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Abstract

Freuder and Elfe (1996) introduced Neighborhood In-
verse Consistency (NIC) for binary CSPs. In this pa-
per, we introduce RNIC, the extension of NIC to non-
binary CSPs, and describe a practical algorithm for en-
forcing it. We propose an adaptive strategy to weaken
or strengthen this property based on the connectivity of
the network. We demonstrate the effectiveness of RNIC
as a full lookahead strategy during search for solving
difficult benchmark problems.

1 Introduction

Solving difficult Constraint Satisfaction Problems (CSPs)
remains a challenge today despite the dramatic advances in
hardware technology. To counter the exponential growth of
the size of the search space of CSPs, consistency proper-
ties and algorithms for implementing them have been pro-
posed since the inception of Constraint Programming (CP).
While lower levels of consistency, such as Arc Consistency
(AC) for binary constraints and Generalized Arc Consis-
tency (GAC) for non-binary constraints, are commonly and
advantageously used, solving difficult problems often re-
quires enforcing higher orders of consistency, which typi-
cally increases time and/or space requirements. Freuder and
Elfe (1996) introduced Neighborhood Inverse Consistency
(NIC) for binary CSPs as a particularly promising consis-
tency property because (1) it has no space overhead (it is
enforced by filtering the variables domains), and (2) the en-
forced consistency level depends directly on the connectivity
of each variable with its neighborhood. Despite its promise
and filtering effectiveness, NIC remained relatively unex-
ploited because the algorithm for enforcing it is too costly,
which prevented its use on dense networks or in a lookahead
scheme during backtrack search.

In this paper, we introduce Relational Neighborhood In-
verse Consistency (RNIC) as a generalization of this prop-
erty to non-binary CSPs. We also introduce weakened and
strengthened variations of RNIC to cope with the difficul-
ties raised by the topology of the dual graph, and propose a
strategy for automatically choosing the property to enforce.
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2 Background
A CSP is defined by P = (V,D, C) where V is a set of vari-
ables, D is a set of domains, and C is a set of constraints or
relations. Each variable Vi∈V has a finite domain Di∈D,
and is constrained by a subset of the relations in C. In a
relation R, tuple τ∈R is a combination of allowed values
for the variables in the scope of R. Solving a CSP corre-
sponds to assigning a value to each variable such that all
the constraints are satisfied. We denote by PD the dual
encoding of a CSP P . PD is a binary CSP whose vari-
ables are the relations of P , their domains are the tuples of
those relations, and the constraints enforce equalities over
the shared variables. Finally, the dual graph of a CSP is
a graph whose vertices represent the relations of the CSP,
and whose edges connect two vertices corresponding to re-
lations whose scopes overlap. Neigh(Ri) denotes the set of
relations adjacent to a relation Ri in the dual graph.

The consistency property R(∗,m)C introduced in
(Karakashian et al. 2010) ensures that each tuple in each
relation can be extended in a consistent assignment to every
combination of m− 1 relations in the problem.

3 Relational NIC
Definition 1 A relation Ri is said to be RNIC iff
each tuple in Ri can be extended to the variables in⋃

Rj∈Neigh(Ri)
scope(Rj)\scope(Ri) in an assignment that

simultaneously satisfies all the relations in Neigh(Ri). A
network is RNIC iff every relation is RNIC.
Informally, each tuple τi in each relation Ri can be ex-
tended to a tuple τj in each Rj ∈ Neigh(Ri) such that to-
gether all those tuples are consistent with all the relations
in Neigh(Ri). Such a set of tuples {τj} is called a support
of τi. RNIC is enforced by filtering the existing relations
and without introducing any new relations to the CSP. A
straightforward algorithm for enforcing RNIC applies Ex-
pression (1) to each Ri until a fixed point is reached:

Ri ← πscope(Ri)(��Rj∈{Ri}∪Neigh(Ri) Rj) (1)
where π and �� are the relational operators project and join.
The space requirement of this algorithm is prohibitive.

