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Introduction
Cooperative path-finding requires the computation of a set
of compatible paths for multiple agents operating on a dis-
crete roadmap. The goal of this problem is to navigate each
agent to their unique target vertices without simultaneously
occupying the same vertex or edge in the roadmap as any
other agent. Such a formulation has applications in ware-
house management, transportation networks, (dis)assembly,
robotic mining, space exploration, and computer games.

The problem of cooperative path-finding has been exten-
sively studied in the literature, with coupled techniques that
attempt to intelligently prune the search space into some-
thing more tractable while maintaining completeness, as
well as decoupled techniques that plan for each agent in-
dependently and utilize sophisticated heuristics in order to
avoid collisions along these paths.

Coupled search techniques have been employed to sep-
arate large problems into fully coupled sub-problems
(van den Berg et al. 2009), or segment the roadmap into
smaller topologies with known characteristics (Ryan 2007)
to solve the composite problem sequentially.

Decoupled techniques employ heuristics that prioritize
agents (Erdmann and Lozano-Perez 1986), or tune the veloc-
ities on precomputed paths (Kant and Zucker 1986). Mod-
ern approaches consider dynamic prioritization and win-
dowed search (Silver 2005), or domain restriction to guar-
antee completeness and tractability (Wang and Botea 2009).

Contribution
This work provides a novel, algorithmically complete ap-
proach for cooperative path-finding that efficiently computes
sequential solutions. The algorithm is complete for a gen-
eral class of problems: instances in which there are at most
n − 2 agents on a roadmap of n vertices. Experimental re-
sults show that the technique is able to compute solutions
many orders of magnitude faster than a traditional A∗ im-
plementation while maintaining completeness, and in times
highly competitive with a state-of-the-art decoupled plan-
ner. The approach also makes no assumption regarding the
topology of the roadmap, and does not depend on tunable
parameters in order to solve a problem effectively.
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Figure 1: Small cooperative path-finding instances difficult
for coupled and decoupled techniques. From left: Loop-
chain, string, connector.

Push and Swap Approach
The proposed PUSH AND SWAP technique utilizes a set of
simple and computationally cheap primitives, PUSH and
SWAP, to solve cooperative path-finding problems in a se-
quential manner. As shown in Algorithm 1, the proposed
method simply iterates over the set of agents and first pushes
the agent towards its target, given a set of positions that must
remain static. If the agent a is not able to push to its target, it
must swap positions with the adjacent agent along its short-
est path. This loop of pushing and swapping continues until
agent a is at its target. Once this occurs, the target is added
into the list of static positions (line 7), and the loop repeats
for the next agent. Algorithms for the PUSH and SWAP prim-
itives are omitted for brevity, but are briefly discussed below.

Algorithm 1 PUSH AND SWAP( A,S, T )
1: U ← ∅
2: for all a ∈ A do
3: while S[a] �= T [a] do
4: if PUSH(a,U) == FALSE then
5: if SWAP(a) == FALSE then
6: return FALSE (i.e., Failure)
7: U ← U ∪ T [r]
8: return TRUE (i.e., Success)

Push primitive: The push primitive navigates an agent
along its shortest path, potentially detouring other agents in
the process. In short, when an agent is blocking the short-
est path of the pushing agent a, PUSH attempts to move the
agent blocking a away from its current position, allowing
a to advance along its shortest path. There are restrictions,
however, on what can be “pushed”. The set U contains ver-
tices of agents that have already planned and are at their tar-
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Problem Coupled A∗ WHCA∗(5) Push-and-Swap
Loop-Chain ∞ ∞ 2.99

String 207.1 1.04 0.775
Connector ∞ ∞ 3.57

Table 1: Computation time in milliseconds for the bench-
marks in Figure 1. ∞ represents no solution computed.

get position; these agents should not be moved. If agent a
does not reach its target because it cannot make progress by
“pushing”, it returns false, indicating a SWAP is necessary.

Swap primitive: The swap primitive switches the position
of an agent a with an agent b that is adjacent to it along the
shortest path. One requirement for SWAP is that after execu-
tion, the only agents that have changed positions are a and b.
This is necessary to ensure completeness. Maintaining this
constraint is feasible by allowing all agents to move during
the swap, and reversing the actions taken once the swap is
complete. In order to maintain the swap, agent a will reverse
using b’s paths and vice-versa.

Completeness
PUSH AND SWAP provides completeness for problems in
which there are at least two empty vertices in the roadmap.
The theorem can be proven with the following lemmas:
1) The path-finding instance is solvable if and only if SWAP
can transfer two agents to the vicinity of a vertex v with a
degree at least 3 together with two empty vertices.
2) After each iteration of PUSH and SWAP, at least one agent
will make progress along the shortest path to its target.
3) The PUSH and SWAP operators do not disturb agents al-
ready at their target vertices.
4) If the initial configuration is solvable, any permutation
achieved using PUSH and SWAP operators will be solvable.

Results
The proposed technique was evaluated with a set of small
benchmark problems, Figure 1, where it is possible to com-
pare against a complete, centralized A∗ implementation,
as well as a modern and well known decoupled technique,
WHCA∗ (Silver 2005), which can compute larger scale so-
lutions in a reasonable amount of time. The computation
times for these problems is seen in Table 1. All experiments
were deemed a failure after 60 minutes of computation.

Another issue with cooperative path-finding techniques is
scalability. Coupled planners become infeasible after just
a few agents, and decoupled planners suffer from dead-
locks because of inherent greediness. When compared with
WHCA∗, the proposed technique scales very well in a ran-
domly populated 20x30 grid world with 20% obstacle cov-
erage. Figure 2 shows a graph of the Push-and-Swap tech-
nique against WHCA∗ with two planning window sizes. It
should be noted that Push-and-Swap never failed to compute
a solution, and found solutions in times competitive with the
smaller WHCA∗ window size. WHCA∗ suffered from dead-
locks with 50 or more agents. 1

1A detailed description of this work can be found at
www.cse.unr.edu/robotics/pracsys/complete multi robot planning
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Figure 2: Computation time for agents placed randomly in a
20x30 grid. Values are averages of 20 runs.

Discussion
It is important to note that the solutions generated by
PUSH AND SWAP are not optimal, and investigating whether
or not an optimal set of paths can be computed using the two
primitives in a reasonable amount of time is of particular in-
terest. Depending on the particular problem domain, tech-
niques that provide Pareto optimality (Ghrist, O’Kane, and
LaValle 2005) may also be applicable.

In addition to optimality, it would also be desirable to pro-
vide completeness in all instances solvable using a sequen-
tial formulation. PUSH AND SWAP provides completeness
in problems where there are at least two empty vertices in
the roadmap. The classic “15-puzzle” problem can easily
be formulated as cooperative path-finding, however this in-
stance would only have one empty vertex. It may be possible
to create a variant of SWAP to take advantage of redundant
loops in the grid in order to solve such instances.
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