,
they are not supposed to have a better gain than KNN and 
NB. A possible reason is that both MLP and SVM are 
stronger than KNN and NB.

Table 1 Wilcoxon Signed Rank Test indicates that 
bagging performs better than most of the single learners,
except for KNN and NB. Previous studies have concluded
that KNN and NB are stable learners, so their performance
in bagging predictors is not supposed to be good.  

Figure 4: Comparison of all Bagging predictors from Friedman and Post-hoc 
Nemenyi test, where x-axes indicate the mean rank of each algorithm, the y axes 
indicate the ascending ranking order of the Bagging predictors and the horizontal 
error bars indicate the “critical difference”. The performance of two bagging 
predictors is significantly different when the horizontal bars are not overlapping. 

Bagging against Single Learners on Wilcoxon Signed Rank test
Learners NB KNN SVM MLP DStump NBTree
p-values .555 .110 .001 .000 .000 .000

Learners DTable OneR J48 PART RepTree RdTree
p-values .000 .000 .000 .000 .000 .000

Table 1:  The significance level is .05. The Null Hypothesis is that the median of 
differences between Bagging and each single learner equals 0.  Rule: Reject the Null 
Hypothesis if the p-��������	
��
�
�	
�����	� ��		�
�����������
�the 95% confidence 
level of significance.

Figure 4 reports the results of the Friedman with Post-
hoc Nemenyi test for comparison of all bagging predictors’ 
average ranks on 48 data-sets. The group of most robust  
base learners, MLP, NBTree, and PART contribute to the 
best bagging predictors; whereas the group of weakest
learners, OneR and DStump lead to the worst bagging 
predictors. There is a statistically significant difference 
between the two groups. As a result, one can conclude that 
the robustness of the base learners is an important factor 
for building accurate bagging predictors. 

Conclusions
This paper empirically studies the bagging predictors with 
respect to different types of base learners, by using
robustness and stability decomposition and a number of 
statistical tests. Our observations conclude that the most 
robust base learners such as, MLP, NBTree and PART can 
be used to build good bagging predictors.
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