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Abstract

An ad hoc team setting is one in which teammates must
work together to obtain a common goal, but without any prior
agreement regarding how to work together. In this abstract we
present a role-based approach for ad hoc teamwork, in which
each teammate is inferred to be following a specialized role
that accomplishes a specific task or exhibits a particular be-
havior. In such cases, the role an ad hoc agent should select
depends both on its own capabilities and on the roles currently
selected by the other team members. We present methods for
evaluating the influence of the ad hoc agent’s role selection on
the team’s utility and we examine empirically how to select
the best suited method for role assignment in a complex en-
vironment. Finally, we show that an appropriate assignment
method can be determined from a limited amount of data and
used successfully in similar new tasks that the team has not
encountered before.

Introduction

Ad hoc teamwork is a relatively new research area (Bowling
and McCracken 2005; Jones et al. 2006)—and the subject of
a AAAI challenge paper (Stone et al. 2010)—that examines
how an agent ought to act when placed on a team with other
agents such that there was no prior opportunity to coordi-
nate behaviors. This is in contrast to most prior research on
multi-agent teamwork, which often requires explicit coordi-
nation protocols, languages, and/or shared assumptions (e.g.
(Grosz and Kraus 1996; Tambe 1997)).

In some team domains, such as search and rescue mis-
sions and many team sports, the team behavior can be bro-
ken down into roles. In such domains, an ad hoc teamwork
agent’s main task is to decide which role to assume, such
that the team’s performance is maximized. This decision is
situation-specific: it depends on the task the team is to per-
form, on the environment in which it will operate, and on
the capabilities of the team members. One trivial approach
is for an ad hoc team member to assume the role at which it
is most individually capable. However, the choice of an op-
timal role—one that results in highest team utility—rarely
depends only on the ad hoc team member, but also on the
behavior of the other team members. We therefore examine
the contribution of an ad hoc team member to the team by
the measure of marginal utility, which is the increase (or de-
crease) in a team’s utility when an ad hoc agent is added to
the team and assumes a particular role. An optimal mapping
of an ad hoc team member to a role is, therefore, one that
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maximizes the marginal utility, hence maximizing the con-
tribution of the ad hoc agent to the team’s utility.

The main contributions of this work are i) a formalism of
role-based ad hoc teamwork scenarios, ii) a classification of
types of tasks according to the patterns they exhibit in terms
of marginal utilities for role mappings, and iii) detailed ex-
periments in a new role-based ad hoc teamwork domain.

Problem Definition

In this work we study the role-based ad hoc teamwork prob-
lem, which is one that requires or benefits from dividing the
task at hand into roles. We assume that different roles have
different values to the team and each agent has some ability
to perform each role. As such, an ad hoc agent must take
into account both the needs of the team and its own abilities
when determining what role to adopt.

Formally, let task d have roles R(d) = {r0, ..., rm−1}.
Let A = {a0, ..., an−1} be the set of ad hoc agents whose
behavior we control and B = {b0, ..., bk−1} be the set of
teammates such that T = A∪B is the team that is to perform
task d. Let mapping P : B → R(d) be the mapping of the
teammates in B to roles {r0, ..., rm−1} and let mapping S :
A → R(d) be the mapping of the ad hoc agents in A to roles
{r0, ..., rm−1}. Additionally, let mapping SP : T → R(d)
be the combination of mappings S and P .

A team score U(SP, d, T ) results when the set of agents
T perform a task d, with each ti ∈ T fulfilling some
role rj ∈ R(d) under mapping SP . The marginal utility
MU(S, P ) is the score improvement obtained when each
ad hoc agent aj chooses role rS(aj) under mapping S such
that MU(S, P ) = U(SP, d, T ) − U(P, d,B). Given that
mapping P is fixed, the role-based ad hoc team problem is
to find a mapping S that maximizes marginal utility. In this
work we focus our attention on the case where there is only
one ad hoc agent.

