
Continual Planning with Sensing for Web Service Composition

Eirini Kaldeli and Alexander Lazovik and Marco Aiello
Distributed Systems Group
Johann Bernoulli Institute
University of Groningen

Nijenborg 9 – 9747AG Groningen
The Netherlands

Abstract

Web Service (WS) domains constitute an application field
where automated planning can significantly contribute to-
wards achieving customisable and adaptable compositions.
Following the vision of using domain-independent plan-
ning and declarative complex goals to generate compositions
based on atomic service descriptions, we apply a planning
framework based on Constraint Satisfaction techniques to a
domain consisting of WSs with diverse functionalities. One
of the key requirements of such domains is the ability to ad-
dress the incomplete knowledge problem, as well as recover-
ing from failures that may occur during execution. We pro-
pose an algorithm for interleaving planning, monitoring and
execution, where continual planning via altering the CSP is
performed, under the light of the feedback acquired at run-
time. The system is evaluated against a number of scenarios
including real WSs, demonstrating the leverage of situations
that can be effectively tackled with respect to previous ap-
proaches.

Introduction

The ability to aggregate loosely-coupled software compo-
nents in order to provide added-value functionalities opens
up new prospects for the development of service-oriented
applications. Research in the discipline of AI planning can
provide deeper insight into the problem of dynamic integra-
tion of services, and contribute towards realising an infras-
tructure that is highly interactive and adaptive to different
user preferences. The common premise underlying this ap-
proach is that services come along with semantic markups
that describe their behaviour in some convenient format,
usually in terms of preconditions and effects.

Composition of services is commonly divided into two
complementary tasks: synthesis or vertical composition,
which is concerned with finding the right combination of
“abstract” services, each of which models the logic of the
provided functionality; and orchestration or horizontal com-
position, which involves instantiating the logical synthesis
into concrete WS components, since usually there are many
functionally equivalent providers (e.g. hotels, stores, etc.).
In this work, we show how the interchange between these

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

two aspects can satisfy a user’s request, under variant, un-
foreseen execution circumstances.

Regarding vertical composition, we propose the deploy-
ment of a domain-independent planner to build syntheses
automatically and on-demand, relying solely on individual
descriptions of decoupled services, and a goal specified by
the user. The idea is to maintain a generic and modular
repository that comprises a number of diverse service oper-
ations, from booking flights to arranging appointments with
a doctor, and can serve an variety of different user needs
with minimal request-specific configuration. This is differ-
ent from many previous approaches, which restrict the ap-
plicability of the domain to a set of anticipated user needs,
predefined in the form of some procedural template, be it in
the form of e.g. HTN methods (Au, Kuter, and Nau 2005) or
Golog programs (Sohrabi, Prokoshyna, and Mcilraith 2006).

Unlike these approaches, we propose an extended lan-
guage which allows users to express their goals in a declara-
tive fashion, without having to know about the particularities
and interdependencies of the available services. Temporal
aspects, maintainability properties, and distinguishing be-
tween wish to observe the environment or change it are some
of the features this language supports. Both the domain and
the goal are modeled as a CSP (Constraint Satisfaction Prob-
lem), and a constraint solver is applied to compute a plan.
An important advantage of the CSP-based formulation is its
efficient handling of variables ranging over large domains,
which are very common in WS fields (e.g. dates, prices).
Some preliminary ideas about service composition via CSP-
based planning with extended goals have been presented in
(Kaldeli, Lazovik, and Aiello 2009), where the basic con-
cepts of the synthesis approach are presented.

Due to the conditions of incomplete knowledge and sens-
ing, as well as other sources of contingency (e.g. corrupt
responses, server failures etc.), the problem of composition
cannot be tackled without reference to the current environ-
mental context, that becomes visible only at execution time.
The problem of missing knowledge and non-determinism
in the field of WSs has been addressed from different per-
spectives, although recovery from unforeseen outcomes is
generally disregarded. Previous approaches either rely on
conditional plans and can therefore handle only a limited
range of non-deterministic action outcomes, e.g. (Pistore
et al. 2005), (Hoffmann, Weber, and Kraft 2010), or have

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1198

the queries about unknown information explicitly included
in the predefined WS procedure, e.g. (Au, Kuter, and Nau
2005), (Sohrabi, Prokoshyna, and Mcilraith 2006).

