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Abstract 
Model-based diagnosis (MBD) uses an abstraction of system 
to diagnose possible faulty functions of an underlying sys-
tem. To improve the solution efficiency for multi-fault diag-
nosis problems, especially for large scale systems, this paper 
proposes a method to induce reasonable diagnosis solutions, 
under coarse diagnosis, by using the relationships between 
system outputs and components. Compared to existing diag-
nosis methods, the proposed framework only needs to con-
sider associations between outputs and components by using 
an assumption-based truth maintenance system (ATMS) [de 
Kleer 1986] to obtain correlation components for every out-
put node. As a result, our method significantly reduces the 
number of variables required for model diagnosis, which 
makes it suitable for large scale circuit systems. 

Introduction   
Model-based diagnosis, a sub-field in Artificial Intelli-
gence, is a diagnostic method which uses internal system 
constructions and behaviour knowledge to diagnose possi-
ble faulty functions of a system [de Kleer et al. 1987]. To 
achieve the diagnostic goal, traditional methods require a 
large number of redundant behaviours of the system, which 
makes them inefficient in practice, especially for large scale 
systems. In addition, for many real-world systems, we may 
not know the exact faulty behaviours of the components, 
but do know exactly which components are subject to faulty 
functions. In this paper, we propose the concept of “coarse 
diagnosis”, where a system is represented as 
(SD,COMPS,OBS) [de Kleer et al. 1992], with components 
(denoted by COMPS) only containing two types of beha-
viours, namely faulty behaviour or normal behaviour. In our 
definition, each behavior is denoted by an AB-literal which 
is AB(c) or ¬ AB(c) for some c∈COMPS. A component is 
an element c∈COMPS, and an output indicates a measure-
ment point. It is worth noting that an output is not a real 
terminal of the system. The value of an output is a result in-
duced by values transferring though the components from 
the inputs to the output. An output is said to be abnormal if 
there is a difference between its predicted value and its ob-
servation value, and normal otherwise.  

Based on the defined “coarse diagnosis”, we propose a 
diagnostic framework by using association information be-
tween outputs and components to extract a Bi-layered mod-
el, which only maintains associations between components 
and outputs. Using the proposed Bi-layer model, the diag-
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nosing process, as shown in Fig.1, is as follows: (1) when a 
fault appears in the system, we first extract predicted out-
puts and their support environments into a Bi-layer model 
by using ATMS, then (2) we collect all abnormal outputs 
based on the discrepancy between prediction and observa-
tion, and (3) process the diagnosis by the associations be-
tween outputs and components.  

Fig. 1: Diagnosing process of the whole system (the dashed rectangle 
boxes represent work reported in this paper) 

Diagnosis Based-on the Associations between 
Outputs and Components

ATMS is a truth maintenance system based on assumption. 
We propagate values, together with assumptions, by apply-
ing the thought of ATM which adds assumption to the sup-
port environment, and treats the observation as justification 
to find inconsistent environments. We use expression in 
GDE [de Kleer et al. 1987] and C(prev, env) to express the 
prediction and its support environment of node x. For in-
stance, in Fig. 2, by adding input values through ATM, we 
have C(F=12, {A1, M1, M2}) and C(G=12, {A2, M2, M3}). 
For output G, the meaning of C(G=12, {A2, M2, M3}) is 
that when there is no fault in {A2, M2, M3}, the predicted 
value of G is 12. If our observations show that F=12 and 
G=10, it indicates that observations are inconsistent with 
the prediction, so G is an abnormal output.  

Fig. 2: An example of Davis Circuit (M1, M2, and M3 are multipliers; A1

and A2 are adders; A=2, B=3, C=2, D=3, E=2, and K=3 denote measure-
ments; and F and G are outputs) 

Definition 1 (Output Constraint Component Set, Compo-
nent Constraint Output Set) For a system (SD, COMPS, 
OBS), we call the set of components affecting output n the 
constraint component set, denoted by OCCS(n), of n. Simi-
larly, we call the output set affected by component c 
(c∈COMPS) the component constraint output set CCOS(c). 
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In Fig. 2, we have OCCS(F)={A1, M1, M2} and CCOS(M2) 
= {F, G}. The support environment of a predicted output is 
actually the constraint component set of the output. In Fig. 
2, A2, M2, and M3 are the only components having influ-
ences on the output G. 

Definition 2 (Area, Association Outputs) An area is re-
ferred to as the set of components with the same constraint 
output set. The set of outputs affected by the components in 
area A is called association outputs, which is denoted by 
Outputs(A). In Fig. 2, CCOS(A1) = CCOS(M1) = {F}, so 
Area1={A1, M1} and Outputs(Area1) = {F}. 