Choosing a Role—Proposed Models

The ground truth way for an ad hoc agent to determine the
marginal utility from selecting a particular role, and hence
determine its optimal role, is to determine U(SP, d, T ) for
each possible role it could adopt. However, in practice, the
ad hoc agent must predict its marginal utility for all possible
roles and then select just one role. As such, we present five
models with which the ad hoc agent could do this prediction,
each appropriate for a different class of role-based tasks.
Unlimited Role Mapping Model : The benefit the team re-

ceives for an agent performing a role is not dependant on
the roles fulfilled by other teammates.
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Limited Role Mapping Model : Each role ri has an asso-
ciated rmin

i value and rmax
i value that represent the mini-

mum and maximum number of agents that should perform
role ri. The team receives no benefit for agents above (be-
low) rmax

i (rmin
i ) that perform role ri.

Incremental Value Models(3) : The value added by agents
performing a role may not be linearly correlated with the
number of agents performing that role. In particular, it
might be correlated via a (1) logarithmic function, (2) ex-
ponential function, or (3) sigmoidal function.

Model Evaluation
We empirically evaluate each of the five models in a capture-
the-flag style variant of Pacman (DeNero and Klein 2010).
The Pacman map (see Figure 1) is divided into two halves,
and two teams compete by attempting to eat the food on the
opponent’s side of the map while defending the food on their
home side. A team wins by eating all but two of the food pel-
lets on the opponent’s side or by eating more pellets than the
opponent before three thousand moves have been made. The
result of each game is the difference between the number of
pellets protected successfully by the team and the number of
pellets successfully protected by the opponent—we refer to
this result as the score differential.

Figure 1: Sample map. The team protects the left half of the map,
and the opponent protects the right half of the map.

In each experiment, we consider two roles that could be
performed: R ={offense, defense}. These offensive and de-
fensive behaviors are deliberately suboptimal, as we focus
solely on role decisions given whatever behaviors the agents
execute when performing their roles.

Choosing a Model

In order to decide which of the models is most represen-
tative of the marginal utility of a role selection in the Pac-
man Capture-the-Flag environment, we gather score differ-
entials over one thousand runs for teams of zero to six offen-
sive agents and zero to six defensive agents in three tasks.
We input each score differential into the following sigmoid
function 1/1 + e−0.13∗scoreDifferential to obtain more rep-
resentative data, and then use this ground truth data to deter-
mine the ground truth decisions of whether an ad hoc agent
should perform an offensive role or a defensive role on any
team composed of zero to five offensive agents and zero to
five defensive agents in each task.

With the ground truth decisions for the ad hoc agent in
three tasks, we can determine which of the five models best
captures the actual marginal utility of role selection in each
task. First, we input the ground truth data and the model
function into a least squares curve fitting algorithm and ob-
tain fitted parameters for the model function. We can then

use these fitted parameters to calculate fitted results for all
forty-nine teams. Finally, we translate these fitted results
into fitted decisions. We can then compare the number of
times the ground truth decision does not match the fitted de-
cision for a particular team arrangement —in other words,
the number of times the model made an incorrect decision.
Our experiments found that the sigmoidal model made the
fewest incorrect decisions in all three tasks. As such, we
concluded that in the Pacman Capture-the-Flag domain, at
least on the maps and opponents we studied, the sigmoidal
incremental model most accurately models team utility.

Predictive Modeling

Once a model type has been selected, the ad hoc agent can
use this model to predict the marginal utility of role selection
on similar tasks for which we have limited ground truth data.
Before using a model predictively, the ad hoc agent must ob-
tain new fitted parameters for the model function based upon
available data. Experiments show that if parameters fit on
one task are used on another task, the results can be quite
poor. However, fitting the parameters even with very limited
data can be beneficial. In one new task we studied, fitting
the model parameters to data from just one team configura-
tion and twenty-five games yielded an average of 33.5% in-
correct decisions, which is significantly better than the 50%
incorrect decisions obtained if decisions are made randomly.

Future Work
This research is among the first to study role-based ad hoc
teams. As such, there are many potential directions for fu-
ture work. First, we plan to expand our work into more in-
teresting and complicated environments with more than two
potential roles to fulfill and more than one ad hoc agent. Ad-
ditionally, we wish to consider the case in which the ad hoc
agents encounter teammates that are running unfamiliar be-
haviors, forcing the ad hoc agents to model their teammates
in order to classify their behavior into a known role and suc-
cessfully collaborate.
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