In this work, we employ a knowledge-level representa-
tion that enables plans to be automatically built based on the
agent’s knowledge and the way that this is changed by ac-
tions. To deal with the large number of possible outcomes
and unforeseen contingencies at runtime, we adopt an ap-
proach that interweaves planning, monitoring and execution.
Continual planning is performed, so that the upcoming plan
steps anticipated off-line can be revised as execution pro-
ceeds, in face of inconsistencies that stem either from the
newly acquired information or from service failures. In the
algorithm presented in this work, we show how dynamic
constraint solving, that allows efficient addition and removal
of constraints, can serve the need for constantly incorporat-
ing new facts about the environment or removing obsolete
ones, checking for inconsistencies, and reacting accordingly.

A motivating example

Let us suppose that a user is happy to learn that in the fol-
lowing days a singer he is fond of is making a tour in the
country where he lives. What he wants is to book a ticket
and a hotel room for the nearest upcoming concert whose
date and location meet some criteria referring to the weather
conditions, the distance from his hometown, and his avail-
ability according to his agenda, as well as about the price he
is willing to pay for his overnight stay. These requirements
are expressed by an extended goal (see the third section),
that specifies what (but not how) the user wants to achieve
and under which conditions.

The satisfaction of this goal requires the collaboration of
services coming from diverse business domains –namely re-
lated to travelling, entertainment events, maps, calendar and
weather services– in a manner that can be hardly anticipated
in advance. Depending on the information returned at run-
time, there are clearly many different ways that this goal can
be fulfilled. For example, it may turn out that the place of
the first upcoming concert is too far, or that there is no hotel
available on that date within his badget, etc. In such cases,
the original plan has to be interrupted and revised, so that the
conditions regarding the whereabouts and date of the next
concert are looked up. To further complicate things, at any
moment a service may fail. So, if e.g. the booking service of
the first selected hotel that meets the user’s criteria happens
to be in a permanent failure state, an alternative hotel has
to be searched, and depending on the result, the goal may
finally be satisfied or not. In the penultimate section, we
show a possible run of the continual planning algorithm for
this scenario, based on real data received by the services.

Representing the domain

A WS marketplace is conceived as a planning domain,
where the actions correspond to operations of abstract WSs.
We assume that the service domain description is carried out
by a domain designer, who formalises the individual WS op-
erations by providing the necessary markups. How existing
Semantic Web ontologies can be exploited in the context of
planning is an interesting topic, e.g. OWL-S used in (Au,

Kuter, and Nau 2005), however it is not the focus of this
paper.
Definition 1 (Service Domain). A service domain is a tuple
SD = 〈Var , Par , Act〉, where:
• Var is a set of variables. Each variable v ∈ Var ranges

over a finite domain Dv .
• Par is a set of variables that play the role of input param-

eters to WS operations. Each variable p ∈ Par ranges
over a finite domain Dp.

• Act is the set of actions. An action a ∈ Act is a triple
a = (id(a), precond(a), effects(a)), where id(a) is a
unique identifier, e.g. “bookHotel”, precond(a) is a set of
propositions on variables and parameters, and effects(a)
is a set whose elements can be one of the followings:
– sense(var), where var ∈ Var
– assign(var , v), where v is some constant or v ∈ Var
– assign(var , f (v1 , v2)), where v1 , v2 ∈ Var or v1 , v2

are constants, and f the sum or the subtract function
– increase(var , v) or decrease(var , v), where v ∈ Var

or v is some constant
A state s is defined as a tuple s = 〈(x1 ,Dx1

s), . . . ,
(xn ,D

xn
s)〉, where xi ∈ Var ∪ Par and Dxi

s ⊆ Dxi . The do-
main of x at state s is given by the state-variable function
x(s), so that x(s) = Dx

s if (x,Dx
s) ∈ s. If |Dx

s | = 1,
this means that x at s has a specific value. The effects of
type sense(var) are called observational, i.e. they observe
the current value of a variable, while the other types of ef-
fects are world-altering, i.e. actively change the value of a
variable. An action may have both kinds of effects.

