
Fast Query Recommendation by Search

Qixia Jiang and Maosong Sun
State Key Laboratory on Intelligent Technology and Systems

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Sci. and Tech., Tsinghua University, Beijing 100084, China

qixia.jiang@gmail.com, sms@tsinghua.edu.cn

Abstract

Query recommendation can not only effectively facil-
itate users to obtain their desired information but also
increase ads’ click-through rates. This paper presents
a general and highly efficient method for query rec-
ommendation. Given query sessions, we automatically
generate many similar and dissimilar query-pairs as the
prior knowledge. Then we learn a transformation from
the prior knowledge to move similar queries closer such
that similar queries tend to have similar hash values.
This is formulated as minimizing the empirical error on
the prior knowledge while maximizing the gap between
the data and some partition hyperplanes randomly gen-
erated in advance. In the recommendation stage, we
search queries that have similar hash values to the given
query, rank the found queries and return the top K
queries as the recommendation result. All the experi-
mental results demonstrate that our method achieves en-
couraging results in terms of efficiency and recommen-
dation performance.

Introduction

Query Recommendation (QR) plays an important role in IR
and advertising. QR suggests some related queries to users
in their search process, which can effectively facilitate users
to clarify their information needs and obtain their desired
results. In advertising, advertisers always bid on few terms
that tend to have high search volumes. Such ”hot” bidterms
are always expensive. Alternatively, we could recommend
some related, much cheaper but relatively low search volume
bidterms to advertisers for achieving comparable advertis-
ing effects (Abhishek and Hosanagar 2007). Moreover, the
scarcity usually leads to the difficulty of ad matching. There-
fore suggesting some additional bidterms can significantly
increase ads’ click-through rates (Chang et al. 2009).

Figure 1 presents the process of QR: (1) query represen-
tation, (2) finding the queries that are similar to the current
query, (3) ranking the found queries, and (4) post-processing
based on the ranked query list such as query expansion etc.
Existing QR methods differ from each other in terms of
these steps. We divide them into two major technologies:
context-free and context-aware. Context-free methods (Liu

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The process of query recommendation. This paper
focuses on the part in the dashed box.

and Sun 2008; Ma, Lyu, and King 2010) only use linkage
information (i.e., query-URLs) and they are usually carried
out on bipartite networks constructed from user logs. Such
methods suffer from the data scarcity thus are inappropriate
for unpopular queries. Context-aware methods recommend
queries by incorporating various search context information
such as query terms, clicked URLs, query sessions, Web
pages, etc (Cao et al. 2008; Jiang, Zilles, and Holte 2009;
He et al. 2009). However, in these works, different query
representations always lead to the different recommendation
methods. So, a general framework is required to adopt vari-
ous types of query information for QR.

Inspired by (Yang et al. 2008; Cai et al. 2007), a direct
solution is to convert the recommendation problem to a scal-
able search problem – recommendation-by-search. Specifi-
cally, each query is represented as a vector which consists of
various types of information such as terms, clicked URLs,
etc. Then, it turns to a similarity search problem. However,
real-world query data is very large, which requires highly-
efficient retrieval methods. This paper, as described in Fig-
ure 1, focuses on how to efficiently recommend queries by
search. We should emphasize that it is obviously that enrich-
ing the query representation can improve the recommenda-
tion performance but it is not in the scope of this paper.

Hashing-based methods have gained great success in var-
ious applications such as image retrieval (Wang, Kumar, and
Chang 2010), music recommendation (Cai et al. 2007), near-
duplicate detection (Manku, Jain, and Das Sarma 2007), etc.
They map high-dimensional objects to compact binary hash
values and make similar objects have similar hash values.
The similarity search according to these hash values is much
more efficient than in the original attribute space (Charikar

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1192

Figure 2: An illustration of Query Hashing. In this example,
two similar pairs are denoted by stars and squared boxes
respectively, and two dissimilar points are denoted by two
different triangles (equilateral and right-angle). The prior
knowledge guides us to hash queries more reasonable, while
maximizing the gap between the data and the partition hy-
perplanes makes our method have better generalization.

