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Abstract

The behavior and dynamics of complex systems are in
focus of many research fields. The complexity of such
systems comes not only from the number of their ele-
ments, but also from the unavoidable emergence of new
properties of the system, which are not just a simple
summation of the properties of its elements. The behav-
ior of complex systems can be fitted with a number of
well developed models, which, however, do not incor-
porate the modularity and the evolution of a system si-
multaneously. In this work, we propose a generalized
model that addresses this issue. Our model is developed
within the Random Set Theory’s framework and allows
for reconstructing the stochastic evolution diagrams of
complex systems.

Recent advancements of technology in many scientific
fields have resulted in production of datasets with mas-
sive amounts of variables that characterize the properties of
complex systems. One can find the respective examples in
such research fields as systems biology, neuroscience, so-
cial science, economics, astronomy, etc. (Smith et al. 2006;
Vázquez et al. 2004; Newman 2006; Hartwell et al. 1999).
There is a variety of methods to mathematically describe
the data obtained from observations on complex systems.
Representation of the system under study in the form of
a network which shows the associations between variables
(nodes) has attained particularly much attention.

Modularity and Dynamics in Complex

Networks

A complex system is comprised of an unknown number
of processes (components) whose dynamics is not deriv-
able from the summation of the dynamics of individual pro-
cesses. Complex systems are studied in a variety of research
areas. In many of these areas, complex systems demon-
strate strong similarities, with the large topological change
and natural division into a modular structure being the most
common features (Vázquez et al. 2004; Newman 2006;
Hartwell et al. 1999; Luscombe et al. 2004). The problem of
detecting and characterizing the dynamics of modular struc-
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ture of a complex system has an outstanding importance
(Newman 2006), and has motivated the present work.

A modular network is a network which is well divided
into modules such that there are dense internal connections
between nodes within modules but only sparse connections
between different modules. In many real complex systems
the topology of the underlying network is not static and can
rapidly evolve over time. Assume that a module in a network
is a subset of the set of nodes. Then a network (regardless of
edges) is a set of subsets of nodes, and, regarding to the dy-
namic topology of complex networks, we can briefly say that
a network at each time step is a random set of random sets
(modules). (It should be emphasized that in this paper we
examine an underlying network or a module by considering
only nodes not the edges.)

Random Finite Sets (RFS)

Let U = {u1, . . . , un} and n < ∞. Then a random variable
which takes its value from the universal sample space 2U

is called a random finite set (Mahler 2007). A measure
(X : 2U → [0 1]) can be defined by assigning probabilities
mx(A) � P (X = A) = PX({A}) directly to each A ∈ 2U ,
and the belief mass function for a random set A is defined as
βX(A) � P (X ⊂ A) =

∑
B⊂A mx(B). The belief mass

function plays the same role in random finite set statistics as
the cumulative distribution plays in random vector statistics
(Mahler 2007).

Let us define the phase as a period of time during which
the elements of a module (a RFS) does not change, but the
state of each element is allowed to evolve over this period.
Then the phase transition can be defined as an event when
new elements appear or old elements disappear in the mod-
ule. A random-cluster approach is widely used to model sys-
tems which have phase transitions or, more generally, sys-
tems with a graph structure. Cluster processes are a con-
cept in the theory of point processes, and are described as
a superposition of point processes of a cluster (Swain and
Clark 2010). Loosely speaking, analogous to a Markov pro-
cess, a cluster process is a memoryless time-varying RFS,
i.e. p(mok+1|mok, . . . ,mo1) = p(mok+1|mok), where mok
is the state of a module of the network at time k .

Also analogous to the hidden Markov model (HMM), a
hidden-set Markov model (HSMM) is a model in which the
system is assumed to undergo a cluster process with un-
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observed (hidden) states. The Mahler’s finite set statistics
(Mahler 2007) generalizes the Bayesian framework for the
study of random set-valued variables, and provides a means
to estimate the state of a time sequence of random finite sets
which are generated from an assumed cluster process.

Network as a Random Finite Set of Modules

We have shown how to characterize the uncertainty of a
module in a network by modeling the module state and the
module measurements as random finite sets (RFS). We have
also formulated the corresponding motion model and obser-
vation model, and mentioned that a network itself is a ran-
dom finite set of modules with its own dynamics. Therefore,
understanding the dynamics of a complex system that has
a dynamic-topology underlying network, is the problem of
characterizing the uncertainty of the underlying network, or
in other words, detecting, identifying, classifying and esti-
mating (tracking) the states of modules and their nodes at
each time point.

RFS Bayesian Estimators

The optimal Bayesian random finite set estimator is capa-
ble of recursive propagation of the RFS posterior density in
time (Vo, Singh, and Doucet 2005). However, it is not prac-
tical to obtain a sequence of states of RFS due to compu-
tational issues. Several computationally feasible approaches
have been proposed as an alternative to approximate RFS
Bayesian recursive estimator (Mahler 2007). Analogous to
the Kalman filter, which is the most successful approxima-
tion method for matching the two first order moments (mean
and covariance) of the Bayesian estimator, the first moment
of the recursive RFS Bayesian estimator is the Probability
Hypothesis Density (PHD) (Mahler 2003).

The Stochastic Evolution Diagram

A group of elements (e.g., a module composed of nodes in
a network) unavoidably develops properties which are not a
simple summation of the properties of its elements (a phe-
nomenon widely known as emergence). Hypothetically, the
nodes of a module are coordinated. The way they are coor-
dinated can change over time, and can be described with the
help of a ”virtual leader”. A wide variety of parameters can
be used as virtual leaders, for instance geometric centroid
(Clark and Godsill 2007) or parameters of the probability
distribution of nodes of a module. We have shown how to
estimate the life-time parameters of a module and the corre-
sponding virtual leader. Life-time parameters of a module,
such as the module’s birth-time, death-time, and spawning
times, are considered as a phase transition.

Similar to the multivariate Markov model of time
series that constructs parallel Markov chains, the
multiple hidden-set Markov model reconstructs the
stochastic evolution diagram. We introduce this term to
denote a collection of Markov chains, in which some of the
chains are tied together at certain time points. Each edge
in the graph is a Markov chain. A schematic example of a
stochastic evolution diagram is illustrated in Figure 1.

Figure 1: Schematic illustration of a stochastic evolution di-
agram, where an edge is a trajectory of a module’s virtual
leader, and the labels over the edges are modules’ elements,
and p’s are phase transitions.
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