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Abstract

Active learning traditionally relies on instance based
utility measures to rank and select instances for label-
ing, which may result in labeling redundancy. To ad-
dress this issue, we explore instance utility from two
dimensions: individual uncertainty and instance dispar-
ity, using a correlation matrix. The active learning is
transformed to a semi-definite programming problem to
select an optimal subset with maximum utility value.
Experiments demonstrate the algorithm performance in
comparison with baseline approaches.

Introduction

Active learning (Seung, Opper, and Sompolinsky 1992) re-
duces labeling cost by focusing on informative instances
without compromising classifiers accuracy . Sample selec-
tion methods in active learning employ two types, (1) in-
dividual assessment based, and (2)data correlation based,
of approaches. The former (Culotta and McCallum 2005)
treats unlabeled instances as independent and identically dis-
tributed (I.L.D.) samples, without taking other samples into
consideration. Data correlation based assessment (Nguyen
and Smeulders 2004) uses sample correlations/distributions
(e.g., clustering) to select instances (e.g., the centroid of each
clusters) for labeling.

The key point of optimal subset selection is to ensure a
selected labeling set containing mostly needed samples with
minimum redundancy. When only considering instance un-
certainty for labeling, a labeling set contains instances with
the highest uncertainty values, whereas selected samples in
the set may contain redundant knowledge so do not form
an ideal candidate set, as shown in Fig.1(a). On the other
hand, if we take instance uncertainty and disparity into con-
sideration, we may form an optimal labeling set, where each
samples in the set may not be the “most uncertain” ones,
but together, they form an optimal labeling set. As shown
in Fig. 1(b), the decision boundaries generated from six se-
lected candidates are much closer to the genuine boundaries,
compared to the approach in Fig.1(a). In this paper, we pro-
pose a new Active Learning paradigm using Optimal Subset
Selection (ALOSS), which combines instance uncertainty
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Figure 1: A toy example demonstrating labeling redundancy. Cir-
cles and triangles each denote one type of samples, with solid cir-
cles and triangles denoting labeled instances and the rest denoting
unlabeled samples. The solid line denotes genuine decision bound-
aries and dashed lines denote decision boundaries learnt by learn-
ers.(a)samples selected by instance based assessment (b) samples
selected by using optimal subset selection

and instance disparity to form a correlation matrix and select
the instance subset with the maximum utility value. Such
an instance selection problem is inherently an integer pro-
gramming problem, which is NP-difficult but can be solved
by using Semi-Definite Programming (SDP) (Goemans and
Williamson 1995).

Problem Definition & Algorithm Overview

Given a dataset D containing N instances x1,--- ,Zn,
where samples are separated into a labeled subset D and an
unlabeled subset DV, with D = DXUDY and DENDY = ().
The aim of optimal subset based active learning is to label a
batch (i.e. a subset A) of instances, one batch at a time, from
DY, such that when user requested number of instances are
labeled, a classifier trained from D’ has the highest predic-
tion accuracy in classifying test samples.

Assume a correlation matrix M 1is built to capture each
single instance’s uncertainty as well as the disparity between
any two instances x; and z;, the above active learning goal
can be regarded as the selection of an optimal subset of un-
labeled samples A, such that the summation of instance un-
certainty and disparity over A can reach the maximum. This
problem can be formulated as a quadratic integer program-
ming problem as follows,

maxe’ Me
e

s.t. Z ei=k; e €{0,1}

i,e;€e

(1)



where e is an n-dimensional column vector and n is the size
of unlabeled set DV . The constraint k defines the size of the
subset for labeling, with e; = 1 denoting that instance z;
is selected for labeling and e; = 0 otherwise. Algorithm 1
describes the general process of our method.

Algorithm 1 ALOSS: Active Learning with Optimal Subset
Selection

1: while labeledSample <budget do

2 construct a classifier ensemble with labeled training set D*¥;

3. Build correlation Matrix M

4 Apply optimal subset selection to M and select an optimal

subset A with k instances;
5. labeledSample < labeledSample + k;
6: end while

Correlation Matrix Construction

To build a correlation matrix M € R"*"™, where n denotes
the number of instances in the unlabeled set DV, we separate
elements in M into two parts. More specifically, assume f; ;
defines the uncertainty of instance x; and Z; ;, i # j defines
the disparity between instances x; and x;, the correlation
matrix M is constructed using Eq.(2)

M, ;= { Uss:

Z;
Instance Uncertainty

To calculate uncertainty for each single instance x; in DY,
we build a classifier ensemble F with 7 heterogeneous
members, hi,-- -, h, trained from labeled sample set D
Denoting H € R™*™ a normalized classifier weighting ma-
trix where each element #; ; denotes the agreement between
classifiers A; and h; in classifying all instances in DY. Af-
ter that, we apply each classifier 2,7 = 1,--- 7, to x;,
and build a vector u; with each element u; ;,j = 1,--- ,m,
recording uncertainty of classifier /; on instance x;. As a
result, we build an n by 7 matrix u € R™*™, and calculate
weighted instance uncertainty as follows.

U=uxHxu’

ifi=j

if i # j )

Jo

3

Instance Disparity

We employ two types of distance measures, prediction dis-
tance and feature distance, to calculate disparity between
each pair of instances z; and x;.

Prediction Distance (P) captures prediction dissimilarity of
a set of classifiers on two instances. For a pair of instance x;
and x;, their prediction difference is accumulated prediction
distance over all class labels and all classifiers.

Feature Distance (F) captures the disparity of a pair of in-
stances by using their Euclidean distance.

Instance Disparity (Z7): Because prediction distance (P)
and feature distance (F) each denotes the difference be-
tween instances x; vs. x; from different perspectives, the
final disparity between x; and x; is the product of the two
distances as follows.

Lij =Pij x Fij 4)
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Optimal Subset Selection

Using correlation matrix M, the objective function defined
in Eq.(1) is to select a k instance subset such that the summa-
tion of all instances’ uncertainty and their disparities is the
maximum among all alternative subsets with the same size.
This problem is NP-difficult. We use SDP approximation al-
gorithm “Max cut with size k” (MC-k) problem (Goemans
and Williamson 1995) to solve this maximization problem
with polynomical complexity.

Experimental Results

In Fig. 2, we compare accuracy between ALOSS and sev-
eral baseline approaches on “auto” dataset, where “Entropy”
denotes entropy-based uncertainty sampling (which has the
same batch size A as ALOSS) and “SIB” represents Sin-
gle Instance Batch active learning (which repeats for each
single instance). From Fig. 2, it is clear that Entropy is the
least effective algorithm because it does not take labeling re-
dundancy into consideration. SIB can reduce labeling redun-
dancy to some extent (by labeling instance one at a time), but
it still cannot guarantee an optimal labeling set. By combing
instance uncertainty and disparity to select optimal subsets,
ALOSS outperforms all baseline approaches.
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Figure 2: Algorithms accuracy comparison between ALOSS and
baseline methods w.rt. different percentages of labeled data

Conclusion
We proposed a new active learning paradigm using optimal
subset selection (ALOSS), which considers uncertainty and
disparity of an instances subset to reduce labeling redun-
dancy and achieve good performance.
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