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Introduction

Korf et al. (2001) developed a formula, KRE, to predict the
number of nodes expanded by IDA* for consistent heuris-
tics. They proved that the predictions were exact asymptot-
ically (in the limit of large d), and experimentally showed
that they were extremely accurate even at depths of practi-
cal interest. Zahavi et al. (2010) generalized KRE to work
with inconsistent heuristics and to account for the heuristic
values of the start states. Their formula, CDP, is intuitively
described in the next section. For a full description of CDP
the reader is referred to Zahavi et al. (2010).

Our research advances this line of research in three ways.
First, we identify a source of prediction error that has hith-
erto been overlooked. We call it the “discretization effect”.
Second, we disprove the intuitively appealing idea that a
“more informed” prediction system cannot make worse pre-
dictions than a “less informed” one. More informed sys-
tems are more susceptible to the discretization effect, and
in our experiments the more informed system makes poorer
predictions. Our third contribution is a method, called “ε-
truncation”, which makes a prediction system less informed,
in a carefully chosen way, so as to improve its predictions
by reducing the discretization effect. In our experiments ε-
truncation improved predictions substantially.

The CDP Prediction Framework

Let S be the set of states, E ⊆ S × S the set of (directed)
edges over S representing the parent-child relation in the
underlying state space.

Definition 1 T = {t1, . . . , tn} is a type system for (S,E)
if it is a disjoint partitioning of E. For every (ŝ, s) ∈ E,
T (ŝ, s) denotes the unique t ∈ T with (ŝ, s) ∈ t. For all
t, t′ ∈ T , p(t′|t) denotes the probability that a node s with
parent ŝ such that T (ŝ, s) = t generates a node c such that
T (s, c) = t′. Finally, bt denotes the average number of
nodes c generated from a parent s and grandparent ŝ with
T (ŝ, s) = t.

CDP samples the state space in order to estimate p(t′|t)
and bt for all t, t′ ∈ T . We denote by π(t′|t) and β(t) the
respective estimates thus obtained. Intuitively, CDP predicts
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the number of nodes expanded by emulating IDA*’s itera-
tion using π(t′|t) and β(t) to estimate the number of states
of a type at a level of search. Let N(i, t, s∗, d) be the num-
ber of pair of states (ŝ, s) ∈ E with T ((ŝ, s)) = t, at a
level i, rooted at the start state s∗ and with a depth bound
d. CDP calculates N(i, t, s∗, d) recursively by multiplying
N(i− 1, u, s∗, d), π(t|u) and β(u) for all u ∈ T .

As our basic type system, Th, we use Zahavi et
al.’s basic “two-step” model, defined (in our notation)
as Th(ŝ, s) = (h(ŝ), h(s)), with (ŝ, s) ∈ E. An-
other “more informed” type system is Tgc(ŝ, s) =
(Th(ŝ, s), c(s, 0), . . . , c(s,H), gc(s, 0), . . . , gc(s,H)).
Where c(s, k) is the number of children of s whose h-value
is k, and H is the maximum h-value observed in the sam-
pling process and gc(s, k) is the number of grandchildren
of s whose h-value is k.

Intuitively, if T1 is more informed than T2 one would ex-
pect predictions using T1 to be at least as accurate as the
predictions using T2, since all the information that is being
used by T2 to condition its predictions is also being used by
T1 ((Zahavi et al. 2010), p. 59). However, our experiments
show that this is not always true. The underlying cause of
poorer predictions by T1 when T1 is more informed than T2

is the discretization effect.

The ε-Truncation Prediction Method

Consider the problem of predicting the outcome of flipping
a biased coin that yields tails in 90% of all trials, modeled in
the CDP framework. An initial type init generates either type
tails or type heads, where p(tails|init) = 0.9, p(heads|init) =
0.1 and binit = 1. Suppose π and β(init) approximates re-
spectively p and binit exactly and N(i, init, s∗, d) = 1. Then
CDP would predict that 0.9 tails and 0.1 heads will occur
at level i + 1. However, a prediction of 1.0 tails and 0.0
heads occurring at level i + 1 has a smaller expected abso-
lute error when compared to CDP’s prediction. We call this
phenonemon (better predictions arising when less accurate
probability estimates are used) the discretization effect.

If a type t′ is generated with low probability from a type
t and if N(i, t, s∗, d) is small, it may be possible to reduce
expected absolute error by disregarding t′, i.e., by artificially
setting π(t′|t) to zero at level i of the prediction calculation.

Our approach, which we call ε-truncation, avoids the dis-
cretization effect and can be summarized as follows.
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1. As before, sample the state space to obtain π(t|u).
2. Compute a cutoff value εi for each i between 1 and d.

3. Use εi to define πi(t|u), a version of π(t|u) that is specific
to level i. In particular, if π(t|u) < εi then πi(t|u) = 0;
the other πi(t|u) are set by scaling up the corresponding
π(t|u) values so that they sum to 1.