Any component with a fault in the same area would 
cause the same abnormal outputs in the system. 
Theorem 1 Given a system (SD, COMPS, OBS), output 
constraint component sets of any output y are the union of 
all areas which have influences on y, formally 
OCCS(y)={ A | y∈Outputs(A)}. 

According to Theorem 1, we can collect all components 
affecting output y, by observing association outputs of 
every area in the system, to find suspicious components. To 
achieve the goal, we propose a Bi-layer model, which only 
contains two parts: areas (all components of the original 
system are replaced by areas), and outputs. The connecting 
line represents the associations between areas and outputs. 
One area only affects the outputs, so we can easily find sus-
picious components with faulty functions through an in-
verse tracing of the connecting lines. Fig. 3 demonstrates 
the Bi-layer model of Fig.2 (using Definition 2). According 
to the associations between outputs and components, it is 
obvious that A1 and M1 only affect output F, A2 and M3 on-
ly affects output G, whereas M2 affects both F and G. 

Fig. 3:  Bi-layer Model of the Davis Circuit shown in Fig. 2 

Predicted outputs and support environments acquired by 
using ATMS have provided all necessary information for 
generating Bi-layer models. At the same time, an abnormal 
output can be discovered by comparing the discrepancy be-
tween predictions and observations. Accordingly, we pro-
pose the following Diagnosis algorithm, where D is the di-
agnosis result (the initial value is nil), Areas is the set of 
areas, Ab_outputs is the set of abnormal outputs.  
Algorithm Diagnosis (D, Areas, Ab_outputs) 
01.For each area in Areas do 
02.  If Outputs(area) = Ab_outputs 
03.    return D = D × area 
04.  If Outputs(area) ⊂ Ab_outputs 
05.    D1 = D × area 
06.    A1 = Ab_outputs - Outputs(area) 
07.    Diagnosis(D1, Areas, A1) 
08.  Else If Outputs(area) - Ab_outputs nil

(Outputs(area) ∩ Ab_outputs) nil 
09.    D2 = D × area 
10.    A2 = (Ab_outputs - Outputs(area)) ∩

(Outputs(area) - Ab_outputs) 
11.    Diagnosis(D2, Areas, A2) 

We explain the above algorithm by using the Davis Cir-
cuit in Fig.2. By using ATMS with F=12 and G=10, we 
know that G is an abnormal output, F is a normal output, 
and OCCS(G)= Area1 Area2. Since Area1 only affects G, 
any components with faulty functions in Area1 are consis-
tent with the observation, so we have diagnosis results{A2, 
M3}. Meanwhile, because Area2 affects outputs G and F at 
the same time, if there are any components with faulty 
functions in Area2, we should observe exceptions in both F 
and G. When we observe that F is normal, we should take 
account of the multi-component cooperative fault, and then 
find that F is affected by Area1= {A1, M1} and Area2. Area1

only affects output F, and the observation is consistent with 
a cooperative fault in Area1 and Area2. As a result, the di-
agnosis results are the Cartesian product of Area1 and 
Area2: Area1×Area2 = {A1, M1}×{M2}. 

Using the Cartesian product to represent a diagnosis re-
sult not only saves diagnosis spaces, but is also beneficial 
for the selection of re-observing points. Finally, we obtain 
diagnosis results about the exception in G and normal in F 
under the current observation: {A2, M3}, {A1, M1}×{M2}, 
which is identical to the results ({A2},{M3},{A1, M2},{M1, 
M2}) from GDE [de Kleer et al. 1987].  

In Table 1, we compare efficiency between the proposed 
Bi-layer model and a model using Prime Implicate reduc-
tion rule (MFMCD) [de Kleer 2008], by using ISCAS-85 
benchmark circuits [Brglez & Fujiwara 1985]. In Table 1, 
Original and Outputs denote the component and output 
numbers of the circuit system, respectively. The last two 
columns list the reduction, in component count, of two ab-
stract methods on the circuit in each row. The results show 
significant component reduction of the Bi-layer model. 

Table.1. Reduction in component count using the Bi-layer Model 

Circuit Original Outputs MFMCD
Reduced

Bi-layer Model 
Reduced

C432 160 7 59 145 
C499 202 32 58 159 
C880 383 26 77 344 

C1355 546 32 58 503 
C1908 880 25 160 847 
C2670 1193 140 169 1099 
C3540 1669 22 353 1643 
C6288 2416 32 1456 2354 
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