The domain is extended by additional variables to model
the knowledge level, and to distinguish between sensing and
world-altering actions. These variables are generated auto-
matically given a domain description SD. First, for each
var ∈ Var ∪ Par , a new boolean variable var known is
introduced, which indicates whether var is known at state
s (var known(s) = true) or not (var known(s) = false).
For every variable kvar ∈ Var that participates in an ob-
servational effect, a new variable kvar response is created,
which is a placeholder for the value returned by the respec-
tive sensing operation. Since this value is unknown un-
til execution time, kvar response ranges over kvar ’s do-
main (kvar response ∈ Dkvar). Moreover, we maintain
for every variable cvar ∈ Var that is part of at least one
world-altering effect a boolean flag var changed , which
becomes true whenever this effect takes place. All these
additional variables are created automatically, by parsing
the SD. Thus, we end up with an extended set of vari-
ables V = Var ∪ Par ∪Kb ∪ Cv ∪ Rv , where Kb is the
set of knowledge-base variables, Cv the set of the change-
indicative variables, and Rv the response variables.

Encoding the domain into a CSP

A constraint satisfaction problem is a triple CSP =
〈X,D, C〉, where X = {x1, . . . , xn} is a finite set of n vari-
ables, D = {D1, . . . , Dn} is the set of finite domains of the
variables in X so that xi ∈ Di, and C = {c1, . . . , cm} is a
finite set of constraints over the variables in X . A constraint
ci involving some subset of variables in X is a proposition
that restricts the allowable values of its variables. A solution

1199

to a CSP 〈X,D, C〉 is an assignment of values to the vari-
ables in X {x1 = v1, . . . , xn = vn}, with vi ∈ Di, that
satisfies all constraints in C.

Following a common practice in many planning ap-
proaches, we consider a bounded planning problem, i.e. we
restrict our target to finding a plan of length at most k, for in-
creasing values of k. Considering a service domain extended
with the knowledge-level representation SD′ = 〈V,Act〉,
the target is to encode SD′ into a CSP = 〈XCSP ,D, C〉.
First, for each variable x ∈ V ranging over Dx, and for each
0≤ i ≤ k , we define a variable x[i] in CSP with domain
Dx. Actions are also represented as variables: for each ac-
tion a ∈ Act and for each 0≤ i ≤ k−1 a boolean variable
a[i] is defined. This way the computed plan can include par-
allel actions, a fact that may save time during execution. If
some action a1 affects a variable that is part of the precon-
ditions of some other action a2, or if both affect the same
variable, then a1 and a2 are prevented from being put in par-
allel by an additional constraint.

Action preconditions and effects, as well as frame axioms,
are automatically encoded as constraints on the CSP state
variables. Due to space reasons, we do not give the details
of the constraint representation, but rather provide an exam-
ple of how two simple actions are modelled in the form of
constraints.

payIn(amountPar, accIdPar)
prec: ∅ effects: increase(accBalance, amountPar)

�→ Constraints:
prec constraints: /*parameters known*/

payIn[i] = 1 ⇒
(amountPar known[i] = true ∧ accIdPar known = true)

effect constraints: /*world-altering*/

payIn[i] = 1 ⇒ (accBalance changed[i + 1] = true

accBalance[i + 1] = accBalance[i] + amountPar [i])

findAccBalance(accIdPar)
prec: ∅ effects: sense(accBalance)

