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Introduction

In multi-agent pathfinding, MAPP (Wang and Botea 2009;
2010) has previously been shown to be state-of-the-art in
terms of scalability and success ratio (i.e., percentage of
solved units), on problems involving significantly larger
numbers of mobile units than can be tractably handled using
optimal algorithms. MAPP further provides a formal charac-
terization of problems it can solve, and low-polynomial up-
per bounds on the resources required. However, until now,
MAPP’s solution quality had not been extensively analyzed.

In this work we empirically analyze the quality of MAPP’s
solutions using multiple quality criteria, such as total travel
distance, makespan, and sum of actions (including move and
wait actions). We introduce enhancements that have shown
significant improvements. On average, the sum of actions
is cut to half. We maintain MAPP’s advantages on different
performance criteria, such as scalability, success ratio, com-
plexity upper bounds, and ability to tell apriori if it will suc-
ceed in the instance at hand. The improved MAPP becomes
state-of-the-art in terms of solution quality, being compet-
itive with FAR (Wang and Botea 2008) and WHCA* (Sil-
ver 2005), two successful algorithms from the literature. On
the other hand, FAR and WHCA* lack the ability to a priori
decide whether they can solve an instance, and their upper
bounds on resources required are not known.

Since finding optimal solutions is NP-complete (Surynek
2010; Ratner and Warmuth 1986), optimal algorithms have
limited scalability. To evaluate the quality of the solutions
provided by suboptimal algorithms, we compare their solu-
tions to lower bounds of optimal values, which are cheap
to compute. These lower bounds are obtained from count-
ing moves only, ignoring wait actions. In the cases of total
travel distance and sum of actions, we sum the shortest path
from each start to target. For makespan, we take the number
of moves in the longest path. Results show that MAPP’s so-
lutions have a reasonable quality. For instance, MAPP’s total
travel distance is on average 19% longer than an A* lower
bound on the optimal value.
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MAPP and Solution Quality Improvements
We provide a high-level description of the previous MAPP
algorithm, focusing on features relevant to our work. More
details can be found in Wang and Botea (2009; 2010).

At the start of the algorithm, a path is computed from the
start to the target of each unit. These paths, called π-paths,
must satisfy additional constraints defining the SLIDEABLE
class (Wang and Botea 2009), or variations of SLIDEABLE
with an extended completeness range (Wang and Botea
2010). MAPP is complete on these classes of problems.

A solution plan consists of alternating progression and
repositioning stages. During progression, unsolved units ad-
vance along their π-paths, and attempt to push other units
away to clear the way. At the end of each progression stage,
at least one unit, and usually more, get solved. The remain-
ing units could be pushed off their π-paths. Repositioning
brings these units back on track, so they can reach their tar-
gets as planned. A repositioning stage is performed by un-
doing part of the moves in the previous progression stage.
The next progression stage will solve at least one more unit,
and the algorithm eventually terminates.

We identified causes that can affect the quality of solu-
tions computed with the existing MAPP, and present the fol-
lowing enhancements that address such limitations.

• Spreading out the paths. In path computation, each π-
path is planned independently. As units prefer shorter
paths, π’s can overlap, creating online traffic jams. The
blocking and repositioning moves lengthen the overall so-
lution, and also appear less aesthetic. Hence we encour-
age π-paths to avoid already busy locations, using a global
traffic report. With a hash map implementation, the mem-
ory overhead is very reasonable. Furthermore, spreading
out is an added (soft) constraint to existing versions of
MAPP, an does not affect its completeness range or low-
polynomial time and memory upper bounds.

• Dynamic repositioning. With progression and reposition-
ing clearly separated, units that moved off their π-paths
had to wait until the end of the current progression before
attempting to get back, resulting in many wait actions.
Hence, we allow some repositioning moves to interleave
with progression moves of others, under well specified
conditions. Global repositioning can still take place, but
is significantly reduced. Dynamic repositioning preserves
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DR SP SP+DR
Repositioning stages -76.3% -21.2% -82.1%
Total distance -2.5% -2.9% -9.5%
Makespan -47.7% -18.9% -56.7%
Sum of actions -40.8% -20.2% -49.7%

Table 1: Average percentage reductions. Negative signs in-
dicate improvements over old MAPP.

the memory, time, and solution length upper bounds of the
existing MAPP, since these moves are a subset of push-
aside moves performed in the current progression step.

Experiments
Experiments were run on data used in previous work (Wang
and Botea 2010; 2008). The 10 largest maps, with 13765
to 51586 traversable tiles, are taken from the game Baldur’s
Gate. They contain non trivial configurations of obstacles.
We test each map with 100 to 2000 units in increments of
100. For each number of units on each map, 10 instances
were generated with random start and target locations. Un-
less stated otherwise, the maps are 4-connected grids.

In Table 1, the best existing MAPP (Wang and Botea
2010) is compared with our new versions. DR MAPP, using
dynamic repositioning, is more effective in reducing waiting
actions than spreading out paths (SP MAPP). Combining the
two, SP+DR MAPP, produces even stronger results in all cri-
teria. We compared SP+DR MAPP with two algorithms that
scale well, FAR and WHCA*. We used Sturtevant and Buro’s
(2006) WHCA* extension with spatial abstraction (but no
unit priority system for replanning), WHCA*(w, a). As
the success percentages of the 3 algorithms are quite differ-
ent (MAPP solved 98.8% of units, while FAR and WHCA*
solved 81.9% and 80.9%, respectively), we compare results
on the subset of instances fully solved by all algorithms. Fig-
ure 1 illustrates an average behaviour from one sample map.
As shown, MAPP is competitive with FAR and WHCA*.

We also compared SP+DR MAPP’s solutions with lower
bounds of the theoretical optimal solution. “A* lowerbound”
is computed with only straight cardinal moves. “A*+d
lowerbound” has diagonal moves enabled. Notice that, by
only counting moves and ignoring wait actions, the lower
bounds of the sum of actions and the makespan are more
optimistic than actual optimal values.

Conclusion
Suboptimal multi-agent pathfinding algorithms scale well
beyond the capabilities of optimal methods. MAPP is state-
of-the-art in scalability and success ratio, and provides for-
mal guarantees. We introduced enhancements that reduce
its collisions and waiting time very effectively. Results show
that we have advanced MAPP significantly, bringing its solu-
tion quality to a state-of-the-art level. Combined with its ex-
isting strengths, MAPP is either better or at least as compet-
itive as other massively multi-agent pathfinding algorithms
on most major performance criteria.

In future, we plan to test different penalties in SP MAPP,
and further improve makespan by pre-ordering units.
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Figure 1: SP+DR MAPP’s solution quality compared with
FAR and WHCA* on map AR0414SR.
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