2002). Inspired by this, we propose a novel method, Query
Hashing (QH), for QR. Given query sessions, we generate
the prior knowledge of queries in terms of pairwise similar-
ity and dissimilarity via Hierarchical Agglomerative Clus-
tering (HAC) (Zamir et al. 1997). Then we learn a trans-
formation to move similar queries closer such that similar
queries tend to have similar hash values. This is formulated
as minimizing the empirical error on the prior knowledge
while maximizing the gap between the data and some hy-
perplanes randomly generated in advance (see Figure 2). To
hash a query, we firstly move it based on the learned trans-
formation. Its hash value is then determined by the sides of
hyperplanes it lies on. Recommendation for a query consists
of two steps: (1) searching queries that have similar hash
values to the given query, and (2) ranking the found queries
and returning the top K queries as the result.

To evaluate the performance, we collect 12.5 million
queries from a commercial search engine, Sogou1. We com-
pare QH with several methods. All the experiments demon-
strate that our method achieves encouraging results in terms
of recommendation performance and efficiency.

Query Hashing

Assume we are given a set of queries X = {xn}
N
n=1,xn ∈

R
D and a set of query sessions. A query session is a se-

quence of queries submitted by a specific user to a search en-
gine in a certain period of time. Moreover we define two sets,
similarity set Θs and dissimilarity set Θd. Any query-pair in
Θs denotes that they should have the same hash value, while
any query-pair in Θd indicates that they should have differ-
ent ones. QH is to automatically generate the prior knowl-
edge Θs and Θd and then learns a transformation matrix
T ∈ R

D×D from the prior knowledge such that after trans-
formation similar queries tend to have similar hash values.

Prior Knowledge Generation

This section describes the method of generating the prior
knowledge Θs and Θd from query sessions. To reduce the

1www.sogou.com

influence of the noisy within query sessions, we use the
HAC algorithm to cluster the queries. The basic HAC is
a bottom-up clustering algorithm. It needs to calculate the
adjacency matrix in advance and dynamically update this
matrix, which is time consuming and computationally in-
tractable for large-scale data. Hence, some heuristic rules
are introduced to reduce the computation complexity.

Adjacency Matrix Calculation. The queries in a same
query session are always strongly semantic-related, since
they are issued by a user for a certain information need. In-
spired by this observation, we only calculate the cosine sim-
ilarity between any two queries that occur in the same ses-
sion, while the similarity between any two queries that never
occur in a session together is set to 0. Finally, we sort the
query pairs in terms of their similarity and obtain a ranked
query-pair list.

Clustering Algorithm. The clustering algorithm is a re-
cursive procedure. At beginning, each query is considered as
a singleton cluster. In each iteration, we select the query-pair
with the highest similarity and remove it from the query-
pair list. Then, we test whether the two clusters contain-
ing the selected queries can be merged. If they do not sat-
isfy the merge conditions, go to the next iteration. The al-
gorithm stops when (1) the number of obtained clusters is
smaller than a desired number, or (2) no clusters can be fur-
ther merged. There are two merge conditions: (1) the size
of the after-merged cluster should be smaller than a thresh-
old. This threshold should be set relatively small, i.e., 50.
This is because that HACs are very sensitive to merge con-
ditions (Zamir et al. 1997). When two ”good” clusters are
merged by mistake, the resulting cluster may be meaning-
less to users. (2) the similarity between two clusters should
be larger than a threshold. The cluster similarity is measured
as between two ”super queries”. Specifically, each cluster
is represented by simply concatenating all the queries that
it contains. And the similarity between two clusters is just
the similarity between such two ”super queries”. Note that
we never update the adjacency matrix during the clustering
procedure which can greatly speed up clustering.

