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Abstract

In this paper, we present the exact online updating for-
mulae for the generalized inverse of centered matrices.
The computational cost is O(mn) for matrices of size
m × n. Experimental results validate the proposed
method’s accuracy and efficiency.

Introduction

The generalized inverse of an arbitrary matrix, also called
Moore-Penrose inverse or Pseudoinverse, is an generaliza-
tion of the inverse of full rank square matrix (Israel and
Greville 2003). It has many applications in machine learn-
ing (Gutman and Xiao 2004), computer vision (Ng, Bharath,
and Kin 2007), data mining (Korn et al. 2000), etc. For ex-
ample, it allows for solving least square systems, even with
rank deficiency, and the solution has the minimum norm
which is the desired property under regularization.

Online learning algorithm often needs to update the
trained model when some new observations arrive and/or
some observations become obsolete. Online updating for
the generalized inverse of original data matrix when a row
or column vector is inserted or deleted, is given by the well-
known Greville algorithm and Cline algorithm, respectively.
The computational cost for one updation is O(mn) on ma-
trix with size m× n.

However, in many machine learning algorithms, compu-
tation for the generalized inverse of centered data matrix
other than the original data matrix is needed. For example,
computing the generalized inverse of the laplacian matrix
(Gutman and Xiao 2004) for some graph-based learning,
computing the least square formulation for a class of gen-
eralized eigenvalue problems (Liu, Jiang, and Zhou 2009;
Sun, Ji, and Ye 2009) which include LDA, CCA, OPLS, etc.

In this paper, we present the exact updating formulae for
generalized inverse of centered matrix, when a row or col-
umn vector is inserted or deleted. The computational cost is
also O(mn) on matrix with size m×n. Experimental results
show that it could achieve high accuracy with low time cost.

Notations: Let Cm×n denotes the set of all m × n ma-
trices over the field of complex numbers. The symbols A†
and A∗ stand for the generalized inverse and the conjugate
transpose of matrix A ∈ Cm×n, respectively. I is the iden-
tity matrix and 1 is a vector of all ones.
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Updating for Original Data Matrices

In this section, we briefly introduce Greville and Cline al-
gorithm for updating the generalized inverse of the original
data matrix when a column vector is appended or the first
column vector is deleted. Extension to insertion or deletion
of any column can be easily transformed based on equation
(AQ)† = Q∗A† where Q is unitary matrix. To the case of
the row, it can be transformed into column case based on
equation A† = [(A∗)†]∗.

The incremental computation for the generalized inverse
of matrix is given by the well-known Greville algorithm (Is-
rael and Greville 2003), which is shown in Lemma 1 below.

Lemma 1 (Greville Algorithm) Let Â = [A, a] ∈ Cm×n,
where A ∈ Cm×(n−1) and a ∈ Cm×1. Define c = (I −
AA†)a, then the generalized inverse of matrix Â is given by

Â† =
[

A† −A†ab∗
b∗

]
(1)

where b∗ is defined as:

b∗ =

{
c† if c �= 0

(1 + a∗A†∗A†a)−1a∗A†∗A† if c = 0
(2)

The decremental computation for the generalized inverse
of matrix is given by Cline Algorithm (Israel and Greville
2003), which is shown in Lemma 2 below.

Lemma 2 (Cline Algorithm) Let Â = [a,A] ∈ Cm×n,

where a ∈ Cm×1 and A ∈ Cm×(n−1). And Â† =
[

d∗
G

]
∈

Cn×m, where d ∈ Cm×1 and G ∈ C(n−1)×m. Define λ =
1−d∗a, then the generalized inverse of matrix A is given by

A† =
{

G+ 1
λGad∗ if λ �= 0

G− 1
d∗dGdd∗ if λ = 0

(3)

Updating for Centered Data Matrices

In this section, we will present the updating formulae for
generalized inverse of centered matrix when a column vec-
tor is appended or the first column is deleted. Extension to
insertion or deletion of any column, and row case is simi-
lar to original data matrix. Due to space limitation, we just
present the updating formulae. The detailed proof of these
updating formulae can be found at 1.
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Appending a new column Let A ∈ Cm×(n−1) be the the
original data matrix and m ∈ Cm×1 be the the column mean
of A. And X ∈ Cm×(n−1) be the column centered matrix
of A and X† be the generalized inverse of X . In the updat-
ing process, the mean of original data matrix m, the column
centered data matrix X and its generalized inverse X† are
kept and updated during the process.

When a column vector a is appended, the mean m is first
updated according to m̃ = m+ 1

n (a−m). Then the centered
data matrix is updated. After the append of a, X should be
re-centered according to

X̃ = [X − 1

n
(a−m)1∗,

n− 1

n
(a−m)] (4)

where 1 denotes the column vector of all ones with size n−1.
Then X̃† is calculated according to Theorem 3.