�→ Constraints:
prec constraints: /*parameters known and accBalance yet unknown*/

findAccBalance[i] = 1 ⇒ (accIdPar known[i] = true∧
accBalance known[i] = false)

effect constraints: /*sensing*/

findAccBalance[i] = 1 ⇒ accBalance known[i + 1] = true∧
accBalance[i + 1] = accBalance response[i + 1]

Extra knowledge preconditions that ensure that the
knowledge-base variables of all input parameters should be
true are added. It’s worth mentioning that most actions in
WS domains have only knowledge preconditions, like in the
above examples. Effects of the type sense(var), such as in
the case of findAccBalance, are modelled by adding an extra
precondition that the variable to be sensed is unknown (to
avoid redundant sensing), assigning to var its correspond-
ing response variable, and setting the respective knowledge
variable to true. For each world-altering effect we add an ad-
ditional constraint that ensures that any variables participat-
ing in the second argument of the assignment effect should
be already known (in the case of payIn this is already guar-
anteed by the preconditions), and states that the variable al-
tered becomes known.

By adopting such an encoding, the required sensing ac-
tions are determined pro-actively, depending on the goal
and the knowledge the user already possesses. The off-
line solver may assign arbitrary values to an unknown vari-
able var , however if the corresponding knowledge variable
var known is false, this values is of no validity. The effect
of this behaviour is that the planner always generates an opti-
mistic plan, i.e. anticipating that all knowledge-gathering ac-
tions return information that is in accordance with the user’s
requirements, and all actions are executed successfully. This
initial plan is revised during execution as we will see in the
section about the continual planning algorithm.

The goal language

In (Kaldeli, Lazovik, and Aiello 2009) a language for ex-
tended goals in the context of CSP planning for WS compo-
sitions is presented. This goal language has been enriched
with a few more constructs, so that more complex goals can
be formulated. Due to lack of space, we do not repeat the
syntax of the language here, or explain the formal seman-
tics, but rather give an impression of some of the supported
constructs through the following two examples:

Goal 1
achieve-maint(bookedConcert = TRUE) under_condition

(find_out-maint(temperature > 0))

Goal 2
achieve-maint(bookedHotel = TRUE) ∧ (

achieve-maint(bookedConcert = TRUE)

under_condition_or_not (find_out-maint(temperature > 0)))

An achieve-maint(∧ipropi) subgoal on a conjunc-
tion of propositions implies that ∧ipropi has to be-
come true at some state, and stay true till the fi-
nal one. The under_condition structure im-
poses that Goal 1 is accomplished if s is the first
state at which bookedConcert = TRUE is satisfied, and
find_out-maint(temperature > 0) is satisfied in the
state sequence preceding s. If temperature < 0 , then
Goal 1 fails. under_condition_or_not is a new
construct that elaborates the expressivity of the lan-
guage: goal0 under_condition_or_not goal1 will
also be fulfilled if goal1 is not satisfiable, if however
it is, then goal0 has to be as well. Thus, Goal 2
will ensure that bookedConcert = TRUE will be sat-
isfied if the temperature is not below zero, while if
it is, then only bookedHotel = TRUE will be looked
after. It should be mentioned however that the
under_condition_or_not structure works as in-
tended only if the variables involved in goal1 are known at
planning time. find_out(∧ik -propi) type of subgoals en-
force a hands-off requirement on the variables they involve,
i.e. the planner will try to satisfy the propositions at some
state without allowing any altering effect on these variables
(in the above examples find_out-maint is in practice
unnecessary because there is no way to change the weather).

