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Introduction

Evolutionary Algorithms (EA) are a branch of heuristic
population-based optimization tools that is growing in
popularity (especially for combinatorial and other problems
with poorly understood landscapes). Despite their many
uses, there are no proofs that an EA will always converge to
the global optimum for any general problem. Indeed, only
for a set of trivial functions there are any proofs at all.

In common with other research in this area (recent ad-
vances include proofs of convergence for (1 + 1)EA and
Randomized Local Search (RLS) and other interesting
properties in Doerr, Johannsen, and Winzen (2011), Doerr,
Johannsen, and Winzen (2010), Doerr, Fouz, and Witt
(2010), He and Yao (2004) focusing on OneMax (Counting
Ones), Binary Values and combinatorial test functions)
we denote algorithm (μ + λ)EA that has a population of
size μ and recombination pool of size λ and analyze some
instances thereof (see Algorithms 1-3).

We apply a new EA operator called k-Bit-Swap (kBS)
that we introduced in Ter-Sarkisov, Marsland, and Holland
(2010). It randomly recombines information from two
species in the pool. It can be used instead of and together
with mainstream EA operators improving the convergence
speed of EAs on several problems. We analyze the working
of (μ + λ)EAkBS on test functions, such as OneMax and
Royal Roads to establish its convergence properties and
compare it to other EAs.

Test Functions

We use two test functions, OneMax (or Counting Ones) and
Royal Roads. The second one is a problem designed to test
EAs on schemata recombination. A precise description of it
can be found in Mitchell (1996).

(μ+ λ) EAs

Here we present the pseudocode of analyzed al-
gorithms. μ and λ are as defined above, n is the
length of the chromosome. More about the construc-
tion of EAs can be found in Mitchell (1996), Gold-
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Figure 1: 1-Bit-Swap operator

berg(1989). We do not use any form of crossover.
Algorithm 1: (μ+ λ)EA k

n

1 Initialize population size μ
2 repeat until condition fulfilled:
3 select λ species from the population using

Tournament selection
4 flip each bit with probability k

n
5 keep α best species in the population,

replace the rest with the best species from the pool
Algorithm 2:(μ+ λ)RLS

1 Initialize population size μ
2 repeat until condition fulfilled:
3 select λ species from the population using

Tournament selection
4 flip exactly one bit per chromosome
5 keep α best species in the population,

replace the rest with the best species from the pool
Algorithm 3:(μ+ λ)EAkBS

1 Initialize population size μ
2 repeat until condition fulfilled:
3 select λ species from the population using

Tournament selection
4 apply kBS operator to each pair in the

recombination pool
5 keep α best species in the population,

replace the rest with the best species from the pool
We use a local kBS, that is, k is fixed for each run by the
user. An alternative is global kBS, that is, for each pair the
number of swapped bits is selected randomly with k being
the expectation, exactly like with (μ + λ)EA k

n
. We also

set λ = μ and 100% mutation and swap rates, i.e., these
operators are applied to all species (or pairs of species)
in the pool. Tournament selection closely mimics natural
selection: two species are selected randomly and the best
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one enters the pool.

Analysis basics
EA convergence can be modeled with probabilistic tools,
e.g. martingales that are also known as drift function (see
Doerr, Johannsen, and Winzen [2010], He and Yao [2004])
in EA theory. The value of the best species in the population
is a stochastic process Xt,t≥1. Among other properties, we
are interested in the expectation of the least time Xt takes to
hit a specific value (or set of values) A. In MC analysis this
is denoted by τA = min t : Xt ∈ A. Specifically, we want it
to be at least finite.

Eτ1A =
∞∑
t=1

tP[τ = t] (1)

which under certain assumptions is a version of coupon-
collector problem, or the sum of Geometric random
variables with a changing parameter. So far in Doerr, Jo-
hannsen, and Winzen (2011), Doerr, Fouz, and Witt (2010)
the upper and lower bounds for (1 + 1)EA 1

n
optimizing

linear functions were found to be (1 + o(1))1.39e lnn and
(1 − o(1))en lnn respectively, n being the length of the
chromosome (assuming starting fitness value was n

2 ).

For (μ + λ)EA1BS the increments each generation is
a random variable ξt with distribution

ξt =

{
0 with probability 1− pt
1 with probability pt

(2)

therefore, the best chromosome in the population is the sum
of these increments over time t : Xt =

n
2 +

∑t
k=1 ξt. Distri-

bution in Equation 2 changes over time due to the proportion
of 1’s in the recombination pool, so E[ξt+1|ξt] �= E[ξt+1].
The roughest way of going about this issue is to find upper
and lower bounds on the success probability. A better way
is to apply the above-mentioned coupon-collector problem
that for (1 + 2)EA1BS yields a very sharp upper bound:

Eτ ≤ .98n+ .5n log n+ 1 (3)
which was obtained using the probability of successful
swap in the two offsprings in the pool: pswap = 1

2 − 2( kn )
2

where k denotes the number of 1’s in each parent.

We need to take into consideration that population μ
consists of two disjoint subsets αt ∪ βt, where αt is the set
of all best species and βt is the rest, so the expectation of
increment ξt and runtime Eτ depend on the proportion αt

in the population. Since kBS crucially depends on pairing
elite species, the probability to pair them using Tournament
selection is

psel =
α2(α+ 2β)2

μ4
(4)

Since we do not know the actual proportion of elite species
in the population, we need to account for each case: 1 ≤
αt ≤ μ and apply Law of total probability:

P (S) =

λ
2∑

j=1

P (S|Hj)

μ∑
k=1

P (Hj |Ak)P (Ak) (5)

where S is at least 1 new elite species in th next pop-
ulation, Hj is the number of elite pairs in the recom-
bination pool and Ak is the number of elite species
in the current population. Next thing we will do is a
continuous-time approximation. We are interested in the
expected number of improvements occurring in the interval
[s, t) : E[N(s, t)] = m(s, t) =

∑n
k=1 kpk(s, t) where

pk(s, t) is the probability of occurrence of k events in this
interval.

In case these arrivals are homogeneous (do not depend on
time), the number of improvements over period [t − s]
follows Poisson distribution with intensity λ(t − s). This
implies interarrival times Tn are exponentially distributed.
We will also analyze cases without this assumption (Polya
process).

Expected Outcomes

We will derive expectation of runtime for the three
population-based elitist EAs applying different operators on
two test functions and compare to the existing findings to
prove the benefit of population and efficiency of the opera-
tors, especially k-Bit-Swap. We will look at other stochas-
tic properties (mean of the population, nonelitist algorithms,
continuous approximation, etc.).

Conclusions

In this abstract we have outlined certain ways of analyzing
the evolution of an elitist (μ+λ)EA solving some test prob-
lems. We presented some important notions, such as first
hitting time, selection probability, etc used to derive these
expressions. Analysis in the area of population-based algo-
rithms is fairly limited and this research will be a worthy
addition.
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