4. In computing CDP use πi(t|u) at level i instead of π(t|u).
The calculation of the εi values requires computing CDP

predictions for a set of start states and, for each level i in
each of these prediction calculations, solving a set of small
linear programs that minimizes the expected error. The solu-
tions of the linear programs suggest an εi (details are omitted
due to lack of space).

Experiments and Conclusion

Our experiments shows that, 1) more informed type sys-
tems can produce poorer predictions and, 2) the ε-trucantion
method improves the predictions of a more informed type
system and prevents the pathology from occurring.

The choice of the set of start states is the same used by
Zahavi et al. (2010): start state s is included in the experi-
ment with depth bound d only if IDA* would actually have
used d as a depth bound in its search with s as the start state.
Unlike an actual IDA* run, we count the number of nodes
expanded in the entire iteration for a start state even if the
goal is encountered during the iteration.

For each prediction system we will report the ratio of the
predicted number of nodes expanded, averaged over all the
start states, to the actual number of nodes expanded, on av-
erage, by IDA*. This ratio will be rounded to two deci-
mal places and it is called the (average) signed error. The
signed error is the same as the “Ratio” reported by Zahavi et
al. (2010) and is appropriate when one is interested in pre-
dicting the total number of nodes that will be expanded in
solving a set of start states. It is not appropriate for measur-
ing the accuracy of the predictions on individual start states
because errors with a positive sign cancel errors with a neg-
ative sign. To evaluate the accuracy of individual predic-
tions, the appropriate measure is absolute error. For each
instance one computes the absolute value of the difference
between the predicted and the actual number of nodes ex-
panded, divide this difference by the actual number of nodes
expanded, adds these up over all start states, and divides by
the total number of start states. A perfect score according to
this measure is 0.0.

Zahavi et al. (2010) introduced a method for improving
predictions for single start states. Instead of directly pre-
dicting how many nodes will be expanded for depth bound d
and start state s, all states, Sr, at depth r < d are enumerated
and one then predicts how many nodes will be expanded for
depth bound d− r when Sr is the set of start states. We ap-
plied this technique in our experiments. The value of r for
each experiment is specified below.

We ran experiments on the 8 and 15 sliding tile puz-
zles and used the same type system as Zahavi et al. (2010),
which is a refinement of Th we call Th,b. Th,b is defined by

Signed Error Absolute Error

d IDA* Th,b Tgc ε-Tgc Th,b Tgc ε-Tgc

8-puzzle. Inconsistent Heuristic. r=1

22 58.5 1.00 1.34 0.96 0.47 0.62 0.41

23 95.4 1.01 1.39 0.98 0.45 0.62 0.38

24 135.7 1.03 1.45 0.93 0.47 0.66 0.37

25 226.7 1.04 1.52 0.98 0.42 0.65 0.34

15-puzzle. Manhattan Distance. r=25

52 28,308,808.8 1.25 1.28 1.14 0.14 0.17 0.09

53 45,086,452.6 1.23 1.29 1.13 0.16 0.20 0.11

54 85,024,463.5 1.36 1.41 1.22 0.21 0.27 0.15

55 123,478,361.5 1.36 1.45 1.24 0.24 0.31 0.17

Table 1: Informativeness Pathology

Th,b(s, s
′) = (Th, blank(s), blank(s

′)) where blank(s) re-
turns the kind of location (corner, edge, or middle) the blank
occupies in state s. Tgc,b is defined analogously. For square
versions of the puzzle Tgc is exactly the same as Tgc,b and
therefore Tgc is more informed than Th,b.

The inconsistent heuristic we used for the 8-puzzle is the
one defined by Zahavi et al. (2010). Two PDBs were built,
one based on tiles 1-4, and one based on tiles 5-8. The first
PDB is consulted for states having the blank in an even loca-
tion and the second PDB is consulted otherwise. The results,
with r=1, are shown at the top of Table 1. Here we see the
informativeness pathology: Tgc’s predictions are worse than
Th,b’s, despite its being a refinement of Th,b. Applying ε-
truncation substantially reduces Tgc’s prediction error.

For the 15-puzzle, we used 1,000 random start states to
measure prediction accuracy. To define π(t|u) and βt, one
billion random states were sampled and, in addition, we used
the process described by Zahavi et al. (2010): we sampled
the child of a sampled state if the type of that child had not
yet been sampled. The bottom of Table 1 gives the results
when Manhattan Distance is the heuristic, Th,b and Tgc are
the type systems and r=25. Here again we see the pathology
(Th,b’s predictions are better than Tgc’s) which is eliminated
by ε-truncation. Our method also improved considerably the
prediction accuracy for the 10 and 15 pancake puzzles (re-
sults omitted due to lack of space).
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