An example of how the constraint encoding of the goal
looks like is provided for Goal 1:

bookedConcert[k] ∧ bookedConcert known[k] = true

1200

for i ← 0 , k − 1 /*maint constraints*/

for j ← i + 1 , k

(bookedConcert[i] ∧ bookedConcert known[i]) ⇒
(bookedConcert[j] ∧ bookedConcert known[j])

/*knowledge variables should remain unchanged (find-out goal)*/

¬temperature changed[k] ∧ temperature known[k]

for i ← 1 , k /*under condition goal*/

bookedConcert[i]) ⇒
(temperature[i − 1] > 0 ∧ temperature known[i − 1])

All variables and parameters not specified in the
goal are assumed to be undefined, and their respective
knowledge-level variables are set to false. Functions as
part of the goal are also allowed, and are translated to
a set of propositions, and this is how parameters are
mapped. Thus, in the last example, the user would
rather specify bookedHotel(hPlacePar , hDatePar), where
hPlacePar and hDatePar can be either a specific value
(e.g. hPlcacePar =“Freiburg”) or refer to some other vari-
able, that may correspond to the yet unknown outcome
of some other action (e.g. hDatePar = eventDate). This
amounts to assigning the respective parameter to the pro-
vided value at the initial state, or fix it to the specified vari-
able at all states.

Orchestration by Continual Planning

After the invocation of the solver, an assignment to the ac-
tion variables is returned, which corresponds to an optimistic
plan, as already mentioned. Before resorting to the solver, a
preliminary pruning of the actions that are irrelevant to the
goal is performed. This initial step is important to avoid
redundant sensing or unwanted world-altering actions, and
also contributes to enhancing scalablity, since, given a large
set of WSs, usually only a minority is relevant to a particu-
lar goal. The off-line plan is then passed to the orchestrator,
whose task is to gradually update it, according to the infor-
mation it acquires from the actual physical service invoca-
tions. The ultimately successful plan–if one exists–is con-
structed step-by-step, by adding and removing constraints
from the constraint network. Since the off-line plan has no
way to anticipate any value that is to be observed, whenever
new information is sensed, some revision is needed. For
example, if the user wants to send some mail to a partic-
ular address, which is unknown and has to be supplied by
some address-providing service, then at the point when the
address becomes known, re-solving is required to instantiate
the right input arguments of the sensing actions that depend
on that information.

The orchestrating algorithm relies on the reasonable infor-
mation persistence assumption, i.e. that the knowledge col-
lected by the actions at run-time remains valid till the end
of the algorithm. can also be seen as a form of incomplete
knowledge which require special handling. The algorithm
accommodates for simple types of flaws, assuming that all
failures are clean, i.e. either all world-altering effects of an
action are materialised, or none of them is. Erratic situa-
tions can only be avoided, if actions with potentially severe
world-altering effects, that e.g. involve a payment, are re-
versible. The algorithm for orchestrating and adjusting the

initial plan proceeds as outlined in the pseudocode, while a
running example follows. In the description provided herein,
the generated plans are assumed to be serialized, because no
support for concurrent service calls is implemented yet.

Algorithm: Continual Planning

function ORCHESTRATE(plan)
for state si ∈ plan do

repeat
output = NEXT INSTANCES(acti , inParams(acti , si));
good = CHECK VIOLATION(output , si , acti , instance);

until output indicates flaw OR no more instances OR good
if output indicates flaw then

Forbid acti (with same input); BACKTRACK;
else if no more instances then

Add constraints about acti ’s inspected outputs;
if no more instances OR ¬good then

BACKTRACK; return ;

function CHECK VIOLATION(output , si , acti , instance)
Bookkeeping information for output ;
Check if output at si+1 causes conflicts;
if no conflict then

Push {si , acti , instance} to backtracking stack;
Form newInitState by materialising acti ’s effects;
Compute newPlan from newInitState; return true;

else return false;

function BACKTRACK
if backtracking stack not empty then

Pop {si , acti , instance} from backtracking stack;
if backtrack due to violation and acti had severe
committing effects then Undo acti ’s effects;
Update alternative instances for actions;
Compute newPlan from si ;
if newPlan is found then ORCHESTRATE(newPlan);
else {BACKTRACK; return ; }

else
Compute newPlan from original initial state;
if newPlan is found then ORCHESTRATE(newPlan);
else return fail; /*The goal cannot be satisfied*/