Generating Θs and Θd. After clustering, we randomly
sample some pairs of queries within the same clusters as Θs

and some queries within two different clusters as Θd.

Formulation

This section presents our hashing-based QR method. Hash-
ing aims to map data to a Hamming space2 for compact rep-
resentation. For a query x, QH firstly moves it via T, then
its hash value is determined by the sides of L random hyper-
planes hl, l = 1, . . . , L, that it lies on, i.e.,

fl(x) = sign(hT

l Tx). (1)

Intuitively, we hope that Θs and Θd could guide us to
hash queries more reasonable – after transformation simi-
lar queries could be mapped into the same or adjacent hash
buckets. Furthermore, it is reasonable that similar query-
pairs are not only to share the same hash value but also to

2Hamming space is a set of binary strings of length L.

1193

have large projection magnitudes. If they are projected to
different hash buckets, we toggle an extra penalty. Analo-
gously, after transformation, two dissimilar queries are ex-
pected not only to be assigned to different hash values but
also to have large margins. We toggle an extra penalty if two
dissimilar queries are mapped into the same hash bucket.
Therefore, the empirical error on the obtained prior knowl-
edge Θs and Θd is:

L(T) =

L∑
l=1

{ ∑
(xi,xj)∈Θs

ϑ[(hT
l Txi)(h

T
l Txj)]

+
∑

(xi,xj)∈Θd

ϑ[−(hT
l Txi)(h

T
l Txj)]

}
, (2)

where ϑ(t) is defined as follows:

ϑ(t) =

{
0, if t ≥ 0
−t, otherwise

(3)

Moreover, we also expect that our method could have a
good generalization property. Inspired by margin-oriented
criterion (Burges 1998), we hope that the gap between the
data and the partition hyperplanes is large enough. Therefore
we utilize a hinge-loss to penalize those queries that are too
close to the hyperplanes. For a query x and the hyperplane
hl, the hinge-loss function is defined as:

�l(x) = max{0, 1− |hT

l Tx|}. (4)

Add an additional F-norm regularization and finally we
should minimize the following objective function:

L(T) =
1

2
‖T‖2F +

1

N

L∑
l=1

{
λ1

N∑
n=1

�l(xn)

+λ2

∑
(xi,xj)∈Θs

ϑ[(hT
l Txi)(h

T
l Txj)]

+λ2

∑
(xi,xj)∈Θd

ϑ[−(hT
l Txi)(h

T
l Txj)]

}
, (5)

where λ1 and λ2 are trade-offs which weight loss terms.
For high-dimensional data, it is computationally expen-

sive to determine the optimal T (D ×D parameters). Thus,
we assume that the features are mutually independent. As
a result, T is simplified as a diagonal matrix, i.e., T =
diag(t), where t = (t1, . . . , tD).

Parameter Estimation

We determine the model parameters T via minimizing the
Equation (5). For description simplicity, only similarity set

Θs is considered3. Differentiating the loss function L(T)
with respect to the parameter td gives

∂L(T)

∂td
= td −

1

N

L∑
l=1

{
λ1

N∑
n=1

hl,dxn,d · sign(hT
l Txn)

+ λ2

∑
(xi,xj) ∈ Θs,

ϑ((hT
l Txi)(h

T
l Txj)) > 0

[
(hT

l Txi) · (hl,dxj,d)

+ (hT
l Txj) · (hl,dxi,d)

]}
. (6)

3The extension to dissimilarity set Θd is straightforward.

From above equation, we can see that it is impossible to
analytically determine the optimal parameters T, which is
mainly because simply setting the gradient of L(T) to zero
fails to yield a closed form solution. Instead, we solve this
optimization problem via an effective Quasi-Newton algo-
rithm, L-BFGS (Liu and Nocedal 1989).

