
Using Partitions and Superstrings for
Lossless Compression of Pattern Databases

Ethan L. Schreiber and Richard E. Korf
Department of Computer Science, University of California, Los Angeles

Los Angeles, California 90095
ethan@cs.ucla.edu, korf@cs.ucla.edu

Abstract
We present an algorithm for compressing pattern databases
(PDBs) and a method for fast random access of these com-
pressed PDBs. We demonstrate the effectiveness of our tech-
nique by compressing two 6-tile sliding-tile PDBs by a factor
of 12 and a 7-tile sliding-tile PDB by a factor of 24.

Introduction
A pattern database (PDB) (Culberson and Schaeffer 1996) is
a precomputed table storing the cost of solving all subgoals
of a particular type from a larger problem. For example, with
sliding-tile puzzles, a PDB stores the number of moves a
subset of N tiles need to make from each of their possible
configurations to the goal state. In practice, PDBs typically
are stored as large arrays of relatively small numbers.

Algorithms such as A∗ (Hart, Nilsson, and Raphael 1968)
and IDA∗ (Korf 1985) find optimal solutions to search prob-
lems using a cost function f(n) = g(n) + h(n) to direct the
search where g(n) is the cost from the start state to node n
and h(n) is an estimate of the cost from node n to a goal. If
h(n) never overestimates the true cost, we call it admissible,
and can use it with A∗ or IDA∗ to find optimal solutions. A
set of PDBs can be used to compute an admissible h(n).

A problem with PDBs is that they can become quite large.
For example, in the twenty-four puzzle (Korf and Felner
2002), an N-tile PDB has 25!

(25−N)! entries. With one byte
per entry, this requires approximately 122MB, 2.25GB and
40.6GB for N=6,7 and 8 respectively. A natural solution to
this is to compress the PDBs. Various Groups (Felner et
al. 2007; Breyer and Korf 2010; Ball and Holte 2008) have
examined both lossy and lossless methods for compressing
PDBs. Our methods are lossless, domain independent and
fast for random access. Furthermore, we attain a better com-
pression ratio than the existing lossless methods.

In the next three sections, we will describe the compo-
nents of our algorithm. This is followed by an example to
clarify our methods and illuminate each of the components.

Difference Arrays
While in general, a PDB stores the total cost from a node to
the goal state, we can alternatively store values other than

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

total cost. For example, it is common practice with sliding-
tile puzzles to subtract the Manhattan distance (MD) from
the cost stored in the PDB. While performing our search, we
compute the MD for a state and add the PDB value to it.

Similarly, in more general terms, we can subtract the
value of a subset PDB, which typically is much smaller. For
example, we could compute a 5-tile and 6-tile PDB where all
of the tiles in the 5-tile PDB are also in the 6-tile PDB. The
6-tile PDB is 122MB while the 5-tile is only 6MB. In the
6-tile PDB, we store the difference between the total cost of
solving the 6 tiles minus the total cost of solving the 5 tiles.
While performing the search, we lookup both the 5 and 6-tile
values and sum them as our heuristic function. This method
generalizes to any domain in which we can compute PDBs.

In our experiments, difference arrays tend to have many
sequences of values that repeat in the array, especially zeros.

Partioning the PDB
How can we exploit the repetitive nature of the PDB dif-
ference array? For a PDB of size n, we partition it into n

k
sub-arrays each of size k. We save space by storing only
the unique sub arrays. Instead of having a PDB of size n
with many repeated sub-arrays, we store a PDB of size n

k
with each element being an index into a second array which
stores one copy of each of the unique sub-arrays.

Shortest Common Superstring
The shortest common superstring (SCS) problem (Tarhio
and Ukkonen 1988) is given a set S of strings over the alpha-
bet Σ, find the shortest string that contains all si ∈ S. This is
a standard problem from computational biology. It is MAX
SNP-hard (Papadimitriou and Yannakakis 1988), but it has
been proven that the greedy algorithm finds strings within
four times the optimal length. (Blum et al. 1994). This algo-
rithm repeatedly chooses the two strings from S with max-
imum overlap and merges them until S contains one string
which we call the superstring.

After partitioning the PDB, we are left with a set of unique
sub-arrays. We compress this set using the greedy algorithm
to find an approximation of the SCS. We modify the PDB
index array so that each index references the index within
the superstring where the original sub-array begins.

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1814

�������	�
�����

��
���
������������������
� � � �
�� �� �� ��

� � � �
�� � �! �"

� � � �
�� �� �� ��

� � � �
�! �" �� ��

� � � �
���� �� �

� � � �
� � �� ��

� � � �
� ! "

� � � �
� � � �

�����#
��$����$��

�%���&'����
��
	�#
��$����#�$��

� � � � �� � �
� � � � � ! "

�����(��'����)����
� � � �� � � �� � � �

� � �

�%���&'����
��
	�(��'������(����

� � � � � � �
� � � � � !