Let us now explain the algorithm step-by-step. For each
action in the plan, a list of physical instances that match
its functionality is kept. NEXT INSTANCES is responsi-
ble for selecting the next alternative concrete service that
matches the logical action and execute it. The matchmak-
ing process may be based on Quality of Service metrics,
or also take into account user-specific preferences, e.g. see
(Skoutas et al. 2008), and is not the focus of this work.
NEXT INSTANCES goes on with executing the next avail-
able instance, till it finds a service which returns no failure.
If no such service can be found, the algorithm starts back-
tracking from the previous state, to look for alternative plans,
after adding a constraint that forbids the action in question to
be chosen by subsequent plans. Moreover, in case the output
information of all meaningful instances has been collected,
following the information persistence assumption, the algo-
rithm incorporates in the constraint network the knowledge
that whenever the respective action is invoked with the same
arguments, it returns one of the already sensed values.

1201

In case of a flawless invocation that returns some new in-
formation, the CHECK VIOLATION function is called to
inspect whether this output violates any constraints. World-
altering effects don’t have to be checked, since they are al-
ready reasoned about at planning time. If a violation is de-
tected, then the algorithm goes on with trying an alternative
physical service. For services whose output may differ de-
pending on the selected provider, such as stores returning
the availability or price of a requested item, it makes sense
to try alternative instances, while this is not the case for ser-
vices that provide information that is not instance-specific,
such as the weather, map etc. If all alternatives prove un-
successful, the algorithm tries to backtrack, otherwise the
current state of the world is recorded for prospective back-
tracking, the planner computes an updated plan newPlan ,
and proceeds with executing it. The updated plan is com-
puted after disregarding the previous solution (assignments
to variables), and by considering as the initial state a new
state newInitState, which reflects the state after the materi-
alisation of acti ’s effects. This newInitState is constructed
based on the propagation of constraints entailed by acti , i.e.
acti ’s effects, both observational and world-altering, and the
instantiation of relevant input parameters depending on them
(which were previously assigned to some arbitrary conve-
nient values). All variables for which the knowledge base
indicates they are unknown are restored to undefined.

When backtracking from {si , acti , instance}, and acti
has lead to the materialisation of some severe world-altering
effects, then these should be undone. Note that the major-
ity of services are usually purely information-providing, so
reversal of effects at this stage is rarely necessary. Then, all
possible instances for all other actions except acti are re-
stored. The algorithm generates a new plan, under the light
of the new constraints, following the same procedure as de-
scribed above. If it fails, then it backtracks to the previous
stored world state, and the same process is recursively re-
peated until either a new plan is found, or the initial state is
reached.

A running example

In the followings, we show a running instance of the or-
chestration algorithm for the motivating example described
in the introduction, with a user living in Stanford, CA, who
wants to attend a concert of the singer Tina Dico.

Initial plan: {getFirstEvent(Tina Dico), checkCalendarAvail(defaultDate), getDis-

tance(Stanford, defaultPlace), getTemperature(defaultPlace, defaultDate), bookCon-

certTicket(Tina Dico, defaultDate, defaultPlace), search4Hotel(defaultDate, default-

Place, 1, 1), bookHotel(hotelWS, defaultDate, defaultPlace, 1, 1)}

→ Call getFirstEvent(Tina Dico) :: eventDate=2011-02-05, eventPlace=Austin

→ Call checkCalendarAvail(2011-02-05) :: calendarAvail=true

→ Call getDistance(Stanford, Austin) :: distance=2793

Sensed value 2793 for distance violates constraints, Backtrack

No alternative meaningful instances for checkCalendarAvail, Backtrack

→ Call getSecondEvent(Tina Dico) :: eventDate=2011-02-08,

eventPlace=San Francisco

→ Call checkCalendarAvail(2011-02-08) :: calendarAvail=true

→ Call getDistance(Stanford, San Francisco) :: distance=62

→ Call getTemperature(San Francisco, 08 Feb 2011) ::temperature=11

→ Call bookConcertTicket(San Francisco, 2011-02-08) :: bookedConcTicket=true

→ Call search4HotelA(2011-02-08, San Francisco, 1, 1) ::