Optimization with Jenkins Hashing Function

Unfortunately, explicitly representing one high-dimensional
random hyperplane still requires lots of random bits. In-
spired by (Indyk 2006), for N queries, we use Jenkins
hash function4 to pick O(log2 N) random bits such that
we can restrict the random hyperplanes in a family of size

2O(log
2
N). Specifically, we maintain a D×LmatrixH. Each

feature is firstly hashed into an L-dimensional hash value
f ∈ {−1,+1}L via Jenkins hash function. Then, the corre-
sponding row of H is set to fT . After all features have been
processed, each column hl ∈ {−1,+1}D, l = 1, . . . , L,
of H indicates one random hyperplane. Since each query is
represented by a very sparse vector, such a procedure can be
carried out online. As a result, we can avoid explicitly stor-
ing these L random hyperplanes and the space complexity
can be reduced from O(LD +D) to O(D).

Summery

In this section, we briefly summarize our method. QH con-
sists of two strategies, pre-processing and recommendation.
The pre-processing strategy involves following three steps:

• Generate the similarity and dissimilarity sets Θs and Θd.

• Determine the optimal T∗ by minimizing Equation (5).

• For each query x ∈ X , move it by multiplying the
leaned transformation matrix T∗ and generate its L-bit
hash value, i.e., fl(x) = sign(hT

l
T∗x), l = 1, . . . , L.

In the recommendation stage, given a query q, we need:

• Form the hash value of q according to Equation (1).

• Search the queries in the dataset X that have the similar
hash values to the query q’s.

• Rank the search results and return the top K queries as
the recommendation result.

Experiment

This section evaluates our method. We firstly introduce the
experimental setups. Then some evaluation metrics are pre-
sented. Finally, we report the results.

Experimental Setups

Our evaluations consist of two parts: (1) data without labels.
This evaluation is carried out on a large query dataset col-
lected from a commercial search engine. (2) data with labels.
To exclude the influence of HAC to the final recommenda-
tion performance, we manually label some queries, train the
QH model and evaluate the performance.

We compare our method with three state-of-the-art
hashing-based methods, SimHash (SH) (Charikar 2002),

4http://www.burtleburtle.net/bob/hash/doobs.html

1194

(a) (b)

Figure 3: Run-time complexity of different methods.
(a)Averaged searched data within Hamming radius 2 with
different number of hash bits. (b)Averaged running time for
recommendation per 1,000 queries (sec./1000q).

Kernelized Locality Sensitive Hashing (KLSH) (Kulis
and Grauman 2009) and Semi-Supervised Hashing (SSH)
(Wang, Kumar, and Chang 2010), and a method commonly
used in IR, Inverted-List (IL) (Manning, Raghavan, and
Schütze).

SH uses random projections to hash data. KLSH con-
structs a random hyperplane as a weighted sum of some
randomly-selected points. For a query, the hash value is
determined by its relative location to these constructed
hyperplanes. In our experiment, we use the RBF kernel

exp(−
‖xi−xj|

2

2

δ2
) where the scaling factor δ takes 0.5. The

parameters in KLSH are set as: p = 500 and t = 50. See
Ref.(Kulis and Grauman 2009) for more details. Both SH
and KLSH are unsupervised method. SSH can hash with
prior knowledge. It determines the optimal hashing func-
tions by finding the top L eigenvectors of an extended co-
variance matrix via Principle Component Analysis (PCA)
(Jolliffe 1986). For QH, we simply set the tradeoff coeffi-
cients λ1 and λ2 to 1,000 and 100 respectively.

We test all the methods on a PC with a 2.66 GHz proces-
sor and 12GB RAM. All experiments are repeated 10 times
and the averaged results are reported.

Evaluation Metrics

Given a test query, we firstly generate its hash value using
different methods. Then, similarity search is performed to
recommend some queries. Note that, IL in fact returns all the
queries that contain any term(s) within the given query. As
in the literature, quality measurements under two different
scenarios are utilized in this paper.

