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This research is motivated by how case similarity is as-
sessed in retrospect in law. In the legal domain, when both
case facts and court decisions are present, assessing case
similarity by taking account of both case facts and court de-
cisions is more intuitive than considering case facts alone.
Discovering similar mappings of case facts to court deci-
sions, or similar strategies that courts used to decide cases
based on evaluating case facts (i.e., similar conditional de-
pendency of court decisions on case facts), is an interesting
and yet unexplored research problem.

Figure 1: The exemplar relationship among strategy, deci-
sion, and features in various domains.

Indeed, judging similarity or difference based on depen-
dency is not unique to law. In politics, presidential adminis-
trations are judged to be similar or different based on their
strategies used to make decisions – decisions about war and
peace, about budgetary funding priorities, and about which
political candidate to support along with innumerable other
choices. In medicine, judgements on similarity about physi-
cians are based on their strategies used to prescribe a treat-
ment after physicians evaluate a patient’s previous medical
complications, reported symptoms, results of various tests,
etc. The similarity of decision-making software agents is
also assessed based on dependency. For example, intelligent
tutoring systems (ITS) are felt differently by students they
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teach when they provide pedagogical decisions driven by
different teaching paradigms.

When the outcomes of decisions are observable (e.g., rad-
ical mastectomy leads to shorter/longer recovery time from
breast cancer than lumpectomy does.), uncovering decision-
making processes is highly desirable. This is because, once
strategies are discovered, they can shed light on how to
achieve a desired outcome and avoid an unwanted one, and
can also allow for strategy comparison. This new area of
research about discovering strategies in decision-making is
what we call Strategy Mining.

In this paper, we formulate the strategy-mining problem
as a clustering problem, called the latent-strategy problem.
We define the problem below; example domains are illus-
trated in Figure 1.
• Definition: In a latent-strategy problem, a corpus of data

instances I is given, each of which is represented by a set
of features F and a decision label D. The inherent depen-
dency of the decision label on the features is governed by
a latent strategy S. The objective is to find clusters, each
of which contains data instances governed by the same
strategy.
In the latent-strategy problem, the clustering target is de-

pendency. Dependency-based clustering differs from con-
ventional object-based clustering in a notable way. Object-
based clustering assesses similarity by examining the joint
distribution of all features in a non-discriminating feature
space, whereas dependency-based clustering evaluates sim-
ilarity based on the class-conditional distribution in a dis-
criminating feature space.

To the best of our knowledge, no prior work has been done
on solving the latent-strategy problem. Existing clustering
algorithms are inappropriate to cluster dependency because
they either assume feature independency (e.g., K-means
(MacQueen 1967)) or only consider the co-occurrence of
features without explicitly modeling the special dependency
of the decision label on other features (e.g., Latent Dirichlet
Allocation (LDA) (Steyvers and Griffiths 2007)).

We propose a baseline algorithm for dependency cluster-
ing. Our algorithm is based on the following assumption:
data instances with similar features but different decision la-
bels come from different conditional distributions.

Our algorithm, in a nutshell, models conditional depen-
dencies with decision trees and iterates between an assign-
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(a) AM-DTM (b) K-means (c) LDA

Figure 2: Ten-fold cross-validation & training errors of decision trees built using 1 of the 3 data clusters given by (a) AM-DTM,
(b) K-means, and (c) LDA. The selected clusters are representative to the general truth of all clusters.

ment step and a minimization step to learn a mixture of deci-
sion tree models that represent latent strategies. We call this
algorithm Assignment Minimization for Decision Tree Mix-
tures (AM-DTM). AM-DTM starts from partitioning data
into K disjoint datasets, which are used to build K initial
decision trees. Techniques should be used to avoid overfit-
ting. The main body of AM-DTM consists of two iterative
steps: an assignment step (A-step) and a minimization step
(M-step). In the A-step, instances are assigned to clusters
based on decision trees’ classification results. The assign-
ment strategy is as follows. If an instance in a cluster is cor-
rectly classified by the decision tree built from that cluster,
it will stay in the original cluster; otherwise, it will move
to a cluster whose decision tree correctly classifies it. When
there are more than one decision tree that correctly classi-
fies a misclassified instance, that instance will move to the
cluster whose decision tree yields the highest classification
probability for it. Further ties are broken by preferring the
decision tree whose leaf node has a greater number of in-
stances underneath. If there is no decision tree that correctly
classifies an instance, that instance will stay in its original
cluster. In the M-step, decision tree learning is performed
and the total training error of all decision trees is minimized
under the assumption that the assignment from the A step is
correct. To ensure and speedup convergence, we replace an
older decision tree with a new one for a cluster only when
the new tree has a lower training error. This process is re-
peated until no instance is moved. The goal of the iteration
is to minimize the overall training error so that the learned
decision trees representing coherent concepts can be found
accurately. Similar to the Expectation Maximization algo-
rithm (Little and Rubin 2002), AM-DTM follows the empir-
ical risk minimization principle from PAC learning theory.

We carried out a set of experiments to evaluate AM-DTM
in a legal domain. Our dataset (Rissland and Xu 2011) con-
tains 151 actual cases taken from a variety of jurisdictions in
the United States and in the United Kingdom. Although the
legal doctrine used for deciding each case was not recorded
at dataset construction, domain knowledge tells us that each
case in the dataset was decided by one of three known doc-
trines. Initial results showed that (1) AM-DTM converged
within a few iterations (5 iterations on average of 10 runs),

(2) its learned decision trees are compact (5 leaf nodes, on
average, which conforms to the fact that legal doctrines are
usually not complex rules), with low training errors (0.03 on
average) and low cross-validation errors (0.06 on average),
(3) the learned decision trees in overall resemble the doc-
trines well, and (4) AM-DTM significantly outperformed
K-means and LDA on clustering dependency as shown in
Figure 2 (e.g., decision trees learned from clusters given by
K-means and LDA have high cross-validation errors).

AM-DTM has three notable characteristics. First, it is
irrelevant-feature resistant, because the decision tree model
used by AM-DTM can automatically select key features
that significantly influence the decision. Second, it is a
glass-box learning algorithm, because one can easily eval-
uate and explain clustering results by examining the look
of the learned decision trees. Finally, the outputs of AM-
DTM are predictive, because the learned decision trees al-
low for similarity-based retrieval and classification tasks on
new data. In future work, we will develop algorithms that use
other non-parametric statistical models, parametric discrim-
inative models, and parametric generative models to cluster
conditional dependency, and compare them with AM-DTM.
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