hotelWS=Chancellor Hotel, hotelPrice=80

→ Call bookHotel(Chancellor Hotel, San Francisco, 1, 1) :: null

A failure occurred, Backtrack

→ Call search4HotelB(2011-02-08, San Francisco, 1, 1) ::

hotelWS=Fairmont Hotel, hotelPrice=100

→ Call bookHotel(Fairmont Hotel, San Francisco, 2011-02-08, 1, 1) ::

hotelBooked=true

All services in this example, except the ticket and hotel-
booking ones, are real services available on the Web (so,
Tina Dico was indeed performing on the mentioned places
and dates, etc.). The Yahoo! weather service provides in-
formation such as the temperature or the weather condition,
e.g. “rainy” or “cloudy”. Google calendar is used to check
whether a day is marked free or busy, to find the distance
between two locations. The eventful.com service pro-
vides information about a number of cultural events, and in
this example it is used to go through the list of concerts
of a given band. The responses of the actual services are
XML documents, which are parsed to extract the respective
information. Because the Yahoo! weather-related services
require WOEIDs (Where on Earth IDentifier) as the form of
their location-related input parameters, an intermediate ser-
vice operation call is performed to map the location names
to this format. Dates are also transformed between different
formats, depending on the specification of each service. No-
tice also that the policy for dealing with bookHotel ’s failure
response in this case is to consider it a permanent one.again
with the same input arguments. Evidence about the time per-
formance of the algorithm is summarised in the third row,
test [3a] of Table 1. It should be mentioned that out of the
18.6 sec of total execution time, 6 sec amount to the sum of
the service calls response times.

Empirical Evaluation

The aim of the evaluation scenarios for the planning and or-
chestration framework is to test whether complex goals can
be accomplished within acceptable time under different en-
vironmental context, i.e. sensed outcomes and failures. The
tests involve a mixture of real and virtual services, derived
from a variety of different application domains: making on-
line appointments, shopping, shipping, travelling, learning
about entertainment events, and obtaining general purpose
information, e.g. from maps or weather services. In total, the
domain consists of 30 abstract service operators (it should
be emphasised that these refer to ungrounded operators), 23
of which are knowledge-providing. 45 service instances are
used for the test purposes, however it should be noted that
scalability regarding the number of physical components de-
pends on the efficiency of the matchmaking process. To ex-
periment with failures, we have simulated “return null” re-
sponses to model simple flaws. The experiments were per-
formed on an Intel Core i5 2.26Ghz computer with 3GB of
RAM, running Java 1.6.0 12. The constraint solver standing
at the core of the planner is the Choco v2.1.1 constraint solv-
ing library (www.emn.fr/x-info/choco-solver).
The bootstrap time for loading the domain description and

1202

Goal
� actions in Initial Test Total �backtracks/
initial plan plan time instance time �violation checks

appointment 5 0.9 [1a] 11.9 1/5
select&buyCd 6 2.1 [2a] 20.6 0/6

arrangeGoToConcert 7 2.8
[3a] 18.6 3/9
[3b] 164.7 12/16

buyBook&ship 9 4.3 [4a] 32.7 3/7

arrangeTravel 12 4.6
[5a] 27.5 0/8
[5b] 225 19/22
[5c] 344.3 23/30

combinedGoal 19 7.1 [6a] 216.3 1/16

Table 1: Results for different goals and execution circum-
stances (time in sec). The tests correspond to runs for the
same goal and initial state, but different returned outputs and
failures. Total CPU time counts the time elapse between is-
suing the goal and its satisfaction or failure.