Hash Lookup. Given a test query, we search queries in
the dataset within a specified Hamming radius r (r = 2 in
our experiments) as recommendation, i.e., lookup by suc-
cessively altering i bits, i = 0, 1, . . . , r. The proportion of
relevance queries (i.e., on the same topic as the test query)
among the search results is calculated as recommendation
precision. Similarly to (Wang, Kumar, and Chang 2010;
Weiss, Torralba, and Fergus 2009), for a test query, if no
neighbors within the given Hamming radius can be found, it
is considered as zero precision.

Hash Ranking. Given a test query q, we firstly lookup
queries (just as hash lookup) in the dataset within the Ham-

(a) (b)

Figure 4: Recommendation performance for hash ranking
on the data without labels. (a) MAP for hash ranking with
different number of hash bits. (b) Precision at rankR (P@R)
with 30-bit hash value.

ming radius from 0 to L until no less than K (100 in our
experiments) queries are collected. Then, we rank the found
queries according to their Hamming distance5 from q. Fi-
nally, we return the top K queries as the result. The recom-
mendation precision at rank R (P@R) is calculated as:

P@R =
the number of searched relevent queries

R
. (7)

A query considered as a relevant one is either on the same
topic as the test query or the true K-nearest-neighbors of the
test query in the original attribute space. We also calculate
Mean Averaged Precision (MAP) as follows:

MAP(Q) =
1

|Q|

∑

q∈Q

1

K

K∑

R=1

P@R · δ(q, R), (8)

where Q is the test query set and δ(q, R) = 1 when the
searched query at rank R is relevant to q, otherwise 0.

Data without Labels

We collect 4,039,322 query sessions and 12,502,641 Chi-
nese queries from a commercial search engine. After word
segmentation, this dataset contains totally 69,738,014 terms
and 256,141 distinct features. Each query is represented as a
vector of term frequency6. We randomly sample 20K queries
as test set and the rest as training set. Both obtained Θs and
Θd contain 5M query-pairs. Since no topic information is
available in this section, a query is considered to be rele-
vant to the test query when it is the true K-nearest-neighbors
found by IL method. Moreover, considering there are 256K
features, SSH totally fails from an effectiveness perspective.
Thus, we only compare our method with SH, KLSH and IL.

Figure 3(a) shows the averaged searched data within
Hamming radius 2. Obviously, KLSH is lack of discrimi-
nation and returns over 10 times more queries than IL. This

5Hamming distance is defined as the number of bits that are
different between two binary strings.

6Note that QH is a general framework for QR. In fact, we can
adopt any additional features in this framework as we like. For ex-
ample, we can deal with the lexical gap problem by employing
semantic features. But enriching query representation is not in the
scope of this paper.

1195

(a) (b) (c)

Figure 5: Recommendation performance on the data with labels. (a) Precision within Hamming radius 2 for hash lookup with
different number of hash bits. (b) MAP for hash ranking with different number of hash bits. (c) Precision at rank R (P@R,
R = 1, . . . , 100) for hash ranking with 30-bit hash value.

Figure 6: An illustration of the biggest 15 topics in the data.

is mainly because KLSH reconstructs the embedding space
via only a few sample points, which is usually insufficient
for high-dimensional especially sparse data thus lack of dis-
crimination. As a result, KLSH is degraded to the linear scan
method to a certain extent. We also find that IL returns much
more queries than QH and SH, which leads to its poor effi-
ciency for further post-processing.

Figure 3(b) presents the running time for recommenda-
tion. It shows that QH is much faster than the other meth-
ods. We find that the efficiency of SH significantly decreases
with the increasing of hash bits. This is because when hash
bits are long, SH always fails to return any neighbor even
in a large Hamming radius, which is a potential problem of
the basic SH. Therefore, SH has to linearly scan the whole
dataset for recommendation. On the other hand, QH takes
less than 30 minutes to determine the optimal transforma-
tion matrix T∗.

Figure 4 reports the recommendation performance of dif-
ferent methods. Obviously, QH is superior to SH and com-
parable to KLSH (degraded to the linear scan). However,
considering the efficiency, QH gets the best performance.