Algorithm for enforcing RNIC For each relation Ri of a
CSP P , our algorithm for enforcing RNIC conducts a back-
track search the subproblem induced by {Ri} ∪ Neigh(Ri)
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on the dual graph, PD, of P in order to ensure that each tu-
ple τi ∈ Ri has a valid support. The algorithm maintains
a queue, QR, of the relations to be revised and, for each
relation, a queue of tuples whose support must be verified.
Whenever a relation is empty, the algorithm halts and re-
turns false, indicating that P is not consistent. When QR is
empty, it terminates successfully indicating that P is RNIC.
Note that Neigh(Ri) is determined by the topology of the
dual graph, which we will alter in Section 4.

4 Variations on RNIC

The following two conditions of the topology of the dual
graph seriously hinder the performance of enforcing RNIC:
(1) high density and (2) the existence of cycles of size 4 or
more. The former increases the neighborhood of a vertex in
the dual graph, thus increasing the cost of RNIC. The lat-
ter prevents the neighbors of a given relation Ri in the cycle
from ‘communicating’ and reduces RNIC to R(∗,2)C. To ad-
dress those issues, we propose three variations on RNIC, and
a selection procedure to automatically decide, at the prepro-
cessing stage, which of the four properties to enforce.
Use a minimal dual graph: To address (1), we enforce
RNIC on Gw a minimal dual graph obtained from the origi-
nal dual graph Go by removing redundant edges (Janssen et
al. 1989). The resulting property, wRNIC, is strictly weaker
than RNIC.
Triangulate the dual graph: To address (2), we enforce
RNIC on Gtri, a triangulation of Go, thus boosting propa-
gation but also raising the consistency level. The resulting
property, triRNIC, is strictly stronger than RNIC.
Triangulate a minimal dual graph: We denote wtriRNIC
the consistency enforced on Gwtri, a triangulation of Gw.

Figure 1 shows RNIC and R(∗,m)C-based properties in a
partial order, where δ is the degree of the dual graph. Ideally,
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Figure 1: A partial order on RNIC, R(∗,m)C, and their variations.

one should adjust the strength of propagation to the topology
of the problem. We propose to measure the density of the
original dual graph, Go, and determine whether to remove
redundant edges and/or triangulate the graph. The selec-
tion policy of Figure 2 automatically chooses the appropriate
dual graph by comparing the density dG of two dual graphs.
The study of 1689 dual CSPs showed a sharp threshold at
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Figure 2: selRNIC enforces RNIC on the chosen dual graph.

15% density. We empirically determined the factor 2 above.

Both values are extremely stable. The resulting mechanism,
selRNIC, applies triangulation and redundancy removal at
most once, and nicely ties together our techniques in a con-
sistent and adaptive framework.

5 Experimental Results

In (Woodward et al. 2011), we compared the performance
of the four variations of RNIC, GAC, and wR(∗,m)C for
m = 2, 3, 4 of (Karakashian et al. 2010) as a full looka-
head strategy during backtrack search for solving CSPs. We
ran the experiments on the benchmarks of the CSP Solver
Competition1 with a time limit of one and a half hours per
instance. On some of the benchmarks (e.g., aim-100), RNIC
completed the largest number of instances, and yielded the
largest number of backtrack-free searches. Interestingly,
on lexVg, and despite the high density (72.6%) of the tri-
angulated dual graph, selRNIC (= triRNIC) solved in a
backtrack-free manner all but one of the instances of this
benchmark, thus hinting to its tractability. The sheer num-
ber of relations in the dual graphs of the modifiedRenault
benchmark prevents us from executing RNIC and triRNIC.
This situation demonstrates the benefits of using wRNIC and
wtriRNIC, which were indeed automatically chosen by sel-
RNIC. Also noteworthy, wtriRNIC solved, backtrack free,
all instances in the modifiedRenault benchmark. Finally,
RNIC/selRNIC solved two large and difficult instances of
the aim-200 benchmark and one instance of the ssa bench-
mark that no other algorithm can solve, the ssa instance be-
ing solved backtrack free.

6 Future Work & Conclusions

Our contribution adds to the state of the art of consistency
properties and propagation algorithms. Our long-term goal
is to enable a constraint solver to identify tractable problem
classes and automatically select and apply the appropriate
tools for solving them. In that sense, the ability of our ap-
proach to adapt to a problem’s structure and solve many dif-
ficult instances backtrack free is perhaps most noteworthy
and indicates that we may be one step closer to achieving
this goal.
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