 0

 50

 100

 150

 200

 2 4 6 8 10 12 14 16 18 20 22

T
ot

al
 r

un
tim

e
in

 s
ec

Number of sensed variables checked for constraint violation

Combined goal

Figure 1: Total runtime in sec vs. the number of initially
unknown variables which have to be sensed and checked for
violation. Measurements are taken for a conjunctive goal
tested towards different initial states reflecting a decreasing
number of initially known variables.

translating it into constraints is 3.2 sec.
The results of running a number of diverse scenarios are

summarised in Table 1. Each goal’s fulfillment requires a
different combination of services coming from the various
business fields covered by the domain, and for a given ini-
tial state, an off-line plan is generated. The test instances
correspond to variant runs of the orchestrator for this ini-
tial plan, depending on the different feedback received at
execution. The amount of backtracking is dependent on
the returned outputs, as well as on the order of invocations
instructed by the planner, while the response times experi-
enced by the same service may differ considerably at differ-
ent invocations. The reported times are the average over 3
separate runs of the same test instance. It should be empha-
sised that the test instances indicated by b or c are deliber-
ately modeled for experimenting with the orchestrator’s be-
haviour under extremely ill-behaved circumstances, where
alternative service instances consecutively fail to satisfy the
goal, e.g. all instances promise to provide the desired out-
put, i.e. they have a room, car etc. available, but at the last
moment the booking process fails. The time required for a
violation check depends on the constraints entailed by the
new information that is gathered.

The overall execution time is dominated by the time spent

on inconsistency inspections and re-planning according to
the feedback received at runtime. Therefore, in Figure 1
we plot the relation between total runtime and the number
of initially unknown variables that have to be sensed, and
which entail solving the new CSP instance. The goal used
for these tests is an artificial one, deliberately constructed
so as to require the invocation of all knowledge-gathering
actions under minimal initial knowledge. We see that the
algorithm can successfully solve problems with a high num-
ber of unknown variables, some of which are of high cardi-
nality. Although no direct comparison with other planning
approaches to WS composition can be made, given that they
use distinct testing domains and base on different assump-
tions and aims, it is worth mentioning that in (Au, Kuter,
and Nau 2005) only up to 9 unknowns can be dealt with, re-
quiring 100 sec. With respect to off-line synthesis time, the
CSP-based planner used herein is slower than FF employed
in (Hoffmann, Weber, and Kraft 2010) or SHOP2 in (Au,
Kuter, and Nau 2005), however it supports complex goals,
variables ranging over very large domains, and re-planning
for dealing with dynamic context.

Concluding remarks

We have designed, implemented and evaluated a planning
framework for generating automatic WS syntheses, that ac-
commodates for complex goals, a knowledge-level represen-
tation to model lack of information and proactive sensing in
presence of variables that range over large domains, as well
as an algorithm for monitoring execution and revising plans
in a dynamic environment. These features put together en-
hance the extent of scenarios that can be represented and
dealt with compared to previous approaches. Experimen-
tal evaluation confirms that the framework performs well in
different situations, with complex goals, real services, and
several combinations of unknowns and failure occurrences.

References

Au, T.; Kuter, U.; and Nau, D. 2005. Web Service Compo-
sition with Volatile Information. In Int. Semantic Web Conf.
(ISWC’05).
Hoffmann, J.; Weber, I.; and Kraft, F. 2010. SAP Speaks
PDDL. In 4th National Conf. of the American Association
for Artificial Intelligence (AAAI’10).
Kaldeli, E.; Lazovik, A.; and Aiello, M. 2009. Extended
Goals for Composing Services. In 19th Int. Conf. on Auto-
mated Planning and Scheduling.
Pistore, M.; Marconi, A.; Bertoli, P.; and Traverso, P. 2005.
Automated Composition of Web Services by Planning at the
Knowledge Level. In 19th Int. Joint Conference on Artificial
Intelligence.
Skoutas, D.; Sacharidis, D.; Simitsis, A.; and Sellis, T. 2008.
Serving the Sky: Discovering and Selecting Semantic Web
Services through Dynamic Skyline Queries. In 2nd IEEE
Int. Conf. on Semantic Computing.
Sohrabi, S.; Prokoshyna, N.; and Mcilraith, S. A. 2006. Web
Service Composition via Generic Procedures and Customiz-
ing User Preferences. In Int. Semantic Web Conf.

1203