Data with Labels

This dataset contains 62,450 Chinese queries with totally
225,790 terms and 3,916 distinct features. Each query is rep-
resented as a vector of term frequency. We manually assign
all these queries to one of 39 topics. The biggest topic con-

tains 11,896 queries and the smallest one only contains 6.
For space limitation, we only list the biggest 15 topics in
Figure 6. Furthermore, we randomly sample 50K queries as
training set and the rest 12,450 queries as test set. To train
QH and SSH, we randomly sample 20K pairs of queries
within the same topic as Θs and 20K pairs of queries within
two different topics as Θd. In the following experiments, a
query is considered to be relevant when it shares the same
topic as the test query7.

Recommendation performance of different methods is
presented in Figure 5. Figure 5(a) shows the performance
for hash lookup with different hash bits (L). It shows that
SSH totally fails, which is mainly because SSH finds L op-
timal hash functions via PCA. However, the variance of di-
rections obtained by PCA is mostly contained in the top few
directions (Jolliffe 1986). Therefore, lower hash functions
tend to have no discrimination. IL is inferior to QH and
KLSH, which is because queries with different topics also
share some features. Moreover, KLSH is superior to the ba-
sic SH. This benefits from the adoption of the kernel tech-
nique, which is proposed for nonlinear separated data. We
can see that QH gets the best precision for hash lookup.

Figures 5(b) and 5(c) report the recommendation perfor-
mance for hash ranking. IL ranks the queries according to
their cosine similarity to the test query in the original at-
tribute space. In fact, for hash ranking, MAP and P@R ob-
tained by IL are the upper-bound of all the approximated
similarity search methods. Such two figures show that the
performance of QH is comparable to IL and is significantly
superior to the other three hashing-based methods.

All the experimental results show that our method
achieves encouraging results in terms of recommendation
performance and efficiency.

7Previous works (Liu and Sun 2008; Yang et al. 2008) com-
monly evaluate the performance by asking editors whether the rec-
ommended queries are really retaliated to the original queries. Our
experimental setup is analogous except for the procedure that edi-
tors label all the queries in advance and then we check whether the
recommended queries are related. This maybe not sensitive enough
but it is fair to all the methods.

1196

Related Works

This section briefly introduces some related works on the
search-based QR and the approximated similarity search.

Query Recommendation by Search

Jiang et al. (Jiang, Zilles, and Holte 2009) recommend for
a query in the following two steps: (1) submitting the given
query to a search engine, and (2) recommending by extract-
ing some relevant queries from the documents in a specific
rank range returned by the search engine. Yang et al. (Yang
et al. 2008) enrich query representation by incorporating
both search result context and query log session context.
Given a query, they calculate the relevance scores for all the
queries in the query set and recommend those queries have
the highest relevance scores. The low efficiency of such two
methods limit their usage in real-world applications.

Approximated Similarity Search

Existing approximate similarity search algorithms can be di-
vided into two categories: unsupervised and supervised.

A notable unsupervised method is SimHash (SH)
(Charikar 2002). SH performs random projections to map
similar objects to similar hash codes. The kernel version
of SH, Kernerlized Locality Sensitive Hashing (KLSH)
(Kulis and Grauman 2009), is proposed to handle linearly-
unseparated data. These methods cannot incorporate prior
knowledge for better hashing.

Motivated by this, many supervised methods have been
proposed. Spectral Hashing (Weiss, Torralba, and Fergus
2009) maintains similarity between objects in the reduced
Hamming space by minimizing the average Hamming dis-
tance between similar neighbors in the Euclidean space.
Unlike Spectral Hashing, Semi-Supervised Hashing (SSH)
(Wang, Kumar, and Chang 2010) strive to learn hash func-
tions that minimize the empirical error on prior knowledge.
LAMP (Mu, Shen, and Yan 2010) enforces the consistency
between hashing partitions and constraints implied in prior
knowledge by adding a regularization term. All these su-
pervised methods are computational expensive which limits
their usage for high-dimensional data.