���������	

� � � � �� � �
� � � � � ! "

���������	

���*���+�� ,����-���+�

,����-���+�

.+�

Figure 1: A compressed PDB example described below.

An Example of Compression and Lookup
Figure 1 illustrates an example of our compression tech-
nique. (a) is our original uncompressed PDB array of size
n = 32 called pdb[]. In this case, each entry is 0 or 1 for
clarity but in general each element could be any number.
We partition this array into sub-arrays of k=4 elements each.
There are n

k = 8 such sub-arrays. (b2) is the array of unique
sub-arrays from (a) called val[]. (b1) is the array of n

k indices
called idx[], one for each of the original sub-arrays.

To retrieve the value pdb[19] (whose value is 1) from the
compressed array, we first calculate � 19

4 � = 4. That is, we
take the floor of the original index divided by the partition
size. This is the index into the array idx[4]=1. The 1 is our in-
dex into val[1]={0,0,0,1}. To attain the offset into this array,
we compute 19 % 4 = 3. The 3 is the offset into val[1][3] =
1, the same value as pdb[19], our target value.

Arrays (c1) and (c2) are the superstring analogs of (b1)
and (b2). We use the greedy superstring algorithm to com-
press val into ssVal. The sub-array val[0] begins at ssVal[0],
val[1] at ssVal[3] and val[2] at ssVal[2]. With the same
example of finding pdb[19], we lookup ssIdx

[� 19
4 � = 4

]

which is 3. We then lookup ssVal[3 + (19 % 4)] = ssVal[6]
= 1 which is the same as pdb[19].

Preliminary Experimental Results
We generated 3 PDBs for the twenty-four puzzle containing
tiles: {3,4,8,9,13,14}, {1,2,5,6,7,12} and {3,4,8,9,13,14,15}
with one byte per entry. We call our PDBs 6-regular, 6-
irregular and 7 respectively. We compressed each with a
sub-array size of 128 entries. We report the uncompressed
size, the compressed size and the ratio. Our results:

6-regular 6-irregular 7
uncompressed 121.6MB 121.6MB 2.26GB

compressed 10.82MB 9.0MB 96.48MB
ratio 11.24 13.5 23.95

Using the methods of and data from (Korf and Felner
2002), we ran IDA*. We used both the compressed and
uncompressed version of 6-regular and 6-irregular as our
heuristics. IDA∗ with the uncompressed PDBs generated
8,860,660 nodes per second while the compressed version
generated 6,304,690 nodes per second.

Discussion and Future Work
We have described a general technique for lossless com-
pression of PDBs and have demonstrated a proof of con-
cept based on compressing the 6-tile sliding-tile PDB and
successfully using it with IDA∗. The true value of this tech-
nique will be compressing and using larger PDBs that have
previously been too large to store in memory.

We are currently working on compressing the 40.6GB 8-
tile sliding-tile PDB. Given the large size of this PDB, there
are additional engineering complications such as disk based
search both in creating and compressing the PDB. We be-
lieve that when we are done, we will be able to use 3 8-tile
PDBs in a reasonable amount of main memory to search the
24-puzzle. Furthermore, we plan to explore other domains
and the effectiveness of larger PDBs in solving problems
such as the 4-peg Towers of Hanoi and Rubik’s cube puzzle.

We see room for improvement in terms of compression
ratio by experimenting with alternative methods for creating
difference arrays. Beyond this, we will look to explore other
domains outside of permutation problems in which we can
use our ideas for compression of sparse arrays.

Acknowledgements
This work was supported in part by NSF grant IIS-0713178.

References
Ball, M., and Holte, R. 2008. The compression power of
symbolic pattern databases.
Blum, A.; Jiang, T.; Li, M.; Tromp, J.; and Yannakakis, M.
1994. Linear approximation of shortest superstrings. J. ACM
41:630–647.
Breyer, T. M., and Korf, R. E. 2010. 1.6-bit pattern
databases. In AAAI.
Culberson, J. C., and Schaeffer, J. 1996. Searching with
pattern databases. In Advances in Artificial Intelligence
(Lecture Notes in Artificial Intelligence 1081, 402–416.
Springer-Verlag.
Felner, A.; Korf, R. E.; Meshulam, R.; and Holte, R. C.
2007. Compressed pattern databases. J. Artif. Intell. Res.
(JAIR) 30:213–247.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
Systems Science and Cybernetics, IEEE Transactions on
4(2):100 –107.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artif. Intell. 134(1-2):9–22.
Korf, R. E. 1985. Depth-first iterative-deepening : An op-
timal admissible tree search. Artificial Intelligence 27(1):97
– 109.
Papadimitriou, C., and Yannakakis, M. 1988. Optimization,
approximation, and complexity classes. In Proceedings of
the twentieth annual ACM symposium on Theory of comput-
ing, STOC ’88, 229–234. New York, NY, USA: ACM.
Tarhio, J., and Ukkonen, E. 1988. A greedy approximation
algorithm for constructing shortest common superstrings.
Theor. Comput. Sci. 57:131–145.

1815