Theorem 3 Let X̃ , X, X†, a and m are defined above. De-
fine e = (I −XX†)(a−m), then

X̃† =
[

X† −X†(a−m)h∗ − 1
n−11h∗

h∗

]
(5)

where the h is defined as :

h∗ =

{
e† if e �= 0

(n−1)(a−m)∗X†∗X†

n+(n−1)(a−m)∗X†∗X†(a−m)
if e = 0

(6)

Deleting the first column Let X̃ = [x, X̂] ∈ Cm×n,

X̃† =

[
l∗
U

]
∈ Cn×m and m̃ be the column mean of the

original matrix corresponding to X̃ . When the first column
x is deleted, the mean vector m is first updated according to
m = m̃ − 1

n−1x. Then the centered data matrix is updated.
After the deletion of x, X̂ should be re-centered according
to

X = X̂ +
1

n− 1
x1∗ (7)

Then X† is calculated according to Theorem 4.

Theorem 4 Let X , U , x and l are defined above. Define
θ = 1− n

n−1 l
∗x, then

X† =
{

U + 1
θ (

n
n−1Uxl∗ + 1

n−11l∗) if θ �= 0

U − 1
l∗lUll∗ if θ = 0

(8)

Experiments and Conclusions

In this experiment, we compare the accuracy and efficiency
of our method to SVD method (Golub and Loan 1996)
for the computation of generalized inverse of centered ma-
trix. The results are obtained by running the matlab (ver-
sion R2008a) codes on a PC with Intel Core 2 Duo P8600
2.4G CPU and 2G RAM. We generate synthetic matrix of
size m = 1000 and n = 800 which entry is random num-
ber in [−1, 1]. And the rank deficiency is produced by ran-
domly choosing 10% columns be replaced by other random
columns in the matrix.

We start with a matrix X composed of the first column of
the generated matrix A, then sequentially insert each column
of A into X. After all the columns of A are inserted into X,

Method n time ‖XX†X −X‖F ‖X†XX† −X†‖F ‖(XX†)∗ −XX†‖F ‖(X†X)∗ −X†X‖F
SVD method 50 0.0406 3.13E-13 9.02E-16 1.94E-14 1.78E-14
our method 0.0065 5.00E-14 1.86E-16 4.52E-15 1.50E-15

SVD method 100 0.1154 6.04E-13 1.76E-15 3.73E-14 3.46E-14
our method 0.0156 9.01E-14 3.48E-16 9.04E-15 3.89E-15

SVD method 200 0.3697 1.07E-12 3.25E-15 6.65E-14 6.28E-14
our method 0.0343 1.95E-13 7.21E-16 1.74E-14 1.17E-14

SVD method 400 1.5412 1.96E-12 6.78E-15 1.27E-13 1.22E-13
our method 0.0871 4.93E-13 2.15E-15 3.69E-14 4.20E-14

SVD method 800 10.0037 3.43E-12 1.89E-14 2.83E-13 2.60E-13
our method 0.1841 1.86E-12 2.02E-14 9.57E-14 4.21E-13

SVD method 800 9.9716 3.42E-12 1.89E-14 2.83E-13 2.59E-13
our method 0.1571 1.86E-12 2.01E-14 1.07E-13 4.19E-13

SVD method 400 1.5303 1.93E-12 6.69E-15 1.26E-13 1.20E-13
our method 0.0791 1.12E-12 6.10E-15 8.27E-13 9.14E-14

SVD method 200 0.3712 1.06E-12 3.28E-15 6.56E-14 6.22E-14
our method 0.0309 6.69E-13 3.64E-15 7.10E-13 5.16E-14

SVD method 100 0.1139 5.78E-13 1.72E-15 3.67E-14 3.38E-14
our method 0.0147 3.76E-13 1.56E-15 5.42E-13 2.76E-14

SVD method 50 0.0359 3.32E-13 9.33E-16 2.08E-14 1.96E-14
our method 0.0061 2.16E-13 7.71E-16 3.95E-13 1.41E-14

Figure 1: Computational time and error of SVD and our method
for column centered data matrix when the n-th column is inserted,
then randomly chosen n-th column is deleted inversely.

we turn to inversely delete one randomly chosen column in
X each time until X is null . At each step, the accuracy of
algorithms is examined in the error matrices corresponding
to the four properties characterizing the generalized inverse:
XX†X−X , X†XX†−X†, (XX†)∗−XX† and (X†X)∗−
X†X . The process is repeated ten times and the averaged
value is reported. Fig. 1 shows the running time (second)
and the four errors of certain steps.

From Fig.1, we can see that the computational error of
our method is lower than 10−12 in all cases and is often very
closed to SVD method. Moreover the computational time of
our method is significantly lower than SVD method, espe-
cially when the matrix is large. So, we can conclude that our
method is a robust and efficient tool for online computing
the generalized inverse of centered matrix.

In addition, our method can make the least squares formu-
lation for a class of generalized eigenvalue problems (Sun,
Ji, and Ye 2009) be suitable for online learning, since these
problems require the data matrix to be centered.
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