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Abstract

This work focuses on developing domain-independent
heuristics for probabilistic planning problems charac-
terized by full observability and non-deterministic ef-
fects of actions that are expressed by probability distri-
butions. The approach is to first search for a high pro-
bability deterministic plan using a classical planner. A
novel probabilistic plan graph heuristic is used to guide
the search towards high probability plans. The resulting
plans can be used in a system that handles unexpected
outcomes by runtime replanning. The plans can also
be incrementally augmented with contingency branches
for the most critical action outcomes.
This abstract will describe the steps that we have taken
in completing the above work and the obtained results.

Introduction

The success of planning graph heuristics in classical plan-
ners like FF (J. Hoffmann and Bernhard Nebel 2001) or
HSP (Bonet and Geffner 2001), has influenced research on
heuristic estimators to deal with probabilistic planning pro-
blems. A few probabilistic planners such as FF-rePlan (S.
Yoon, A. Fern and B. Givan 2007) and mGPT (B. Bonet
and H. Geffner 2005) use heuristic functions based on re-
laxed plans to guide a classical planner in the search for
a deterministic plan. However, other probabilistic planners
use plan graphs to compute estimates of the probability
that propositions can be achieved and actions can be per-
formed (A. Blum and J. Langford 1999) (I. Little and S.
Thiébaux 2006). This information can be used to guide the
probabilistic planner towards the most likely plan for achie-
ving the goals.

In this extended abstract, we describe an approach to com-
puting more accurate estimates of probability based on work
of D. Bryce and D. E. Smith (2006). We proceed by intro-
ducing our probabilistic plan graph estimator and the proba-
bilistic relaxed plan extraction procedure. We then do an em-
pirical study of the techniques within our planner and com-
pare with some other probabilistic planners.
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Probabilistic Plan Graph Heuristic
We assume that we are given a probabilistic planning pro-
blem represented in PPDDL (H. L. S. Younes, M. L.
Littman, D. Weissman and J. Asmuth 2005), where ac-
tion outcomes are represented by a probability distribu-
tion. These distributions are used to build a probabilistic
plan graph by propagating probability information forward
through the graph. As our purpose here is to get better proba-
bility estimates, we introduce the term interaction (I), which
captures the degree of dependence (positive or negative) be-
tween pairs of propositions and actions in the plan graph (D.
Bryce and D. E. Smith 2006). Formally, the interaction, I
between two propositions or two actions is defined as:

I(p, q) =
P (p ∧ q)

P (p)P (q)
(1)

I(p, q) is therefore a positive number ranging between
zero and 1/max(P (p), P (q)). In general:

• I < 1 means that two propositions or actions interfere
with each other - that is, the probability of establishing
both is less than the product of the probabilities for esta-
blishing them independently. In the extreme case, I = 0,
the propositions or actions are mutually exclusive.

• I = 1 means that two propositions or two actions are
independent.

• I > 1 means that two propositions or two actions are
synergistic.

The computation of probability and interaction informa-
tion begins at level zero of the plan graph and proceeds se-
quentially to higher levels. For level zero we assume 1) the
probability of the propositions of this level is 1 because the
initial state is fully known and 2) the interaction between
pair of propositions is 1, that is, the propositions are inde-
pendent. With these assumptions, we start the propagation
by computing the probability of the actions at level zero.

In general, for an action at level l with preconditions
x1, ..., xn, the probability is calculated as follows:

Pr(a) =
∏

i=1..n

[
Pr(xi)

∏
j=1..i−1

I(xi, xj)

]
(2)
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The interaction between two actions a and b at level l,
with a set of preconditions preca and precb is1:

I(a, b) =
Pr(preca ∧ precb)

Pr(a)Pr(b)

=
∏

i∈preca,j∈precb

I(i, j) (3)

For a proposition x at level l, achieved by the actions
Ach(x) at the preceding level, the probability is calculated
as:

Pr(x) = max
a∈Ach(x)

[
Pr(a)Pr(x|a)

]
(4)

In order to compute the interaction between two propo-
sitions at a level, we need to consider all possible ways of
achieving those propositions at the previous level. Suppose
that Ach(x) and Ach(y) are the sets of actions that achieve
propositions x and y at level l. The interaction between x and
y is then:

I(x, y) = max
a∈Ach(x),b∈Ach(y)

[
Pr(a)Pr(b)I(a, b)Pr(x|a)Pr(y|b)

Pr(x)Pr(y)

]
(5)

The plan graph and probability estimates are used to help
guide a forward state-space planning search. For each state,
a relaxed plan is constructed to estimate the probability of
achieving the goals from that state. The construction of the
relaxed plan makes use of the probability and interaction in-
formation to make better choices for actions. In particular,
to achieve a particular goal at a level, the relaxed plan cons-
truction algorithm chooses the action that will maximize the
probability of achieving the goal, given all the other action
choices that have been made at that level (a greedy algo-
rithm).

Experimental Results
Our approach has been implemented in the PIPSS sys-
tem (Yolanda E-Martin, M. D. R-Moreno and Bonifacio
Castaño 2010). PIPSS emerges from the union between a
heuristic search planner and a scheduling system. Since
PIPSS is deterministic, the probabilistic domain is converted
into a deterministic one (S. Jimenez, A. Coles and A. Smith
2006).

PIPSS has been tested with several domains of the IPPC-
06 probabilistic track, and the results have been compared
with those shown in (S. Yoon, A. Fern and B. Givan 2007).

When running the experiments we observed that the pro-
babilities of some actions in the last layers of the probabilis-
tic plan graph of some problems were zero or close to zero.
Consequently, in the construction of the relaxed plan, these
actions will never be chosen. But sometimes they can gene-
rate a goal proposition or they are essential to achieve the

1Before performing the calculation of the interaction between a
pair of operators, we need to determine if the operators are mutex
by inconsistent effect or interference. In both cases, the interaction
is zero.

most likely plan. So in order to solve the problem, we have
computed the plan graph using costs instead of probabilities
using −Ln(p) (S. Jimenez, A. Coles and A. Smith 2006).

Table 1 shows the percentage of successful trials for each
domain. For all the planners, the number of trials per pro-
blem is 30, with 15 minutes for each one. However, with
PIPSS we have just performed a single trial because at the
moment, our system does not deal with unexpected states.
Despite this, PIPSS gets better results in two of the tested do-
mains, and high rates of success in the rest. For this reason,
we think that when we provide PIPSS with the replanning
capacity, the success rate will increase.

Table 1: Percentage of Successful Problems
PLANNERS

DOMAINS FFRa FOALP SFDP FPG PARAGRAPH FFRs PIPSS

blocksworld 86.22 100 29.11 62.89 0 76.8 53.33

ex-blocksworld 51.56 24.22 31.33 42.67 30.74 51.56 93.33

elevators 93.33 100 0 76.22 0 93 100

tire 82.22 81.56 0.00 74.89 91.14 69 100

zeno 100 0 6.67 26.89 6.67 7 33.33
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