Conclusions

In this paper, we have proposed a general and efficient
method for query recommendation, Query Hashing (QH).
QH automatically generates the prior knowledge from query
sessions. Then QH learns a transformation from the prior
knowledge such that after transformation similar queries
tend to have similar hash values. This is implemented by
minimizing the empirical error on the prior knowledge while
maximizing the gap between the data and some partition hy-
perplanes randomly generated in advance. All the experi-
ments have shown that QH achieves the best results in terms
of efficiency and recommendation performance.

Acknowledgements

This work is supported by the National Natural Science
Foundation of China under Grant No. 60873174. We also
thank Sogou for providing the data.

References

Abhishek, V., and Hosanagar, K. 2007. Keyword genera-
tion for search engine advertising using semantic similarity
between terms. In Proc. of ICEC’07.

Burges, C. 1998. A tutorial on support vector machines for
pattern recognition. Data mining and knowledge discovery
2(2):121–167.

Cai, R.; Zhang, C.; Zhang, L.; and Ma, W. 2007. Scalable
music recommendation by search. In Proc. of MM’07.

Cao, H.; Jiang, D.; Pei, J.; He, Q.; Liao, Z.; E., C.; and Li,
H. 2008. Context-aware query suggestion by mining click-
through and session data. In Proc. of KDD’08.

Chang, W.; Pantel, P.; Popescu, A.; and Gabrilovich, E.
2009. Towards intent-driven bidterm suggestion. In Proc.
of WWW’09.

Charikar, M. 2002. Similarity estimation techniques from
rounding algorithms. In Proc. of STOC’02.

He, Q.; Jiang, D.; Liao, Z.; Hoi, S.; Chang, K.; Lim, E.; and
Li, H. 2009. Web query recommendation via sequential
query prediction. In Proc. of ICDE’09.

Indyk, P. 2006. Stable distributions, pseudorandom genera-
tors, embeddings, and data stream computation. Journal of
the ACM (JACM) 53(3):307–323.

Jiang, S.; Zilles, S.; and Holte, R. 2009. Query suggestion by
query search: a new approach to user support in web search.
Proc. of WI’09.

Jolliffe, I. 1986. Principal component analysis. Springer-
Verlag.

Kulis, B., and Grauman, K. 2009. Kernelized locality-
sensitive hashing for scalable image search. Proc. of
ICCV’09.

Liu, D., and Nocedal, J. 1989. On the limited memory
bfgs method for large scale optimization. Mathematical pro-
gramming 45(1):503–528.

Liu, Z., and Sun, M. 2008. Asymmetrical query recommen-
dation method based on bipartite network resource alloca-
tion. In Proc. of WWW’08.

Ma, H.; Lyu, M.; and King, I. 2010. Diversifying query
suggestion results. Proc. of AAAI’10.

Manku, G.; Jain, A.; and Das Sarma, A. 2007. Detecting
near-duplicates for web crawling. In Proc. of WWW’07.

Manning, C.; Raghavan, P.; and Schütze, H. An introduction
to information retrieval.

Mu, Y.; Shen, J.; and Yan, S. 2010. Weakly-supervised
hashing in kernel space. Int. Conf. on CVPR’10.

Wang, J.; Kumar, S.; and Chang, S. 2010. Semi-supervised
hashing for scalable image retrieval. Int. Conf. on CVPR’10.

Weiss, Y.; Torralba, A.; and Fergus, R. 2009. Spectral hash-
ing. Proc. of NIPS’09.

Yang, J.; Cai, R.; Jing, F.; Wang, S.; Zhang, L.; and Ma, W.
2008. Search-based query suggestion. In Proc. of CIKM’08.

Zamir, O.; Etzioni, O.; Madani, O.; and Karp, R. 1997.
Fast and intuitive clustering of web documents. In Proc.
of KDD’97.

1197

